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Abstract—GPUs are widely used in high performance comput-
ing, due to their high computational power and high performance
per Watt. Still, one of the main bottlenecks of GPU-accelerated
cluster computing is the data transfer between distributed GPUs.
This not only affects performance, but also power consumption.
The most common way to utilize a GPU cluster is a hybrid model,
in which the GPU is used to accelerate the computation while the
CPU is responsible for the communication. This approach always
requires an dedicated CPU thread, which consumes additional
CPU cycles and therefore increases the power consumption of
the complete application.

In recent work we have shown that the GPU is able to control
the communication independently of the CPU. Still, there are
several problems with GPU-controlled communication. The main
problem is intra-GPU synchronization, since GPU blocks are non-
preemptive. Therefore, the use of communication requests within
a GPU can easily result in a deadlock. In this work we show
how Dynamic Parallelism solves this problem. GPU-controlled
communication in combination with Dynamic Parallelism allows
keeping the control flow of multi-GPU applications on the GPU
and bypassing the CPU completely. Although the performance of
applications using GPU-controlled communication is still slightly
worse than the performance of hybrid applications, we will show
that performance per Watt increases by up to 10% while still
using commodity hardware.

I. INTRODUCTION

During the last years, graphic processing units have gained
high popularity in high performance computing. Programming
languages like CUDA, OpenCL or directive-based approaches
like OpenACC make the features of GPUs available for
developers that are not familiar with the classic graphical
aspects.

Therefore, GPUs are deployed in an increasing number
of HPC systems, especially since energy efficiency becomes
more and more important due to technical, economical and
ecological reasons. In particular, the first 15 systems of the
Green500 from June 2014 are all accelerated with NVIDIA
Kepler K20 GPUs [1]. For example, an Intel Xeon E5-
2687W Processor (8 cores, 3.4 GHz, AVX) achieves about
216 GFLOPS at a thermal design power (TDP) of about
150 W , resulting in 1.44 GFLOPS/W . An NVIDIA K20 GPU

is specified with a TDP of 250 W and a single precision peak
performance of 3.52 T FLOPS resulting in 14.08 GFLOPS/W .

New features like CUDA Dynamic Parallelism help the
GPU to become more independent of the CPU by allowing the
GPU start and stop compute kernels without context switches
to the host. By this the CPU can be relieved from this work,
helping to save power for GPU-centric applications.

GPUs are powerful, scalable many-core processors, but they
excel in performance only if they can operate on data that
is held in-core. Still, GPU memory is a scarce resource and
also due to this, GPUs are deployed in clusters. However,
communication and data transfer is one of the main bottlenecks
of GPU-accelerated computing. Since we are now facing an
area in which communication and data transfers dominate
power consumption [2], it is necessary not only to optimize
the computation of GPU-accelerated applications with regard
to energy and time, it is even more important to optimize
communication aspects.

Applications that are running on distributed GPUs normally
use a hybrid-programming model, in which computational
tasks are accelerated by GPUs, while data transfer between
the GPUs is controlled by the CPUs. This approach requires
frequent context switches between CPU and GPU, and for the
whole execution time a dedicated CPU thread is required to
orchestrate GPU computations and GPU-related communica-
tion. This CPU thread requires additional power and therefore
increases the energy consumption of the complete application,
preventing the CPU from entering sleep states.

In recent work [3] we introduced a framework that allows
GPUs to source and sink communication requests to Infiniband
hardware and thereby completely to bypass the CPU. So far,
this approach does not bring any performance benefits, but
losses. This is caused by the work request generation on GPUs,
which shows a much higher overhead compared to CPUs. Still,
this technique allows to keep the control flow of an multi-GPU
application on the GPU, avoiding context switches between
CPU and GPU and relieving the CPU from communication
work.

Thus, GPU-controlled communication can help to reduce



the power consumption of GPU-centric distributed applica-
tions by consolidation computation and communication tasks
on the GPU. In this work, we will focus on how Dynamic
Parallelism can further improve the effectiveness of this
approach. In particular, we address the issue of intra-GPU
synchronization, which is up to now a severe bottleneck for
GPU-controlled communication.

