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Abstract— Modern GPUs are powerful high-core-count 

processors, which are no longer used solely for graphics 

applications, but are also employed to accelerate 

computationally intensive general-purpose tasks. For utmost 

performance, GPUs are distributed throughout the cluster to 

process parallel programs. In fact, many recent high-

performance systems in the TOP500 list are heterogeneous 

architectures. Despite being highly effective processing units, 

GPUs on different hosts are incapable of communicating 

without assistance from a CPU. As a result, communication 

between distributed GPUs suffers from unnecessary overhead, 

introduced by switching control flow from GPUs to CPUs and 

vice versa. Most communication libraries even require 

intermediate copies from GPU memory to host memory. This 

overhead in particular penalizes small data movements and 

synchronization operations, reduces efficiency and limits 

scalability. In this work we introduce global address spaces to 

facilitate direct communication between distributed GPUs 

without CPU involvement. Avoiding context switches and 

unnecessary copying dramatically reduces communication 

overhead. We evaluate our approach using a variety of 

workloads including low-level latency and bandwidth 

benchmarks, basic synchronization primitives like barriers, 

and a stencil computation as an example application. We see 

performance benefits of up to 2x for basic benchmarks and up 

to 1.67x for stencil computations. 

Keywords-parallel processing, hybrid computing clusters, 

GPU communication, bulk-synchronous execution  

I.  INTRODUCTION 

Various technological limitations have led to a stagnating 
performance of single-thread CPUs, and only by introducing 
multiple cores the CPU vendors were able to maintain 
Moore’s law. Opposed to this, the performance of GPUs has 
increased dramatically in the recent years and led to an 
adoption of a variety of non-graphical applications to GPUs, 
emphasized by popular programming paradigms like 
NVidia’s CUDA or OpenCL by Khronos or directive-based 
approaches like OpenACC. Even Intel had to confess that 
GPUs are faster than CPUs for a pretty broad range of 
applications [1]. Along with this interest in GPU Computing, 
the high performance computing community rapidly adopted 
GPUs for their purposes, employing them in clusters as 
accelerators, trying to satisfy more of the computational 
needs of their performance-hungry applications. 

GPUs are primarily designed to perform graphical 
computations, and the huge consumer market allows GPUs 

to be highly cost-effective. Considering this specialization, 
it’s no surprise that throughput-oriented applications can 
benefit most from GPUs. Furthermore, GPUs only excel if 
they can perform their calculations in-core, otherwise 
performance is significantly limited by data movement over 
the PCIe interface, which is several orders of magnitude 
slower than the GPU’s special memory. This is a severe 
limitation, in particular taken into account that GPUs suffer 
from too few memory anyway, which is typically only in the 
range of 4 - 6GBs. 

Thus, even using GPUs, the computational requirements 
of many applications still cannot be satisfied and data-
intensive applications (Big Data) are pushing these needs 
even further. A tightly-coupled cluster of GPUs can help to 
overcome this situation. For such a communication-centric 
architecture, minimal costs for communication and 
synchronization are required. Then, a GPU cluster can be a 
viable way to overcome the limitations of in-core computing, 
and use resource aggregation to keep the majority of data in-
core. However, GPUs are peripheral slave devices and thus 
incapable of sourcing or sinking network traffic. Usually, a 
communication layer running on the CPUs is used as 
communication assistant. For most use cases, this is an 
unnecessary indirection that limits performance and 
scalability. 

In this work we introduce Global GPU Address Spaces 
(GGAS), a communication model for distributed GPUs that 
differs from previous work in several aspects: 

1. GGAS maintains the GPUs bulk-synchronous, 
massively parallel programming model by relying on 
thread-collective communication. 

2. GGAS allows confining the control flow to the GPU 
domain, bypassing the CPUs for all computation and 
communication tasks and avoiding context switches 
that are costly in terms of energy and time. 

3. Opposed to communication layers based on message 
passing, GGAS minimizes branch divergence

1
, as 

communication is performed by all threads in a 
block collaboratively. 

4. GGAS is a direct, zero-copy communication model 
that moves data without intermediate copies between 

                                                           
1 GPUs can only maximize sustained performance if a single control 
flow is maintained for all threads within a so called warp (typically 32 

threads). Otherwise, the so called branch divergence leads to 

substantial performance losses. 



 

distributed GPU memories, again contributing to the 
minimization of time and energy. 

Note that this work maintains the commodity aspect of 
GPUs, as all required hardware changes are constraint to the 
network device, and do not affect the GPU. The network 
device is responsible to intercept local accesses targeting the 
global address space and to forward them to remote 
locations. 

