

GGAS: Global GPU Address Spaces for Efficient

Communication in Heterogeneous Clusters

Lena Oden
1
, Holger Fröning

2

1
 Fraunhofer Institute & University of Heidelberg, Germany,

2
 University of Heidelberg, Germany

Abstract— Modern GPUs are powerful high-core-count

processors, which are no longer used solely for graphics

applications, but are also employed to accelerate

computationally intensive general-purpose tasks. For utmost

performance, GPUs are distributed throughout the cluster to

process parallel programs. In fact, many recent high-

performance systems in the TOP500 list are heterogeneous

architectures. Despite being highly effective processing units,

GPUs on different hosts are incapable of communicating

without assistance from a CPU. As a result, communication

between distributed GPUs suffers from unnecessary overhead,

introduced by switching control flow from GPUs to CPUs and

vice versa. Most communication libraries even require

intermediate copies from GPU memory to host memory. This

overhead in particular penalizes small data movements and

synchronization operations, reduces efficiency and limits

scalability. In this work we introduce global address spaces to

facilitate direct communication between distributed GPUs

without CPU involvement. Avoiding context switches and

unnecessary copying dramatically reduces communication

overhead. We evaluate our approach using a variety of

workloads including low-level latency and bandwidth

benchmarks, basic synchronization primitives like barriers,

and a stencil computation as an example application. We see

performance benefits of up to 2x for basic benchmarks and up

to 1.67x for stencil computations.

Keywords-parallel processing, hybrid computing clusters,

GPU communication, bulk-synchronous execution

I. INTRODUCTION

Various technological limitations have led to a stagnating
performance of single-thread CPUs, and only by introducing
multiple cores the CPU vendors were able to maintain
Moore’s law. Opposed to this, the performance of GPUs has
increased dramatically in the recent years and led to an
adoption of a variety of non-graphical applications to GPUs,
emphasized by popular programming paradigms like
NVidia’s CUDA or OpenCL by Khronos or directive-based
approaches like OpenACC. Even Intel had to confess that
GPUs are faster than CPUs for a pretty broad range of
applications [1]. Along with this interest in GPU Computing,
the high performance computing community rapidly adopted
GPUs for their purposes, employing them in clusters as
accelerators, trying to satisfy more of the computational
needs of their performance-hungry applications.

GPUs are primarily designed to perform graphical
computations, and the huge consumer market allows GPUs

to be highly cost-effective. Considering this specialization,
it’s no surprise that throughput-oriented applications can
benefit most from GPUs. Furthermore, GPUs only excel if
they can perform their calculations in-core, otherwise
performance is significantly limited by data movement over
the PCIe interface, which is several orders of magnitude
slower than the GPU’s special memory. This is a severe
limitation, in particular taken into account that GPUs suffer
from too few memory anyway, which is typically only in the
range of 4 - 6GBs.

Thus, even using GPUs, the computational requirements
of many applications still cannot be satisfied and data-
intensive applications (Big Data) are pushing these needs
even further. A tightly-coupled cluster of GPUs can help to
overcome this situation. For such a communication-centric
architecture, minimal costs for communication and
synchronization are required. Then, a GPU cluster can be a
viable way to overcome the limitations of in-core computing,
and use resource aggregation to keep the majority of data in-
core. However, GPUs are peripheral slave devices and thus
incapable of sourcing or sinking network traffic. Usually, a
communication layer running on the CPUs is used as
communication assistant. For most use cases, this is an
unnecessary indirection that limits performance and
scalability.

In this work we introduce Global GPU Address Spaces
(GGAS), a communication model for distributed GPUs that
differs from previous work in several aspects:

1. GGAS maintains the GPUs bulk-synchronous,
massively parallel programming model by relying on
thread-collective communication.

2. GGAS allows confining the control flow to the GPU
domain, bypassing the CPUs for all computation and
communication tasks and avoiding context switches
that are costly in terms of energy and time.

3. Opposed to communication layers based on message
passing, GGAS minimizes branch divergence

1
, as

communication is performed by all threads in a
block collaboratively.

4. GGAS is a direct, zero-copy communication model
that moves data without intermediate copies between

1 GPUs can only maximize sustained performance if a single control
flow is maintained for all threads within a so called warp (typically 32

threads). Otherwise, the so called branch divergence leads to

substantial performance losses.

distributed GPU memories, again contributing to the
minimization of time and energy.

Note that this work maintains the commodity aspect of
GPUs, as all required hardware changes are constraint to the
network device, and do not affect the GPU. The network
device is responsible to intercept local accesses targeting the
global address space and to forward them to remote
locations.