In this paper, we advance previous work by the following
contributions:
• A discussion of different intra-GPU synchronization

methods for GPU-controlled communication
• A discussion of the benefits of Dynamic Parallelism for

GPU-controlled communication
• A detailed performance and energy analysis of GPU-

controlled and CPU-controlled communication methods
for distributed GPUs

The rest of the paper is organized as follows. The next
section gives a short overview about related work. Section
three provides some background information on GPUs, com-
munication in GPU clusters and power measurement. In sec-
tion four, the benefits of Dynamic Parallelism are presented,
while in section five the general work flow of a hybrid-
multi GPU application is discussed. In section six different
concepts of GPU-controlled communication using Dynamic
Parallelism are presented and in section seven and eight, a
detailed analyzed of performance and energy consumption of
these concepts are presented, before we conclude in section
nine.

II. RELATED WORK

A lot of work exists in the area of energy-aware heteroge-
neous processing, however, most of this work concentrates on
computation and disregards communication and data transfer
for distributed systems.

In [4], a global GPU address space [5] is used to perform
reduce and allreduce collectives completely on the GPU. The
global GPU address space allows the GPU to control the
communication independently of the host CPU, resulting in
an increased energy efficiency for these collective operations.
In principle, a similar approach is used here. However, the
work in [4] concentrates on the implementation of reduce and
allreduce operations and requires a special hardware unit to
enable inter-GPU communication. The approach in this work
is based on commodity network hardware instead, in particular
Infiniband.

Paul et al. contribute an excellent work optimizing energy
management for heterogeneous processors and HPC workloads
[6], but only investigate intra-node optimizations. In [7], the
impact of clustered GPUs on energy efficiency is explored,
but communication models are not part of this analysis.

GPU-controlled communication was first topic in [8] from
Owens et. al. They introduced a message-passing interface for
GPUs, in which communication requests are forwarded from
the GPU to the host CPU. In particular, they highlight the need
for CPU bypassing and mention the problem of deadlocks with
regard to GPU-controlled communication.

In our previous work [3], we introduced an Infiniband
Verbs implementation for GPUs, which forms the basis of
this work. This framework allows GPUs to source and sink
communication request to Infiniband hardware while complete
bypassing the host CPU. In [9], different Put/Get APIs for
GPUs where analyzed in terms of performance but not power
consumption.

Optimizing the communication in heterogeneous clusters
with the scope of performance was also topic in various related
work, however they all rely on CPU-controlled communica-
tion. The most common approach is using MPI in combination
with CUDA or another accelerator language. In [10], Wang et
al. introduce MVAPICH2-GPU, an MPI-Version for Infiniband
that can handle pointers to GPU memory, which is optimized
in [11] by using GPUDirect RDMA technology. In [12], the
OpenSHMEM extension for GPUs is introduced. A similar
approach is GPI2 for GPUs [13], which describes the extension
of the GASPI standard to support GPUs.

Dynamic Parallelism is also an important topic in current
research. In [14], the impact on clustering algorithms is ex-
amined. They show that it can positively impact performance
of the divisive hierarchical clustering algorithm, while the
performance of K-means is slowed down. In [15], [16], the
implementation of different clustering and graph algorithms
on GPUs with Dynamic Parallelism are described. In [17], an
alternative to Dynamic Parallelism for nested parallelism is in-
troduced, due to the low performance of Dynamic Parallelism
for short loops.

III. BACKGROUND

This section provides background information on GPU com-
puting, GPU communication models and power measurement,
as it will be needed in the following sections.

A. GPU Computing

The architecture of a modern GPU is optimized for highly
data-parallel execution, with thousands of threads operating in
parallel. A GPU is composed of multiple Streaming Multi-
processors (SMs), who themselves are composed of a large
number of computing cores. Compared to complex modern
CPU cores, these cores have a very simple structure and are
optimized for a high throughput of floating point operations.