In the remainder of this work we start with a background 
on GPU computing and available GPU communication 
techniques in section 2, before we present our idea of Global 
GPU Address Spaces in section 3. In section 4, we describe 
the technical details and implications of our approach. 
Section 5 is dedicated to our evaluation methodology and 
describes our example workloads. In section 6 we discuss the 
obtained results and compare to other communication 
techniques. Section 7 presents related work, before we 
summarize and conclude in the last section. 

II. BACKGROUND 

A GPU is a powerful high-core-count device with 
multiple Shared Multiprocessors (SMs) that can execute 
thousands of threads concurrently. Each SM is essentially 
composed by a large number of computing cores, and a 
shared scratchpad memory. Threads are organized in blocks, 
but the scheduler of a GPU doesn’t handle each single thread 
or block; instead threads are organized in warps (typically 32 
threads) and these warps are scheduled to the SMs during 
runtime. Context switching between warps comes at 
negligible costs, so long-latency events can easily be hidden. 
To maximize sustained performance, threads within a warp 
have to have similar control flows; otherwise the branch 
divergence will result in performance losses as the scheduler 
is not able to handle such unaligned control flows efficiently. 
Also, enough threads have to be ready to maintain full 
utilization when long-latency events occur. Thus, typically at 
least one order of magnitude more threads are scheduled than 
can execute concurrently. Also, memory accesses are only 
efficient if multiple accesses from different threads can be 
coalesced. Thus, enough threads have to access non-
conflicting memory locations concurrently, to offer the 
memory controller enough possibilities for coalescing. 

CUDA is a parallel computing platform and 
programming model created by NVidia, which provides a 
virtual instruction set to use NVidia GPUs for computation. 
CUDA allows running a parallel kernel on the GPU, but the 
CPU has to launch this kernel. A more detailed description 
of GPUs and CUDA can be found in the excellent book by 
Kirk and Hwu [2]. Although we use CUDA in this work, all 
principles are also applicable to other GPU programming 
languages, including OpenCL. 

III. THE GGAS MODEL 

The idea of a cluster-wide Global GPU Address Space 
(GGAS) is to allow efficient and fast communication 
between multiple GPUs in heterogeneous clusters. The 
common method for GPU-to-GPU communication is a 
hybrid programming model, using a GPU programming 
language like CUDA, OpenCL, or OpenACC in combination 

with a message passing library like MPI. The GGAS 
programming model distinguishes in two main points from 
this approach:  

1. GGAS maintains the bulk-synchronous, massively 
parallel programming model of GPUs without 
increasing complexity by introducing message 
passing paradigms. GGAS is a natural extension to 
the GPU programming model rather than a new or 
hybrid programming model.  

2. GGAS allows keeping the control flow for both 
communication and computation tasks on the GPU. 
Then, the CPU is no longer required to control the 
data transfer between GPUs and thus can completely 
be bypassed. This property is in particular useful in 
combination with Dynamic Parallelism, allowing 
launching new computing or communication kernels 
from the GPU domain. 

 

 

Figure 1  System and user view to a GGAS Cluster 

A. The GGAS Communication Model 

In Figure 1 the system and the user view of a GGAS 
cluster are shown. The bottom part shows the structure of an 
example GPU cluster. The cluster consists of multiple nodes, 
equipped with one GPU and connected with a high 
performance interconnect. Without GGAS, each GPU in the 
system is a discrete system, which only has access to its own, 
local device memory

2
. For access to the memory of a remote 

GPU, special communication functions are required. In 
contrast to this, the upper figure depicts how GGAS 
transforms this system view into a simplified user view. 
While resources like the SMs and the shared memory are 
still local to one GPU, the distributed device memories of all 
GPUs in the system are transformed into one global GPU 
address space. Each thread in the system, independent of the 
GPU it is running on, can access any part of this GGAS 
space. This allows access to remote GPU memory in the 
same way like to the local device memory, still with an 
increased latency.  

Below, an example of a CUDA device function using 
GGAS is shown. This function writes a specific value to the 

                                                           
2
 To avoid confusions with the similar names of the global device memory 

and the global address space, we will use the term device memory for the 

global device memory of a single GPU. The term global address space is 

used for the memory region composed by shared device memories of 
multiple, distributed GPUs at cluster level. 



 

GPU device memory of a remote GPU and is usually called 
collectively by all threads on the GPU simultaneously.  
 

__device__ remote_write ( double val,  

                          int GPU, int index ) 

{ 

    double* ptr = __ggas_get_ptr_of_node ( GPU );  

    ptr [ index ] = val; 

} 

B. Comparing the Message Passing and GGAS Paradigms 

The usual way to utilize a heterogeneous cluster is a 
hybrid programming model. The GPU is used for 
computation while the CPU controls the communication 
process. Although modern RDMA-capable hardware like 
Infiniband is able to transfer the data independently, still the 
CPU has to create send and receive requests and guarantee 
data consistency by synchronizing data transfer and 
computation. 