In the remainder of this work we start with a background
on GPU computing and available GPU communication
techniques in section 2, before we present our idea of Global
GPU Address Spaces in section 3. In section 4, we describe
the technical details and implications of our approach.
Section 5 is dedicated to our evaluation methodology and
describes our example workloads. In section 6 we discuss the
obtained results and compare to other communication
techniques. Section 7 presents related work, before we
summarize and conclude in the last section.

II. BACKGROUND

A GPU is a powerful high-core-count device with
multiple Shared Multiprocessors (SMs) that can execute
thousands of threads concurrently. Each SM is essentially
composed by a large number of computing cores, and a
shared scratchpad memory. Threads are organized in blocks,
but the scheduler of a GPU doesn’t handle each single thread
or block; instead threads are organized in warps (typically 32
threads) and these warps are scheduled to the SMs during
runtime. Context switching between warps comes at
negligible costs, so long-latency events can easily be hidden.
To maximize sustained performance, threads within a warp
have to have similar control flows; otherwise the branch
divergence will result in performance losses as the scheduler
is not able to handle such unaligned control flows efficiently.
Also, enough threads have to be ready to maintain full
utilization when long-latency events occur. Thus, typically at
least one order of magnitude more threads are scheduled than
can execute concurrently. Also, memory accesses are only
efficient if multiple accesses from different threads can be
coalesced. Thus, enough threads have to access non-
conflicting memory locations concurrently, to offer the
memory controller enough possibilities for coalescing.

CUDA is a parallel computing platform and
programming model created by NVidia, which provides a
virtual instruction set to use NVidia GPUs for computation.
CUDA allows running a parallel kernel on the GPU, but the
CPU has to launch this kernel. A more detailed description
of GPUs and CUDA can be found in the excellent book by
Kirk and Hwu [2]. Although we use CUDA in this work, all
principles are also applicable to other GPU programming
languages, including OpenCL.

III. THE GGAS MODEL

The idea of a cluster-wide Global GPU Address Space
(GGAS) is to allow efficient and fast communication
between multiple GPUs in heterogeneous clusters. The
common method for GPU-to-GPU communication is a
hybrid programming model, using a GPU programming
language like CUDA, OpenCL, or OpenACC in combination

with a message passing library like MPI. The GGAS
programming model distinguishes in two main points from
this approach:

1. GGAS maintains the bulk-synchronous, massively
parallel programming model of GPUs without
increasing complexity by introducing message
passing paradigms. GGAS is a natural extension to
the GPU programming model rather than a new or
hybrid programming model.

2. GGAS allows keeping the control flow for both
communication and computation tasks on the GPU.
Then, the CPU is no longer required to control the
data transfer between GPUs and thus can completely
be bypassed. This property is in particular useful in
combination with Dynamic Parallelism, allowing
launching new computing or communication kernels
from the GPU domain.

Figure 1 System and user view to a GGAS Cluster

A. The GGAS Communication Model

In Figure 1 the system and the user view of a GGAS
cluster are shown. The bottom part shows the structure of an
example GPU cluster. The cluster consists of multiple nodes,
equipped with one GPU and connected with a high
performance interconnect. Without GGAS, each GPU in the
system is a discrete system, which only has access to its own,
local device memory

2
. For access to the memory of a remote

GPU, special communication functions are required. In
contrast to this, the upper figure depicts how GGAS
transforms this system view into a simplified user view.
While resources like the SMs and the shared memory are
still local to one GPU, the distributed device memories of all
GPUs in the system are transformed into one global GPU
address space. Each thread in the system, independent of the
GPU it is running on, can access any part of this GGAS
space. This allows access to remote GPU memory in the
same way like to the local device memory, still with an
increased latency.

Below, an example of a CUDA device function using
GGAS is shown. This function writes a specific value to the

2
 To avoid confusions with the similar names of the global device memory

and the global address space, we will use the term device memory for the

global device memory of a single GPU. The term global address space is

used for the memory region composed by shared device memories of
multiple, distributed GPUs at cluster level.

GPU device memory of a remote GPU and is usually called
collectively by all threads on the GPU simultaneously.

__device__ remote_write (double val,

 int GPU, int index)

{

 double* ptr = __ggas_get_ptr_of_node (GPU);

 ptr [index] = val;

}

B. Comparing the Message Passing and GGAS Paradigms

The usual way to utilize a heterogeneous cluster is a
hybrid programming model. The GPU is used for
computation while the CPU controls the communication
process. Although modern RDMA-capable hardware like
Infiniband is able to transfer the data independently, still the
CPU has to create send and receive requests and guarantee
data consistency by synchronizing data transfer and
computation.