The threads of a GPU are organized in blocks. These thread
blocks are tightly bounded to the SMs, but the GPU scheduler
does not schedule the threads in blocks or with single-thread
granularity. Instead, a block is divided in so-called warps,
which have the size of 32 threads on modern GPUs. All the
threads of one warp are scheduled at the same time and follow
the same instruction stream. A divergent branch within one
wrap results in a sequential execution of the code, since all
other threads simply block for such non-coherent branches in
the code. Therefore, different branching within the threads of
a warp result in significant performance losses.

1) Dynamic parallelism: The feature of Dynamic Paral-
lelism [18] was introduced with CUDA 5 for Nvidia GPUs
with compute capability 3.5 and higher. Dynamic Parallelism



allows the launching of new compute kernels directly from
the GPU. Before, only the host CPU was allowed to start new
kernels on the GPU. Its main objective is to lower the overhead
of starting and synchronizing kernels. However, several studies
have shown that starting and synchronization of these kernels
on the GPU still has got a large overhead, which is referred
as the Dynamic Parallelism overhead [17]. Therefore, it not
necessarily helps to improve the performance, especially if
it is used to run multiple small kernels concurrently on
the GPU. However, for our work the main benefit is that
it provides an easy way for inter-block synchronization on
the GPU, which was previously not supported and required
special synchronization primitives, like for example inter-
block barriers, which are described in [19]. Such an inter-block
barrier introduces eventually unnecessary synchronization and
thus overhead, and also can lead to deadlocks.

B. Communication and data transfer between distributed
GPUs

This section gives a short overview about communication
and data transfer methods for distributed GPUs and classifies
the methods used in this work. When analyzing such commu-
nication methods, we have to distinguish between data transfer
and communication control.

1) Data transfer: can either been direct or staged. A direct
data transfer means that data is directly transferred between the
memories of two GPUs, while for a staged data transfer the
data is buffered in host memory. For a staged data transfer,
the sending GPU first copies the data to the host memory,
where network device reads the data and transfers it to the
host memory of the remote node. Here, the receiving GPU
copies the data to its own device memory. GPUDirect RDMA
[20] allows a direct data transfer between distributed GPUs,
since it enables RDMA capable network devices to directly
read and write GPU device memory.

A direct data transfer is ideal for short messages. However,
for larger messages some issues with current PCIe implemen-
tations limit the performance, and therefore often staged copies
are used [11], [13].

2) The communication control: describes which unit con-
trols the data transfer, therefore sources and sinks communi-
cation requests and synchronizes with the remote side. For
heterogeneous computing nodes like relevant for this work,
communication control can be either performed by GPUs or
CPUs.

The most common approach is to use a hybrid model,
in which the CPU controls the communication while the
GPU is only used to accelerate compute-intensive tasks. Good
examples for this are CUDA-aware MPI versions, so that MPI
operations can use GPU pointers as source and destination
[11], [21]. A similar but one-sided approach is GPI2 for
GPUs [13]. Both use direct data transfers for small messages
and a staged data transfer for large messages to bypass the
previously mentioned PCIe performance issue. However, such
hybrid approaches result in frequent context switches between

host and GPU, and require a dedicated host thread to control
communication.

To avoid both drawbacks, GPU-controlled communication
is essential. In our recent work we enabled the GPU to source
communication requests to Infiniband Hardware by completely
bypassing the host CPU [3]. To allow this, first an Infiniband
communication environment is set up by the CPU. Parts of
this environment are then mapped into the GPU address space.
This mapping then allows GPU threads to access the resources
required to issue work request to Infiniband hardware and to
ensure completion of these work requests.

However, we showed that this approach currently does
not bring any performance benefits compared to a hybrid
approach. We identified two main reasons: first, the inter-block
synchronization on the GPU, and second the massive overhead
for generating work requests by GPU threads. In this work
here, we analyze how Dynamic Parallelism can help to address
the first of this problems.

C. Power measurement

In this work, we use a software approach to measure the
power consumption, using the integrated power measurement
facilities of the used hardware components. Most recent Intel
CPUs support Running Average Power Limit (RAPL) registers
[22], which report power consumption of CPU and DRAM.
The counterpart for Nvidia GPUs is the Nvidia Management
library (NVML) [23], which reports the power drawn by
the GPU add-in card. Both techniques use power modeling
to estimate the current power consumption of the respective
hardware components, and are widely accepted as accurate.
The advantage of this methodology is that it a relative fine
grain instrumentation with a sampling period of around 200 ms
is possible, and that single components like CPU, DRAM and
GPU can be characterized.