 

Figure 2  Control Flow for Message Passing 

In Figure 2 this work flow of an iterative multi-GPU 
program is shown. The control flow reverts from the GPU to 
CPU domain any iteration to initiate communication. 
Although CUDA-streams and RDMA-capable hardware 
allow good overlapping of communication and computation, 
context switching between GPU and CPU causes latency 
issues. Especially for small messages, this can easily surpass 
the raw data transfer latency. 

We measured the time of starting and synchronizing a 
simple CUDA kernel. In TABLE I the launch and 
synchronization times for different GPUs are shown. Each 
kernel is started with 32 blocks of 32 threads.  

TABLE I KERNEL LAUNCH TIME 

GPU Tesla 

K20 

Tesla 

K10 

Quadro 

FX 5800 

Quadro 

2000 

Time (us) 13.5 13.4 13.78 9.4 

 
In contrast to this, the latencies for different message 

sizes transferred over Infiniband are shown in 0, 
demonstrating the overhead of context switches. 

TABLE II DATA TRANFER TIME OVER INFINIBAND 

Size (byte) 2  16  1k 4k 32k 64k 

Time(us) 1.33 1.36 3.50 4.95 13.57 23.39 

 

Also, the message passing paradigm requires a least one 
CPU thread to orchestrate communication. On a multi-GPU 
node, usually one thread or process for each GPU is used. 
These threads are often in a polling state, waiting for 
notifications of CUDA kernels or communication requests. 
This requires extra CPU cycles and increases power 
consumption.  

In contrast to this, the control flow for a GPU program 
using GGAS is shown in Figure 3. The GPU can source and 
sink data transfers autonomously, so the control flow can be 
confined to the GPU domain. Synchronization primitives 
like barriers are directly implemented on the GPU. 

 

 

Figure 3  Control Flow for GGAS 

An alternative way to avoid context switches is to create 
a message passing library directly running on the GPU; still 
this contradicts the CUDA programming paradigm. For a 
maximized sustained performance, threads executing within 
a warp have to minimize, better avoid, branch divergences. 
This is hardly possible using a model based on message 
passing. 

IV. TECHNICAL IMPLEMENTATION 

In this section, the technical implementation and the 
hardware requirements for GGAS are described. 

A. Requirements to the GPU 

To allow access to the GPU’s device memory, the 
memory must be visible to the host system.. For NVidia 
GPUs, this was enabled with the new GPU Direct RDMA 
Technology, introduced with CUDA 5 [4]. 

This technique allows mapping GPU memory to one of 
the GPUs Base Address Registers (BARs). These BARs are 
normally used for communication between host and 
peripheral devices. However, from the point of view of 
another peer device, the physical addresses are the same and 
either point to host memory or to the BARs of another 
device.  

B. Requirements to the network device  

As described above, GPU Direct RDMA allows a 
network device to access device memory like host memory. 
Still, this is not sufficient to enable a direct communication 
from a CUDA kernel and to completely bypass the host 
CPU, since the data transfer still has to be initiated and 
controlled. In common network hardware, this is done by 
creating work requests and exchanging notifications with the 
device. Even if it is theoretically possible for the GPU to 



 

perform this work, this would require massive changes to 
device drivers and user-space libraries of both GPU and the 
network device. Also, this approach is not compatible with 
the massively parallel GPU thread model. 

So another kind of hardware is required, which allows an 
easier sinking and sourcing of data transfers. A Shared 
Memory Engine (SME) like the one described in [9] can meet 
these claims, although it was originally designed to create 
shared memory regions of host memory. The basic idea of 
such a shared memory mapper is to map a part of the 
memory of one node to the physical address space of remote 
nodes. The physical address space, where the memory of the 
remote notes is mapped into, is called the global address 
space. 

The global addresses are set up in such a way that they 
include a coding of the target node identifier [9]. A load or 
store request is then encapsulated in a network packet and 
transferred to the target node. A store is completed by 
writing the payload to the requested address. For a load, the 
target node sends back an appropriate response. A detailed 
description of an example implementation can be found in 
[11]. 

C. Extending Global Address Spaces to GPUs 

To create the Global GPU Address Space, we extended 
this concept to GPU memory. We use the GPU Direct 
RDMA feature to map GPU memory to the physical address 
space of the host system. The shared memory engine is now 
configured to forward an incoming read or write instruction 
to the GPU BAR. The yellow arrows in Figure 4 show such 
an incoming request. 