Figure 2 Control Flow for Message Passing

In Figure 2 this work flow of an iterative multi-GPU
program is shown. The control flow reverts from the GPU to
CPU domain any iteration to initiate communication.
Although CUDA-streams and RDMA-capable hardware
allow good overlapping of communication and computation,
context switching between GPU and CPU causes latency
issues. Especially for small messages, this can easily surpass
the raw data transfer latency.

We measured the time of starting and synchronizing a
simple CUDA kernel. In TABLE I the launch and
synchronization times for different GPUs are shown. Each
kernel is started with 32 blocks of 32 threads.

TABLE I KERNEL LAUNCH TIME

GPU Tesla

K20

Tesla

K10

Quadro

FX 5800

Quadro

2000

Time (us) 13.5 13.4 13.78 9.4

In contrast to this, the latencies for different message

sizes transferred over Infiniband are shown in 0,
demonstrating the overhead of context switches.

TABLE II DATA TRANFER TIME OVER INFINIBAND

Size (byte) 2 16 1k 4k 32k 64k

Time(us) 1.33 1.36 3.50 4.95 13.57 23.39

Also, the message passing paradigm requires a least one
CPU thread to orchestrate communication. On a multi-GPU
node, usually one thread or process for each GPU is used.
These threads are often in a polling state, waiting for
notifications of CUDA kernels or communication requests.
This requires extra CPU cycles and increases power
consumption.

In contrast to this, the control flow for a GPU program
using GGAS is shown in Figure 3. The GPU can source and
sink data transfers autonomously, so the control flow can be
confined to the GPU domain. Synchronization primitives
like barriers are directly implemented on the GPU.

Figure 3 Control Flow for GGAS

An alternative way to avoid context switches is to create
a message passing library directly running on the GPU; still
this contradicts the CUDA programming paradigm. For a
maximized sustained performance, threads executing within
a warp have to minimize, better avoid, branch divergences.
This is hardly possible using a model based on message
passing.

IV. TECHNICAL IMPLEMENTATION

In this section, the technical implementation and the
hardware requirements for GGAS are described.

A. Requirements to the GPU

To allow access to the GPU’s device memory, the
memory must be visible to the host system.. For NVidia
GPUs, this was enabled with the new GPU Direct RDMA
Technology, introduced with CUDA 5 [4].

This technique allows mapping GPU memory to one of
the GPUs Base Address Registers (BARs). These BARs are
normally used for communication between host and
peripheral devices. However, from the point of view of
another peer device, the physical addresses are the same and
either point to host memory or to the BARs of another
device.

B. Requirements to the network device

As described above, GPU Direct RDMA allows a
network device to access device memory like host memory.
Still, this is not sufficient to enable a direct communication
from a CUDA kernel and to completely bypass the host
CPU, since the data transfer still has to be initiated and
controlled. In common network hardware, this is done by
creating work requests and exchanging notifications with the
device. Even if it is theoretically possible for the GPU to

perform this work, this would require massive changes to
device drivers and user-space libraries of both GPU and the
network device. Also, this approach is not compatible with
the massively parallel GPU thread model.

So another kind of hardware is required, which allows an
easier sinking and sourcing of data transfers. A Shared
Memory Engine (SME) like the one described in [9] can meet
these claims, although it was originally designed to create
shared memory regions of host memory. The basic idea of
such a shared memory mapper is to map a part of the
memory of one node to the physical address space of remote
nodes. The physical address space, where the memory of the
remote notes is mapped into, is called the global address
space.

The global addresses are set up in such a way that they
include a coding of the target node identifier [9]. A load or
store request is then encapsulated in a network packet and
transferred to the target node. A store is completed by
writing the payload to the requested address. For a load, the
target node sends back an appropriate response. A detailed
description of an example implementation can be found in
[11].

C. Extending Global Address Spaces to GPUs

To create the Global GPU Address Space, we extended
this concept to GPU memory. We use the GPU Direct
RDMA feature to map GPU memory to the physical address
space of the host system. The shared memory engine is now
configured to forward an incoming read or write instruction
to the GPU BAR. The yellow arrows in Figure 4 show such
an incoming request.

Since the Shared Memory Engine is part of a peripheral
device, the physical addresses of GGAS are located within
the BAR of the network device. To make the shared memory
accessible from the GPU, these physical addresses must be
mapped into the virtual address space of the GPU. Unified
Virtual Addressing (UVA) allows mapping a part of the host
memory to the virtual address space of the GPU.

Figure 4 GGAS Mappings and Data Flows

A minor patch to the low level NVidia device driver
allows extending this to physical addresses lying within a
BAR of a peripheral device. A read or write instruction to a
virtual address pointing to the BAR is now forwarded to the
shared memory engine, which in turn forwards this request

to the target node. The red arrows in Figure 4 show such
outgoing requests.