An alternative method would be the use of external power
meters, either specialized for individual components like the
add-in cards or for power outlets. The main advantage of this
method is the accuracy. However, using the power meters for
outlets do not allow a break down to the individual compo-
nents, while instrumenting each component with a individual
power-meter is either not practical or obstructive.

Note that the software approach leaves other components
like the network device uncovered. However, communica-
tion patterns to not differ for the different communication
approaches used here, and network power consumption is
typically independent of the actual traffic, as it is dominated by
(de-)serializers that employ serial link coding and embedded
clocking.

IV. DYNAMIC PARALLELISM AND POWER SAVING

Before we look at the combination of Dynamic Parallelism
and GPU-controlled communication, we first analyze if and
how an application on a single node can benefit from Dynamic
Parallelism. Relieving a CPU from work (i.e., GPU on-
loading) can lead to more CPU idling and thus allows the
CPU to enter low-power states, saving energy.



Fig. 1. Run time and CPU overhead for the Himeno benchmark

We use the Himeno benchmark to illustrate how Dynamic
Parallelism can be used to achieve this. The implementation
of a good performing single- and multi-GPU version of this
benchmark can be found in [24], however we first focus on
the single-GPU version. We run the Himeno benchmark with
a grid size of 512x512x256 points and vary the number of
iterations. For every iteration, two CUDA kernels are added
to the stream, one for the computation of the grid and one to
compute the residuum. The first version of this benchmark
does not use Dynamic Parallelism; the host CPU adds all
compute kernels to a single stream. Then, this stream is
synchronized with cudaStreamSycnhronize.

In the second version, the host CPU only starts a single
kernel (with a only one thread block), the master kernel.
The master kernels then starts the compute kernels for every
iteration using Dynamic Parallelism. The host CPU synchro-
nizes with this master kernel using cudaStreamSynchronize.
We measure the complete execution time of the benchmark,
therefore the time from issuing the kernel(s) until cudaStream-
Synchronize completes. In addition, we measure the time that
the hosts spends in adding kernels to the stream, reported as
CPU overhead. During this time, the CPU cannot be used for
other tasks, while for

tidle = texecution− toverhead

the CPU is it potentially available for other tasks or can
enter a sleep state.

The results are shown in Figure 1. The execution time of
the benchmarks differs so little that the graphs are hardly
distinguishable. For a small number of iterations, the CPU
overhead is negligible for both cases. However, for more then
500 iterations the CPU overhead without Dynamic Parallelism
starts increasing linearly while with Dynamic Parallelism is
remains barely noticeable.

The reasons for this is probably the queue size of the
streams. Since the CPU overhead rises for more then 500
iterations and two kernels are added to the stream for every
iteration, it seems that this queue is limited to about 1000
entries.

Figure 2 reports the impact of employing Dynamic Par-
allelism on power consumption. We use a synchronization
method as shown in Listing 1 for both cases with a decreased
polling rate, as frequent polling can prohibit such sleep states.
Since the execution time of the iterated kernels is large enough,
there are no performance penalties. The results in Figure 2

Fig. 2. Energy efficiency of the Himeno benchmark on a single GPU for
different number of iterations, using host kernels and dynamic parallelism

show that using Dynamic Parallelism the energy efficiency is
significantly larger. The difference increases with the number
of iterations. Therefore, Dynamic Parallelism seems to be a
feasible method to improve energy efficiency for GPU-centric
applications.

Listing 1. Allowing the CPU to sleep while waiting for completion
while( cudaStreamQuery(stream) == cudaErrorNotReady)

usleep(5000);

V. DISTRIBUTED COMPUTING WITH MULTIPLE GPUS

In the previous section we have shown that Dynamic Paral-
lelism allows keeping the control flow of an application on the
GPU, thereby reducing the overhead for the CPU significantly
and saving power for GPU-centric applications.