Since the Shared Memory Engine is part of a peripheral 
device, the physical addresses of GGAS are located within 
the BAR of the network device. To make the shared memory 
accessible from the GPU, these physical addresses must be 
mapped into the virtual address space of the GPU. Unified 
Virtual Addressing (UVA) allows mapping a part of the host 
memory to the virtual address space of the GPU. 

 

 

Figure 4  GGAS Mappings and Data Flows 

A minor patch to the low level NVidia device driver 
allows extending this to physical addresses lying within a 
BAR of a peripheral device. A read or write instruction to a 
virtual address pointing to the BAR is now forwarded to the 
shared memory engine, which in turn forwards this request 

to the target node. The red arrows in Figure 4 show such 
outgoing requests.  

V. PERFORMANCE EVALUATION 

In this section we describe the implementation of a set of 
benchmarks using GGAS. We use basic latency and 
bandwidth tests, and a barrier as an example of 
synchronization primitive. The Himeno benchmark serves as 
a more complex example, which is based on stencil 
operations. Since GGAS is a new model of multi-GPU 
programming, we provide a more detailed description of the 
implementation of these benchmarks. 

A. Latency Tests 

Our first test evaluates latency and is based on a Ping-
Pong pattern between two GPUs. 

As GGAS allows respectively benefits from a 
collaborative use by multiple threads and the associated 
coalescing, we also extend this Ping-Pong test to a parallel 
version that starts a bundle of threads in parallel on each 
GPU, each one performing the tasks described above. We 
start up to 8192 threads, scheduled in blocks of 32 threads. 
Below, a code snippet for the ping side is shown. 
 

__device__ ping ( int remote_id )  

{ 

  int* local = __ggas_get_ptr_of_node ( ggas_id );  

  int* remote = __ggas_get_ptr_of_node (remote_id);  

  int ix = threadIdx.x + blockIdx.x * blockDim.x; 

  volatile int tmp; 

  // start collective ping by all threads 

  remote [ ix ] = 1; 

  // poll collectively for pong 

  do {  

    tmp = local [ ix ]; 

  } while ( !tmp ); 

  local [ ix ] = 0; // reset for next polling 

} 

 

Since GPU thread execution is non-preemptive, the 
possibility of lifelocks is present if more threads are 
scheduled than cores are available. Our experiments validate 
this, and for an NVidia Kepler-class K20 up to 8192 threads 
can be started without running into such unsafe situations. 
Note that this number only applies to this Ping-Pong test. 
The exact number of threads for a given workload depends 
on the overall resource usage, including shared memory and 
registers. 

B. Bandwidth Tests 

To measure the sustained bandwidth for data transfers, 
we implement two different tests: one is using simple read 
and write instructions, while the other one is relying on 
asynchronous cudaMemcpy operations, initiated directly by 
CUDA kernels. 

1) Remote stores 
Using GGAS, GPUs on different nodes simply transfer 

data by writing to global memory addresses. Since there is 
no explicit synchronization, we developed a simple protocol 
that uses flag-based hand-shake synchronization. Because of 
the low single-thread performance of a GPU, multiple 
threads (preferable all threads in a thread block) 



 

collaboratively communicate to foster coalescing effects and 
to minimize branch divergence. 

2) cudaMemcpy 
Using Dynamic Parallelism, an asynchronous 

cudaMemcpy() operation can be called directly by a CUDA 
kernel. We use this to copy the data from local to remote 
buffers. We start a simple kernel with only one thread that 
initiates a copy operation and then synchronizes. Compared 
to the send/receive protocol, this is a one-sided 
communication operation and can be compared with a Put 
operation. 

C. Global Barrier Synchronization 

A global address space model like the one used here 
requires explicit synchronization to ensure consistency. In 
parallel computing, a barrier is a synchronization primitive 
that guarantees that each thread or process reaches a specific 
point in its control flow before proceeding. Using GGAS, 
this must also guarantee that each read and write instruction 
to the GGAS space is completed before a thread leaves the 
barrier. 

We use a hierarchical approach: first, all threads within a 
block synchronize. Second, all the thread blocks within a 
GPU execute a barrier. Dynamic Parallelism allows inter-
block synchronization on a GPU [3]. For cases in which this 
feature is not available, Xiao and Feng [10] designed a 
barrier which is ideal for such GPU inter-block 
synchronization. Third, to synchronize distributed GPUs, an 
efficient and fast barrier developed for distributed shared 
memory architectures is used [20]. This barrier does not 
require atomic operations as multiple writes to a single 
location are avoided. It consists of two phases: 

1. Check-in phase: Each block or thread arriving at 

the barrier sets a check-in flag. One master checks 

if the flags for all participants are set. Once all 

thread blocks have arrived at the barrier, the check-

in phase is completed.  