V. PERFORMANCE EVALUATION

In this section we describe the implementation of a set of
benchmarks using GGAS. We use basic latency and
bandwidth tests, and a barrier as an example of
synchronization primitive. The Himeno benchmark serves as
a more complex example, which is based on stencil
operations. Since GGAS is a new model of multi-GPU
programming, we provide a more detailed description of the
implementation of these benchmarks.

A. Latency Tests

Our first test evaluates latency and is based on a Ping-
Pong pattern between two GPUs.

As GGAS allows respectively benefits from a
collaborative use by multiple threads and the associated
coalescing, we also extend this Ping-Pong test to a parallel
version that starts a bundle of threads in parallel on each
GPU, each one performing the tasks described above. We
start up to 8192 threads, scheduled in blocks of 32 threads.
Below, a code snippet for the ping side is shown.

__device__ ping (int remote_id)

{

 int* local = __ggas_get_ptr_of_node (ggas_id);

 int* remote = __ggas_get_ptr_of_node (remote_id);

 int ix = threadIdx.x + blockIdx.x * blockDim.x;

 volatile int tmp;

 // start collective ping by all threads

 remote [ix] = 1;

 // poll collectively for pong

 do {

 tmp = local [ix];

 } while (!tmp);

 local [ix] = 0; // reset for next polling

}

Since GPU thread execution is non-preemptive, the
possibility of lifelocks is present if more threads are
scheduled than cores are available. Our experiments validate
this, and for an NVidia Kepler-class K20 up to 8192 threads
can be started without running into such unsafe situations.
Note that this number only applies to this Ping-Pong test.
The exact number of threads for a given workload depends
on the overall resource usage, including shared memory and
registers.

B. Bandwidth Tests

To measure the sustained bandwidth for data transfers,
we implement two different tests: one is using simple read
and write instructions, while the other one is relying on
asynchronous cudaMemcpy operations, initiated directly by
CUDA kernels.

1) Remote stores
Using GGAS, GPUs on different nodes simply transfer

data by writing to global memory addresses. Since there is
no explicit synchronization, we developed a simple protocol
that uses flag-based hand-shake synchronization. Because of
the low single-thread performance of a GPU, multiple
threads (preferable all threads in a thread block)

collaboratively communicate to foster coalescing effects and
to minimize branch divergence.

2) cudaMemcpy
Using Dynamic Parallelism, an asynchronous

cudaMemcpy() operation can be called directly by a CUDA
kernel. We use this to copy the data from local to remote
buffers. We start a simple kernel with only one thread that
initiates a copy operation and then synchronizes. Compared
to the send/receive protocol, this is a one-sided
communication operation and can be compared with a Put
operation.

C. Global Barrier Synchronization

A global address space model like the one used here
requires explicit synchronization to ensure consistency. In
parallel computing, a barrier is a synchronization primitive
that guarantees that each thread or process reaches a specific
point in its control flow before proceeding. Using GGAS,
this must also guarantee that each read and write instruction
to the GGAS space is completed before a thread leaves the
barrier.

We use a hierarchical approach: first, all threads within a
block synchronize. Second, all the thread blocks within a
GPU execute a barrier. Dynamic Parallelism allows inter-
block synchronization on a GPU [3]. For cases in which this
feature is not available, Xiao and Feng [10] designed a
barrier which is ideal for such GPU inter-block
synchronization. Third, to synchronize distributed GPUs, an
efficient and fast barrier developed for distributed shared
memory architectures is used [20]. This barrier does not
require atomic operations as multiple writes to a single
location are avoided. It consists of two phases:

1. Check-in phase: Each block or thread arriving at

the barrier sets a check-in flag. One master checks

if the flags for all participants are set. Once all

thread blocks have arrived at the barrier, the check-

in phase is completed.

2. Check-out phase: the master sets the check-out flag

for all other participants. All other participants are

polling on this check-out flag for changes.
To achieve good performance, the location of the flags is

important. As shown in [20], for a strong scalability remote
loads should be avoided. Polling on remote locations
massively increases contention and latency. We avoid
remote loads by placing the check-in flags on the master
GPU and the check-out flags on the respective GPUs running
the slave threads. Thus, we avoid remote loads completely
and instead rely solely on a push model.

D. Himeno Benchmark

We implemented the Himeno benchmark on GGAS for
an application-level performance assessment. The Himeno
algorithm was developed in 1996 at the RIKEN Institute in
Japan, and a recent and good performing multi-GPU solution
using MPI for communication is described in [12]. It focuses
on the solution of 3D Poisson equation in generalized
coordinates on a structured curvilinear mesh. Using finite
differences, the Poisson equation is discretized in space

yielding a 19-point stencil. The multi-GPU solution slices
the domain along the z-direction.