While this is a power optimization for GPUs within a single
node, we now focus on distributed GPUs, in particular the
mandatory communication among them. Common practice is
a hybrid programming model, in which the CPU controls
the communication. Using techniques like GPUDirect RDMA,
data can be directly transferred between GPU memories,
however such techniques still rely on the CPU to control the
communication. In this case CUDA Dynamic Parallelism is
of little use since frequent context switches between GPU and
CPU are required anyway.

In Figure 3 the control flow of a hybrid multi-GPU imple-
mentation of the Himeno benchmark is shown. The communi-
cation is controlled by the CPU and the GPU is only used for
computation. In the multi-GPU version, like described in [24],
the three-dimensional domain is sliced along the z-direction.
Each GPU has to exchange the top and the bottom border with
its direct neighbors.

To overlap communication and computation, two kernels are
used: kernel top and kernel bottom. We used CUDA events to
synchronize these kernels with the host process. The events are
inserted into the stream right after the compute kernel. Another
method would be the use of two streams, as described in [24].
This method is mandatory if no CUDA-aware communication
library is used and explicit data transfer between GPU and host
is required, to overlap this data transfer with the computation.
However, since we are using a CUDA-aware communication
library, event synchronization turned out to be most efficient.

In every iteration, a host thread first starts the data transfer of
the bottom boundary (send top) and then the compute kernel
for the top part of the grid (top kernel start). The data transfer
itself is handled by the network device and overlapped with



Fig. 3. Control flow of a hybrid application

the computation on the GPU. Theoretically, now the CPU can
be used for other work or set to sleep, while the compute
kernel is running on the GPU and the network device handles
the data transfer. Still, before the next compute kernel can be
started, the host CPU has to ensure that the remote boundaries
are updated (wait btm). Similarly, before the CPU starts the
data transfer of the top boundaries (send top), it has to ensure
that the top kernel has completed. Therefore, usually a host
thread is delegated only to control the flow between network
device and GPU for such multi-GPU applications.

The communication can be handled by MPI or another
CUDA-aware communication library. If MPI is used, the wait
function corresponds to a MPI receive function. Here we use
GPI2 for GPUs, since we also use a one-sided communication
scheme on the GPU. The benefit of this communication
scheme is that it adds less overhead to the communication
and therefore provides a very thin communication layer.

To synchronize the one-sided communication, we used GPI2
weak synchronization [25], which uses a flag mechanism
to inform the remote side of the completion of a remote
write. Then, the wait routine corresponds to polling on this
notification flag.

However, independent of the underlying communication
framework, as long as the communication is controlled by
the CPU, Dynamic Parallelism cannot be used to handle
multiple iterations on the GPU and to release the CPU from
synchronization tasks. Instead, a CPU thread is required to
control the flow between network device and GPU. The only
way to avoid this is to move communication tasks to the GPU.

Fig. 4. 3-D Stencil, thread blocks process columns of the domain, boundaries
are on top and bottom

VI. GPU-CONTROLLED COMMUNICATION

In our previous work [3], we have shown that is possible to
enable the GPU to source and sink communication requests
to the network device by completely bypassing the host CPU.
However, apart from performance, there are several problems
with this approach which are related to the GPU programming
model.

Normally, a GPU kernel is started with more threads and
blocks then can be scheduled concurrently on the GPU. But
once a thread block is scheduled, it cannot be preempted until
it has completed. Also, it is not predictable which block is
scheduled at which point in time. This behavior, combined
with GPU-controlled communication, can easily result in a
deadlock: on both GPUs thread blocks waits for remote data,
but the thread blocks that actually transfer the data cannot
be scheduled since the waiting blocks are blocking the GPU
resources.

This problem is best illustrated by describing the imple-
mentation of a simple benchmark. We again use the Himeno
benchmark and the GPU implementation as described in [24].
In every iteration all points of the grid are updated using
the neighboring points. On a single GPU, the 3-D domain
is processed by two-dimensional thread blocks. These thread
block walk through the domain from the bottom to the top of
the 3-D grid, as shown in Figure 4.