2. Check-out phase: the master sets the check-out flag 

for all other participants. All other participants are 

polling on this check-out flag for changes. 
To achieve good performance, the location of the flags is 

important. As shown in [20], for a strong scalability remote 
loads should be avoided. Polling on remote locations 
massively increases contention and latency. We avoid 
remote loads by placing the check-in flags on the master 
GPU and the check-out flags on the respective GPUs running 
the slave threads. Thus, we avoid remote loads completely 
and instead rely solely on a push model. 

D.  Himeno Benchmark 

We implemented the Himeno benchmark on GGAS for 
an application-level performance assessment. The Himeno 
algorithm was developed in 1996 at the RIKEN Institute in 
Japan, and a recent and good performing multi-GPU solution 
using MPI for communication is described in [12]. It focuses 
on the solution of 3D Poisson equation in generalized 
coordinates on a structured curvilinear mesh. Using finite 
differences, the Poisson equation is discretized in space 

yielding a 19-point stencil. The multi-GPU solution slices 
the domain along the z-direction.  

We implemented a multi-GPU solution of this 
benchmark, using Dynamic Parallelism in combination with 
GGAS to exchange borders. During the kernel execution, 
border points are copied to remote buffers using write 
instructions to the global address space, as can be seen in the 
following code snippet: 
 

for ( z = 1; z < ZMAX; z++ ) { 

 … // do caculations 

 p_new [ index ] = new_value; 

 if (z == ZMAX or 1) // z is part of a border 

  remote_buf [ index ] = new_value; 

} 

 

At the destination side, this data can be read directly from the 
local buffers – without further memory copies. Note, that 
copying data to the shared address space adds some overhead 
to the kernel, since every thread has to perform an extra write 
operation. To synchronize the data transfer, we use our 
barrier implementation described above.  

VI. RESULTS DISCUSSION 

Our experiments run on a test system composed of two 
machines with 6 core AMD Opteron 4100 series, running at 
2.2GHz core frequency. Each machine is equipped with a 
Tesla K20 GPU. A GPU comes with 13 SMs, each with 64 
double precision cores; or 832 cores in total. The GPUs are 
equipped with 5GB GDDR5 device memory and support the 
Dynamic Parallelism and GPU Direct RDMA features.  

To support GGAS, we have implemented a custom 
network device on an FPGA that supports global address 
spaces. The FPGA is running only at 200MHz and provides 
network links with a peak bandwidth of 12.8Gbps. 

We compare our results with Infiniband in combination 
with GPU Direct RDMA. Our Infiniband test system consists 
of two machines, each with two Intel 6-Core Xeon X5660, 
and directly connected using Mellanox Connect X3 
Infiniband (peak bandwidth of 32Gbps). These machines 
also are equipped with two Kepler K20 GPUs. Since the 
CPUs are only used for the setup, the different CPUs have no 
impact on the results in this comparison. 

A. Latency Results 

For Infiniband it is not possible to directly sink a data 
transfer from the GPU, so this has to be done by the host. To 
measure the effect of context switches, we use a CUDA 
kernel to poll on the data. If the data has arrived, the polling 
kernel is completed and the Infiniband device is initiated to 
start the data transfer.  

For comparison purposes, we also measure the pure data 
transfer latency, which neglects the overhead of finishing 
and restarting the polling kernel. The results for the Ping-
Pong test are shown in Figure 5. The minimal round-trip 
latency for GGAS is around 3.8us, so the half round-trip 
latency starts at 1.9us. This latency keeps constant up to 
1024 parallel threads, which translates to a payload size of 
4kB since every thread writes a 4 byte floating point value. 
Using Infiniband, the minimal round-trip latency is 6.8us and 



 

only stays constant up to a payload size of 1kB. If the time 
for the additional context switch is included, the minimal 
latency is about 20us. 

 

 

Figure 5  Ping-Pong Full Round-Trip Latency Results 

These results show that especially for small data transfers 
GGAS significantly outperforms Infiniband. Note, that we 
use the IB Verbs library directly (with an additional patch to 
use GPU Direct RDMA). Using a message passing library 
like MPI would only add further overhead to the data 
transfer. 

B. Bandwidth Results 

In Figure 6 the results of the bandwidth measurement are 
shown. We compare GGAS again with the Infiniband IB-
RDMA implementation, but also with MPI. The maximal 
bandwidth is around 1GB/s for both GGAS and Infiniband 
using GPU Direct RDMA. For Infiniband, this is much lower 
than expected, since the peak bandwidth for a data transfer 
between the host memories of two nodes using Infiniband is 
usually more than 3.2GB/s, while using MPI and host-
buffered copies we achieve about 2.1GB/s. To verify our 
results, we repeated these measurements with Infiniband on 
different machines, but didn’t achieve better results. This 
could be affiliated to the bad support of device-to-device 
communication by the PCI-Express system on most modern 
chipsets, more precisely to issues with the read functionality. 