We implemented a multi-GPU solution of this
benchmark, using Dynamic Parallelism in combination with
GGAS to exchange borders. During the kernel execution,
border points are copied to remote buffers using write
instructions to the global address space, as can be seen in the
following code snippet:

for (z = 1; z < ZMAX; z++) {

 … // do caculations

 p_new [index] = new_value;

 if (z == ZMAX or 1) // z is part of a border

 remote_buf [index] = new_value;

}

At the destination side, this data can be read directly from the
local buffers – without further memory copies. Note, that
copying data to the shared address space adds some overhead
to the kernel, since every thread has to perform an extra write
operation. To synchronize the data transfer, we use our
barrier implementation described above.

VI. RESULTS DISCUSSION

Our experiments run on a test system composed of two
machines with 6 core AMD Opteron 4100 series, running at
2.2GHz core frequency. Each machine is equipped with a
Tesla K20 GPU. A GPU comes with 13 SMs, each with 64
double precision cores; or 832 cores in total. The GPUs are
equipped with 5GB GDDR5 device memory and support the
Dynamic Parallelism and GPU Direct RDMA features.

To support GGAS, we have implemented a custom
network device on an FPGA that supports global address
spaces. The FPGA is running only at 200MHz and provides
network links with a peak bandwidth of 12.8Gbps.

We compare our results with Infiniband in combination
with GPU Direct RDMA. Our Infiniband test system consists
of two machines, each with two Intel 6-Core Xeon X5660,
and directly connected using Mellanox Connect X3
Infiniband (peak bandwidth of 32Gbps). These machines
also are equipped with two Kepler K20 GPUs. Since the
CPUs are only used for the setup, the different CPUs have no
impact on the results in this comparison.

A. Latency Results

For Infiniband it is not possible to directly sink a data
transfer from the GPU, so this has to be done by the host. To
measure the effect of context switches, we use a CUDA
kernel to poll on the data. If the data has arrived, the polling
kernel is completed and the Infiniband device is initiated to
start the data transfer.

For comparison purposes, we also measure the pure data
transfer latency, which neglects the overhead of finishing
and restarting the polling kernel. The results for the Ping-
Pong test are shown in Figure 5. The minimal round-trip
latency for GGAS is around 3.8us, so the half round-trip
latency starts at 1.9us. This latency keeps constant up to
1024 parallel threads, which translates to a payload size of
4kB since every thread writes a 4 byte floating point value.
Using Infiniband, the minimal round-trip latency is 6.8us and

only stays constant up to a payload size of 1kB. If the time
for the additional context switch is included, the minimal
latency is about 20us.

Figure 5 Ping-Pong Full Round-Trip Latency Results

These results show that especially for small data transfers
GGAS significantly outperforms Infiniband. Note, that we
use the IB Verbs library directly (with an additional patch to
use GPU Direct RDMA). Using a message passing library
like MPI would only add further overhead to the data
transfer.

B. Bandwidth Results

In Figure 6 the results of the bandwidth measurement are
shown. We compare GGAS again with the Infiniband IB-
RDMA implementation, but also with MPI. The maximal
bandwidth is around 1GB/s for both GGAS and Infiniband
using GPU Direct RDMA. For Infiniband, this is much lower
than expected, since the peak bandwidth for a data transfer
between the host memories of two nodes using Infiniband is
usually more than 3.2GB/s, while using MPI and host-
buffered copies we achieve about 2.1GB/s. To verify our
results, we repeated these measurements with Infiniband on
different machines, but didn’t achieve better results. This
could be affiliated to the bad support of device-to-device
communication by the PCI-Express system on most modern
chipsets, more precisely to issues with the read functionality.

Figure 6 Results of the Bandwidth Measurements

Using GGAS remote stores for data transfer shows
almost the same bandwidth like Infiniband and is slightly
better for payloads up to 16kB. Surprisingly, the
cudaMemcpy() operation performs worse even for
intermediate payload sizes. However, remote stores require
many threads to perform these operations and thus extra
cycles. The cudaMemcpyAsync() operation allows a better
overlap between communication and computation, since the
data transfer is done by the DMA engines. The preferable
communication method is depending on the workload.

C. Barrier

In TABLE III the results for the barrier synchronization
are shown. We put the results into context by comparing to
an MPI_Barrier() call that is executed using Infiniband, and
to a cudaDeviceSynchronize() call that obviously only
synchronizes the threads within a single GPU.