In the simplest case for multiple GPUs, the complete
domain is sliced along the z-direction and then distributed
between the GPUs. Then the boundary values, which have
to be exchanged, are on the top and bottom of the grid,
like shown in Figure 4 in green. That implies that all GPU
thread blocks update a part of these boundaries – and that all
thread blocks require data from a remote GPU. Furthermore,
all thread blocks also require data points that are processed by
the neighboring thread blocks, since the stencil computation
depends on neighboring points from all six directions. For
this, inter-block synchronization is mandatory but the CUDA
execution model only defines such a synchronization semantic
when kernels are finished. This is the the crux of the matter
for GPU-controlled communication.

Normally, this inter-block synchronization is provided by
starting a new kernel for every iteration and adding these
kernels to the same stream. Since thread blocks are non-
preemptive, starting a kernel with more blocks then can be
run concurrently on the GPU can result in a deadlock, if



Fig. 5. Control flow of an application with communication control on the
GPU, inter-block synchronization within a CUDA kernel

another method of inter-block synchronization is used. In
the following, three possible solutions for this problem are
presented and the benefits of using Dynamic Parallelism with
these methods are explored.

A. In-Kernel synchronization

In the first approach, a communication request is sourced
and sinked directly by the compute kernel. The control flow of
such an application is shown in Figure 5. Using this approach,
the required inter-block synchronization within the compute
kernel can result in a deadlock.

One possibility to avoid deadlocks is to start only as many
threads on the GPU as can be scheduled concurrently . This
technique is also called persistent threads. Then, for intra-
GPU synchronization a barrier as described in [19] can be
used. All blocks on one GPU are first synchronized using an
inter-block barrier. After this, one block can start the data
transfer of the complete boundary before the next iteration
is started. However, in [26] was shown that the use of
persistent threads on GPUs results in performance losses in
many cases. In particular, the CUDA execution model relies
on parallel slackness to hide long-latency events, and persistent
threads dramatically reduce the amount of parallel slackness.
Therefore this is often not a suitable solution.

Another possible solution is to organize the communication
in a way that ever block is responsible for its part of the
boundary. This solution results in many small data transfers,
since every block starts a data transfer. Due to the two-
dimensional structure of the blocks, the data of one block is
also non-contiguous in memory, resulting in a large number
of small data transfers or in additional work due to data
packing and unpacking. Therefore, a solution is required that
allows starting of as many thread blocks as required, but still

Fig. 6. Control flow of an application with communication control on the
GPU, using stream synchronization

provides an intra-GPU synchronization to avoid many small
data transfers.

We propose to use an atomic counter as a solution to this
problem. For every iteration, a new kernel is started to guar-
antee inter-block synchronization. To overlap communication
and computation, it is also possible to use more then one
kernel, for example one for the top and one for the bottom
part of the grid like shown in Figure 5. The kernels are started
with as many thread blocks as required to process the grid.

The GPU schedules the thread blocks of one kernel until all
have completed. Only then a new kernel in the same stream
is started. When the last block has finished the computation,
all points in the grid are updated and the boundaries can be
transferred. Therefore, this last block should start the data
transfer. Since it is not predictable which block is scheduled
when, we use an atomic counter to determine the last thread
block. Every iteration, each block increments the counter using
an atomic operation. The last block starts the communication
and resets the counter.

To synchronize the distributed GPUs, a flag-based notifica-
tion mechanism similar to the weak synchronization for CPU-
controlled communication is used. Immediately after a remote
write operation, which transfers the boundaries, a notification
is written to the remote GPU to signal the availability of new
data. So, at the beginning of every iteration all blocks have
to wait for this remote notification before the computation is
continued. This polling on a notification can efficiently be done
by all threads in parallel.



B. Stream synchronization

The second approach uses stream synchronization to syn-
chronize communication and computation on the GPU. In Fig-
ure 6 the control flow for the stencil code using this approach
is shown. Here, the communication functions send top/btm
are added to a stream as independent kernels, so now these
functions are implemented as CUDA kernels and not as device
functions. The same applies for the synchronization functions
(wait top/btm).