 

 
Figure 6  Results of the Bandwidth Measurements 

Using GGAS remote stores for data transfer shows 
almost the same bandwidth like Infiniband and is slightly 
better for payloads up to 16kB. Surprisingly, the 
cudaMemcpy() operation performs worse even for 
intermediate payload sizes. However, remote stores require 
many threads to perform these operations and thus extra 
cycles. The cudaMemcpyAsync() operation allows a better 
overlap between communication and computation, since the 
data transfer is done by the DMA engines. The preferable 
communication method is depending on the workload. 

C. Barrier  

In TABLE III the results for the barrier synchronization 
are shown. We put the results into context by comparing to 
an MPI_Barrier() call that is executed using Infiniband, and 
to a cudaDeviceSynchronize() call that obviously only 
synchronizes the threads within a single GPU. 

TABLE III BARRIER LATENCY 

Method CUDA+MPI GGAS Single GPU 

Barrier Time  12.12us 5.34us 1.44us 

 
A host-initiated cudaDeviceSynchronize() call in 

combination with an MPI_Barrier() call takes as twice as 
long as the GGAS barrier. Comparing the GGAS barrier to 
the single-GPU barrier shows that GGAS synchronization 
only adds about 3.9us to the device synchronization time, 
which directly translates to the Ping-Pong latency from 
Figure 6. Note that the number of threads per GPU has very 
little influence on barrier latency, so we skipped these details 
here. 

Unfortunately, as this is the very first work on GGAS our 
test system only consists of two nodes, so no scalability 
experiments were possible. However, for two reasons we 
expect good scalability: first, the synchronization algorithm 
for local inter-block synchronization shows a very strong 
scaling for an increasing number of blocks [10]. Second, the 
same algorithm was analyzed in [20] for up to 1k CPU cores, 
and results demonstrated a very strong scalability. 

D. Himeno Benchmark 

To outline the strength and weakness of the GGAS model, 
we run the Himeno benchmark with three different problem 
sizes. Since our experimental system consists of two nodes, 
we were only able to simulate scaling tests by varying the 
ratio between calculation and communication. The algorithm 
divides the domain along the slowest direction (z), so adding 
more GPUs would reduce the problem size only along this 
direction, while the amount of data that has to be exchanged 
stays constant. Thus, we ran our benchmark for three 
different problem sizes of the x- and y-direction, and varying 
size of the z-direction. 

We compare the results of the GGAS implementation to 
the MPI version of the benchmark [12]. Both experiments 
are run on our two test systems. We used MVAPICH2 v.1.7, 
which doesn’t support GPU Direct RDMA yet, but shows 
very good scaling by using streams and overlapping 
communication and computation. In addition, the bandwidth 
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is currently still better than using GPU Direct RDMA, for 
reasons described before. 

In the following Figures 7-9 we compare execution times 
for different setups, using grid sizes of 64x64, 128x128 
respectively 256x256 (x and y). For small problem sizes of 
64x64 points, GGAS outperforms MPI significantly, 
especially for small z-sizes. For medium problem sizes of 
128x128 points, GGAS is still faster than MPI, but the 
difference in execution time decreases. For large problem 
sizes (256x256 points), the GGAS and MPI implementations 
perform similarly, with varying but small advantages for 
either one depending on the z-size. 

 

 

Figure 7  Himeno Benchmark with a grid size of 64x64 points (x and y) 

 

Figure 8  Himeno Benchmark with a grid size of 128x128 points (x and y) 

 

Figure 9  Himeno Benchmark with a grid size of 256x256 points (x and y) 

The MPI version uses streams and asynchronous 
communication for overlapping of computation and 
communication. For smaller problem sizes, particularly for 
smaller z-sizes, the data transfer latency is too high to be 
completely overlapped. Here, GGAS profits from its very 
low latency for small data transfers. 

For larger grid sizes along the x and y direction, more 
points have to transferred. This introduces also more 

overhead to the GPU, since more remote store instructions 
are required. This could be avoided by using a 
cudaMemcpyAsync operation instead. Also, for large bulk 
transfers the CPU could assists as off-load engine for 
communication tasks, which although it is beneficial for 
execution time increases power consumption. 

E. Discussion 

The current GGAS implementation is running on 
bandwidth-limited FPGAs, which yield only a peak transfer 
bandwidth of 12.8 Gbps. Opposed to this, MPI executes on 
ASIC-based Infiniband that provides transfer rates of up 32 
Gbps for host to host copies, which has a huge impact on 
bulk transfer times. 