TABLE III BARRIER LATENCY

Method CUDA+MPI GGAS Single GPU

Barrier Time 12.12us 5.34us 1.44us

A host-initiated cudaDeviceSynchronize() call in

combination with an MPI_Barrier() call takes as twice as
long as the GGAS barrier. Comparing the GGAS barrier to
the single-GPU barrier shows that GGAS synchronization
only adds about 3.9us to the device synchronization time,
which directly translates to the Ping-Pong latency from
Figure 6. Note that the number of threads per GPU has very
little influence on barrier latency, so we skipped these details
here.

Unfortunately, as this is the very first work on GGAS our
test system only consists of two nodes, so no scalability
experiments were possible. However, for two reasons we
expect good scalability: first, the synchronization algorithm
for local inter-block synchronization shows a very strong
scaling for an increasing number of blocks [10]. Second, the
same algorithm was analyzed in [20] for up to 1k CPU cores,
and results demonstrated a very strong scalability.

D. Himeno Benchmark

To outline the strength and weakness of the GGAS model,
we run the Himeno benchmark with three different problem
sizes. Since our experimental system consists of two nodes,
we were only able to simulate scaling tests by varying the
ratio between calculation and communication. The algorithm
divides the domain along the slowest direction (z), so adding
more GPUs would reduce the problem size only along this
direction, while the amount of data that has to be exchanged
stays constant. Thus, we ran our benchmark for three
different problem sizes of the x- and y-direction, and varying
size of the z-direction.

We compare the results of the GGAS implementation to
the MPI version of the benchmark [12]. Both experiments
are run on our two test systems. We used MVAPICH2 v.1.7,
which doesn’t support GPU Direct RDMA yet, but shows
very good scaling by using streams and overlapping
communication and computation. In addition, the bandwidth

0

10

20

30

40

50

60

70

80

1
 (4

)

2
 (8

)

4
 (1

6
)

8
 (3

2
)

1
6

 (6
4

)

3
2

 (1
2

8
)

6
4

 (2
5

6
)

1
2

8
 (5

1
2

)

2
5

6
 (1

k)

5
1

2
 (2

k)

1
0

2
4

 (4
k)

2
0

4
8

 (8
k)

4
0

9
6

 (1
6

k)

8
1

9
2

 (3
2

k)

ti
m

e
 in

 u
se

cs

Number of Threads (transfered Size in byte)

GGAS

IB-Direct RDMA

IB-Data Transfer Only

0

500

1,000

1,500

2,000

2,500

4 8

1
6

3
2

6
4

1
2

8

2
5

6

5
1

2 1
k

2
k

4
k

8
k

1
6

k

3
2

k

6
4

k

1
2

8
k

2
5

6
k

5
1

2
k

1
M

2
M

4
M

8
M

1
6

M

B
an

d
w

id
th

 [
M

B
/s

Payload size [B]

IB Verbs + DirectRDMA

GGAS Remote Store

GGAS Put

IB MPI + GPUDirect v1.0

is currently still better than using GPU Direct RDMA, for
reasons described before.

In the following Figures 7-9 we compare execution times
for different setups, using grid sizes of 64x64, 128x128
respectively 256x256 (x and y). For small problem sizes of
64x64 points, GGAS outperforms MPI significantly,
especially for small z-sizes. For medium problem sizes of
128x128 points, GGAS is still faster than MPI, but the
difference in execution time decreases. For large problem
sizes (256x256 points), the GGAS and MPI implementations
perform similarly, with varying but small advantages for
either one depending on the z-size.

Figure 7 Himeno Benchmark with a grid size of 64x64 points (x and y)

Figure 8 Himeno Benchmark with a grid size of 128x128 points (x and y)

Figure 9 Himeno Benchmark with a grid size of 256x256 points (x and y)

The MPI version uses streams and asynchronous
communication for overlapping of computation and
communication. For smaller problem sizes, particularly for
smaller z-sizes, the data transfer latency is too high to be
completely overlapped. Here, GGAS profits from its very
low latency for small data transfers.

For larger grid sizes along the x and y direction, more
points have to transferred. This introduces also more

overhead to the GPU, since more remote store instructions
are required. This could be avoided by using a
cudaMemcpyAsync operation instead. Also, for large bulk
transfers the CPU could assists as off-load engine for
communication tasks, which although it is beneficial for
execution time increases power consumption.

E. Discussion

The current GGAS implementation is running on
bandwidth-limited FPGAs, which yield only a peak transfer
bandwidth of 12.8 Gbps. Opposed to this, MPI executes on
ASIC-based Infiniband that provides transfer rates of up 32
Gbps for host to host copies, which has a huge impact on
bulk transfer times.

Also, our experiments are performance-oriented with the
goal to show that GGAS is either beneficial for execution
time or only has little impact. What we cannot put into
numbers here is that GGAS is completely in-line with the
bulk-synchronous, massively parallel GPU programming
model and does not require a hybrid programming approach
like it is required for message-passing communication layers.

VII. RELATED WORK

Communication between GPUs is one of the main
bottlenecks in GPU-accelerated high performance
computing, so various work address this issue.

In [13] an FPGA-based interconnect using GPU-Direct
peer-to-peer was introduced. However, while the data is
directly transferred between network device and GPU, the
MPI communication is still controlled by the host. The most
common approach to utilize a hybrid cluster is using MPI
with CUDA or other accelerator languages. In [14] Wang et
al. introduce MVAPICH2-GPU, an MPI-Version for
Infiniband that can use pointers to GPU memory for send
and receive operations. Internally, data is transferred from
GPU to host, then from source host to target host over
Infiniband, and finally from host to the designated GPU. The
data transfer is pipelined, and the features of GPU Direct 1.0
are used. In [15] Potluri et al. optimize intra-node
communication in MVAPICH2-GPU by using the features
of GPU Direct 2.0. However, this is only applicable to intra-
node communication. In [16] this work was optimized using
GPU-Direct RDMA.

Another framework for programming of hybrid clusters
is MPI-ACC, which is introduced in [17] by Aji et al. Its
main focus is to be portable, so it not only supports CUDA
but also OpenCL. Compared to this work here, it again relies
on the CPU to orchestrate data movements.

DCGN [5] (Distributed Computing on GPU Networks) is
a framework that allows GPU threads to send and receive
data with commands similar to MPI. Although the
commands are called within a kernel, the data transfer itself
is handled by the host system. Note that the authors of this
paper clearly state that support for direct communication
among GPUs without CPU involvement is desirable.

A concept of distributed texture memory across multiple
GPU nodes is introduced in [18]. It allows programs to run
across multiple GPUs within a common, distributed and
consistent address space. In contrast to GGAS, the underling

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

16 32 64 128 256

Ti
m

e
 in

 S
e

co
n

d
s

Size in z direction (complete Grid)

64x64

MPI

GGAS

0.00

0.20

0.40

0.60

0.80

1.00

1.20

16 32 64 128 256

Ti
m

e
 in

 S
e

co
n

d
s

Size in z direction (complete Grid)

128X128

MPI

GGAS

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

16 32 64 128 256

Ti
m

e
 in

 S
e

co
n

d
s

Size in z direction (complete Grid)

256x256

MPI

GGAS

communication and memory management is handled by the
CPUs.

The approach of sourcing and sinking network traffic
from an accelerator device was introduced in [19] for the
Intel Xeon Phi, using Infiniband. However, the Xeon Phi has
a Linux runtime-system running, which allows porting of
device drivers. This approach is currently not applicable for
GPUs.

Summarized, best to our knowledge no previous work
allows maintaining the thread-collective nature of GPUs,
instead all require assistance by the CPU for communication
among distributed GPUs.

VIII. CONCLUSION

We have introduced a new approach to enable a direct
communication among distributed GPUs, maintaining their
thread-collective nature. Our approach allows bypassing
CPUs completely for all communication tasks, confining the
control flow to the GPU domain. Best to our knowledge, this
is the first time that this has been achieved for GPUs. Our
approach relies on global address spaces, in particular on one
of their associated characteristics: transparency.

Although the first results presented here are based on
only two distributed GPUs, the impact of our approach is
clearly visible: compared to message exchange as state-of-
the-art, it allows reducing end-to-end latencies by up to 50%,
speeds up global barrier synchronization by 1.8x, and stencil
computations by up to 1.67x. Note that these numbers are
based on a comparison of a frequency-limited FPGA
prototype with a fully-flavored Infiniband network. This
speed-up comes with an increased utilization of the GPUs,
which is in particular important for energy consumption.
GPUs are powerful devices, but they are also power-hungry
and only a maximized utilization allows for high energy
efficiencies.

We’d also like to highlight that the new Dynamic
Parallelism feature allows for the very first time a GPU to
dispatch work inside the GPU as needed and also completely
independently of the host CPU. Thus, combining Dynamic
Parallelism and GGAS, all the computation and
communication tasks can now be constraint to the GPU
domain, rendering CPUs virtually unnecessary, except for
boot-up purposes. Or, viewed from a different angle, CPUs
are completely free to perform other tasks, increasing the
overall energy efficiency of the system.