Also, our experiments are performance-oriented with the 
goal to show that GGAS is either beneficial for execution 
time or only has little impact. What we cannot put into 
numbers here is that GGAS is completely in-line with the 
bulk-synchronous, massively parallel GPU programming 
model and does not require a hybrid programming approach 
like it is required for message-passing communication layers. 

VII. RELATED WORK 

Communication between GPUs is one of the main 
bottlenecks in GPU-accelerated high performance 
computing, so various work address this issue.  

In [13] an FPGA-based interconnect using GPU-Direct 
peer-to-peer was introduced. However, while the data is 
directly transferred between network device and GPU, the 
MPI communication is still controlled by the host. The most 
common approach to utilize a hybrid cluster is using MPI 
with CUDA or other accelerator languages. In [14] Wang et 
al. introduce MVAPICH2-GPU, an MPI-Version for 
Infiniband that can use pointers to GPU memory for send 
and receive operations. Internally, data is transferred from 
GPU to host, then from source host to target host over 
Infiniband, and finally from host to the designated GPU. The 
data transfer is pipelined, and the features of GPU Direct 1.0 
are used. In [15] Potluri et al. optimize intra-node 
communication in MVAPICH2-GPU by using the features 
of GPU Direct 2.0. However, this is only applicable to intra-
node communication. In [16] this work was optimized using 
GPU-Direct RDMA. 

Another framework for programming of hybrid clusters 
is MPI-ACC, which is introduced in [17] by Aji et al. Its 
main focus is to be portable, so it not only supports CUDA 
but also OpenCL. Compared to this work here, it again relies 
on the CPU to orchestrate data movements. 

DCGN [5] (Distributed Computing on GPU Networks) is 
a framework that allows GPU threads to send and receive 
data with commands similar to MPI. Although the 
commands are called within a kernel, the data transfer itself 
is handled by the host system. Note that the authors of this 
paper clearly state that support for direct communication 
among GPUs without CPU involvement is desirable. 

A concept of distributed texture memory across multiple 
GPU nodes is introduced in [18]. It allows programs to run 
across multiple GPUs within a common, distributed and 
consistent address space. In contrast to GGAS, the underling 
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communication and memory management is handled by the 
CPUs. 

The approach of sourcing and sinking network traffic 
from an accelerator device was introduced in [19] for the 
Intel Xeon Phi, using Infiniband. However, the Xeon Phi has 
a Linux runtime-system running, which allows porting of 
device drivers. This approach is currently not applicable for 
GPUs.  

Summarized, best to our knowledge no previous work 
allows maintaining the thread-collective nature of GPUs, 
instead all require assistance by the CPU for communication 
among distributed GPUs. 

VIII. CONCLUSION 

We have introduced a new approach to enable a direct 
communication among distributed GPUs, maintaining their 
thread-collective nature. Our approach allows bypassing 
CPUs completely for all communication tasks, confining the 
control flow to the GPU domain. Best to our knowledge, this 
is the first time that this has been achieved for GPUs. Our 
approach relies on global address spaces, in particular on one 
of their associated characteristics: transparency. 

Although the first results presented here are based on 
only two distributed GPUs, the impact of our approach is 
clearly visible: compared to message exchange as state-of-
the-art, it allows reducing end-to-end latencies by up to 50%, 
speeds up global barrier synchronization by 1.8x, and stencil 
computations by up to 1.67x. Note that these numbers are 
based on a comparison of a frequency-limited FPGA 
prototype with a fully-flavored Infiniband network. This 
speed-up comes with an increased utilization of the GPUs, 
which is in particular important for energy consumption. 
GPUs are powerful devices, but they are also power-hungry 
and only a maximized utilization allows for high energy 
efficiencies. 

We’d also like to highlight that the new Dynamic 
Parallelism feature allows for the very first time a GPU to 
dispatch work inside the GPU as needed and also completely 
independently of the host CPU. Thus, combining Dynamic 
Parallelism and GGAS, all the computation and 
communication tasks can now be constraint to the GPU 
domain, rendering CPUs virtually unnecessary, except for 
boot-up purposes. Or, viewed from a different angle, CPUs 
are completely free to perform other tasks, increasing the 
overall energy efficiency of the system. 

GGAS can improve all algorithms with irregular, small, 
but frequent communication patterns, since it allows low-
latency, one-sided communication. In addition, the massively 
thread-parallel programming model of GPUs is maintained 
and the complexity of hybrid programming models is 
avoided. Future work will include other synchronization 
primitives, scalability optimizations and analyses, and 
applying these methods to other computing domains, like 
data warehousing, decision support and graph algorithms. 