GGAS can improve all algorithms with irregular, small,
but frequent communication patterns, since it allows low-
latency, one-sided communication. In addition, the massively
thread-parallel programming model of GPUs is maintained
and the complexity of hybrid programming models is
avoided. Future work will include other synchronization
primitives, scalability optimizations and analyses, and
applying these methods to other computing domains, like
data warehousing, decision support and graph algorithms.

IX. ACKNOWLEDGEMENT

We gratefully acknowledge the generous support of this

research effort by NVidia Corporation and Xilinx, Inc.

X. REFERENCES

[1] Lee, V.W., et al. 2010. Debunking the 100X GPU vs. CPU myth: an
evaluation of throughput computing on CPU and GPU. SIGARCH
Comput. Archit. News 38, 3 (June 2010), 451-460.

[2] Kirk, D., and Hwu, W. 2010. Programming Massively Parallel
Processors: A Hands-on Approach. Morgan Kaufmann.

[3] NVidia Corp. CUDA Dynamic Parallelism Programming Guide.
Avialable online at:
http://docs.nvidia.com/cuda/pdf/CUDA_Dynamic_Parallelism_Progr
amming_Guide.pdf

[4] NVidia Corp. Developing a Linux Kernel Module using RDMA for
GPUDirect. Available online at
http://docs.nvidia.com/cuda/gpudirect-rdma/index.html

[5] Stuart, J.A., Owens, J.D. 2009. Message passing on data-parallel
architectures. IEEE International Symposium on Parallel &
Distributed Processing (IPDPS), pp.1-12, 23-29 May, 2009.

[6] Shainer, G., et al. 2011. The development of Mellanox NVIDIA
GPUDirect over Infiniband—a new model for GPU to GPU
communications. Comput. Sci. Res. Dev. (2011) 26: 267-273.

[7] Mellanox Corp. NVIDIA GPUDirect technology - accelerating GPU-
based systems. Available online at
http://www.mellanox.com/pdf/whitepapers/TB_GPU_Direct.pdf

[8] NVidia Corp. Peer to peer and Unified Virtual Addressing. Available
online at
http://developer.download.nvidia.com/CUDA/training/cuda_webinars
_GPUDirect_uva.pdf

[9] Scott, S. L. 1996. Synchronization and communication in the T3E
multiprocessor. 7th International Conference on Architectural
Support For Programming Languages and Operating Systems
(ASPLOS), Cambridge, MA, US.

[10] Xiao, S., and Feng, W. 2009. Inter-block GPU communication via
fast barrier synchronization. Technical Report TR-09-19, Dept. of
Computer Science, Virginia Tech.

[11] Fröning, H., and Litz, H. 2010. Efficient Hardware Support for the
Partitioned Global Address Space. International Symposium on
Parallel & Distributed Processing Workshops (IPDPSW), Atlanta,
GA, US.

[12] Phillips, E.H., and Fatica, M. 2010. Implementing the Himeno
benchmark with CUDA on GPU clusters. International Symposium
on Parallel & Distributed Processing (IPDPS), April 19-23, 2010.

[13] Ammendola, R., et al. 2013. GPU Peer-to-Peer Techniques Applied
to a Cluster Interconnect. International Symposium on Parallel &
Distributed Processing Workshops (IPDPSW), 2013.

[14] Wang, H., et al. 2011. MVAPICH2-GPU: Optimized GPU to GPU
Communicationfor InfiniBand Clusters. International
Supercomputing Conference (ISC), June 2011.

[15] Potluri, S., et al. 2012. Optimizing MPI Communication on Multi-
GPU Systems Using CUDA Inter-Process Communication.
International Parallel and Distributed Processing Symposium
Workshops (IPDPSW), May 21-25, 2012.

[16] D.K.Panda. 2013. MVAPICH2: A High Performance MPI Library for
NVIDIA GPU Clusters with InfiniBand, GPU Technology
Conference, San Jose, 2013.

[17] Aji, A. M., et al. 2012. MPI-ACC: An Integrated and Extensible
Approach to Data Movement in Accelerator Based Systems.
International Conference on High Performance Computing and
Communications (HPCC).

[18] Moerschell A., and Owens, J.D. 2006. Distributed texture memory in
a multi-GPU environment. ACM SIGGRAPH/EUROGRAPHICS
Symposium on Graphics hardware (GH '06). New York, NY, USA.

[19] Si, M., Ishikawa, Y., Tatagi, M. 2013. Direct MPI Library for Intel
Xeon Phi Co-Processors. International Symposium on Parallel &
Distributed Processing Workshops (IPDPSW), 2013.

[20] Fröning, H, et al. 2011. Highly Scalable Barriers for Future High-
Performance Computing Clusters. IEEE International Conference on
High Performance Computing (HiPC 2011), Bangalore, India.