IX. ACKNOWLEDGEMENT  

We gratefully acknowledge the generous support of this 

research effort by NVidia Corporation and Xilinx, Inc. 

X. REFERENCES  

[1] Lee, V.W., et al. 2010. Debunking the 100X GPU vs. CPU myth: an 
evaluation of throughput computing on CPU and GPU. SIGARCH 
Comput. Archit. News 38, 3 (June 2010), 451-460. 

[2] Kirk, D., and Hwu, W. 2010. Programming Massively Parallel 
Processors: A Hands-on Approach. Morgan Kaufmann. 

[3] NVidia Corp. CUDA Dynamic Parallelism Programming Guide. 
Avialable online at: 
http://docs.nvidia.com/cuda/pdf/CUDA_Dynamic_Parallelism_Progr
amming_Guide.pdf  

[4] NVidia Corp. Developing a Linux Kernel Module using RDMA for 
GPUDirect. Available online at 
http://docs.nvidia.com/cuda/gpudirect-rdma/index.html  

[5] Stuart, J.A., Owens, J.D. 2009. Message passing on data-parallel 
architectures. IEEE International Symposium on Parallel & 
Distributed Processing (IPDPS), pp.1-12, 23-29 May, 2009. 

[6] Shainer, G., et al. 2011. The development of Mellanox NVIDIA 
GPUDirect over Infiniband—a new model for GPU to GPU 
communications. Comput. Sci. Res. Dev. (2011) 26: 267-273.  

[7] Mellanox Corp. NVIDIA GPUDirect technology - accelerating GPU-
based systems. Available online at 
http://www.mellanox.com/pdf/whitepapers/TB_GPU_Direct.pdf 

[8] NVidia Corp. Peer to peer and Unified Virtual Addressing. Available 
online at 
http://developer.download.nvidia.com/CUDA/training/cuda_webinars
_GPUDirect_uva.pdf 

[9] Scott, S. L. 1996. Synchronization and communication in the T3E 
multiprocessor. 7th International Conference on Architectural 
Support For Programming Languages and Operating Systems 
(ASPLOS), Cambridge, MA, US. 

[10] Xiao, S., and Feng, W. 2009. Inter-block GPU communication via 
fast barrier synchronization. Technical Report TR-09-19, Dept. of 
Computer Science, Virginia Tech. 

[11] Fröning, H., and Litz, H. 2010. Efficient Hardware Support for the 
Partitioned Global Address Space. International Symposium on 
Parallel & Distributed Processing Workshops (IPDPSW), Atlanta, 
GA, US. 

[12] Phillips, E.H., and Fatica, M. 2010. Implementing the Himeno 
benchmark with CUDA on GPU clusters. International Symposium 
on Parallel & Distributed Processing (IPDPS), April 19-23, 2010. 

[13] Ammendola, R., et al. 2013. GPU Peer-to-Peer Techniques Applied 
to a Cluster Interconnect. International Symposium on Parallel & 
Distributed Processing Workshops (IPDPSW), 2013. 

[14] Wang, H., et al. 2011. MVAPICH2-GPU: Optimized GPU to GPU 
Communicationfor InfiniBand Clusters. International 
Supercomputing Conference (ISC), June 2011. 

[15] Potluri, S., et al. 2012. Optimizing MPI Communication on Multi-
GPU Systems Using CUDA Inter-Process Communication. 
International Parallel and Distributed Processing Symposium 
Workshops (IPDPSW), May 21-25, 2012. 

[16] D.K.Panda. 2013. MVAPICH2: A High Performance MPI Library for  
NVIDIA GPU Clusters with InfiniBand, GPU Technology 
Conference, San Jose, 2013. 

[17] Aji, A. M., et al. 2012. MPI-ACC: An Integrated and Extensible 
Approach to Data Movement in Accelerator Based Systems. 
International Conference on High Performance Computing and 
Communications (HPCC). 

[18] Moerschell A., and Owens, J.D. 2006. Distributed texture memory in 
a multi-GPU environment. ACM SIGGRAPH/EUROGRAPHICS 
Symposium on Graphics hardware (GH '06). New York, NY, USA. 

[19] Si, M., Ishikawa, Y., Tatagi, M. 2013. Direct MPI Library for Intel 
Xeon Phi Co-Processors. International Symposium on Parallel & 
Distributed Processing Workshops (IPDPSW), 2013. 

[20] Fröning, H, et al. 2011. Highly Scalable Barriers for Future High-
Performance Computing Clusters. IEEE International Conference on 
High Performance Computing (HiPC 2011), Bangalore, India. 