To overlap data transfer and computation, two pure com-
pute kernels (kernel top and kernel btm) are used. For every
iteration, at first a communication kernel (send btm) is added
to the stream. This kernel starts the data transfer of the bottom
boundary, which is then handled by the network device. Next,
the compute kernel for the top part of the grid is added to
the stream (kernel top). The execution of this kernel is over-
lapped with data transfer of the bottom boundaries. The next
kernel that is added to the stream is again a communication
kernel (wait btm), which waits until the bottom boundaries
are updated. As we use a flag mechanism, in this kernel a
thread polls for a notification flag. The same procedure is now
repeated with the data transfer of the top boundaries (send top
and wait top) and the computation of the bottom part of the
grid (kernel btm). Since the order of the kernels in one stream
is maintained, the data transfer is not started until the local
borders are updated; similarly a new kernel is not started until
the remote borders are updated.

C. Synchronization with Dynamic Parallelism

The previously described approaches actually do not require
Dynamic Parallelism, since all kernel can theoretical also be
submitted from the host. However, to keep the overhead on
the host as small as possible, we in addition use Dynamic
Parallelism for these methods. Then, the host CPU starts a
single kernel (control block), which then starts the communica-
tion and compute kernels on the GPU. This method, however,
requires Dynamic Parallelism and cannot be realized without
some of the features.

Basically, the idea is to transfer the hybrid approach to
the GPU, using dynamic parallelism. However, the hybrid
approach described in the previous section cannot be di-
rectly transferred to the GPU, since neither cudaEventSyn-
chronoize nor cudaStreamSynchronized are supported on the
GPU. Instead, we use cudaDeviceSynchronize to synchronize
the compute kernels. The work flow of this approach is
shown in Figure 7. Again, two pure compute kernels are
used. In contrast to the previous approach, the communication
functions are not implemented as CUDA kernels but as device
functions, which are called by the control kernel.

The CPU only starts a kernel with a single thread block. For
each iteration, this kernel first starts the data transfer of the
top boundaries by submitting a work request to the network
hardware (send btm). Then, the compute kernel for the top
part of the grid is started (kernel top) and overlapped with
the data transfer, handled by the network device. The control
block now waits until the compute kernel is completed by

Fig. 7. Control flow of an application with communication control on the
GPU, using CUDA Dynamic Parallelism and device synchronization

using cudaDeviceSynchronize and until the bottom boundaries
are updated by the remote GPU (wait btm). Now, the same
procedure is repeated for the data transfer of the top boundary
(send top and wait top) and the computation of the bottom
part of the grid (kernel btm).

VII. PERFORMANCE RESULTS

In this section we discuss and analyze the performance
results of the previously described approaches. In particular,
we compare GPU-controlled communication with a hybrid
solution, in which the CPU controls the communication while
the GPU performs the computation.

Since enabling the GPU to control the Infiniband device re-
quires changes in the device drivers of both GPU and network
device [3], we were not able to run our tests on more then
two nodes. However, the scope of this work is to analyze the
principle benefits of Dynamic Parallelism for GPU-controlled
communication, therefore we believe this setup to be sufficient.

The test system consists of two nodes with each two Intel 4-
core Xeon E5-2609 CPUs, directly connected with a Mellanox
ConnectX-3 FDR Infiniband network. Each node is equipped
with a single Nvidia K20c GPU, each with 5120 MBytesof
global memory. We use CUDA 6 and device drivers version
331.6, which are patched to allow the registration of MMIO
addresses [3]. For Infiniband, the Mellanox OFED-2.1-1.0.6
in combination with the Mellanox GPUDirect RDMA driver
[27] to allow direct data transfer between distributed GPUs is
used.

We run the Himeno benchmark for different input sizes. In
Table I the properties for the different sizes are summarized.



Fig. 8. Performance of the Himeno Benchmark for different problem sizes and communication methods

TABLE I
PROPERTIES OF THE HIMENO BENCHMARK FOR DIFFERENT PROBLEM

SIZES AND AND AN EXECUTION ON TWO GPUS

Problem required Memory FLOPs per GPU Border size
size per GPU (Byte) per Iteration (Byte)

256×256×256 482 M 280 M 256 k
256×256×256 954 M 561 M 256 k
256×256×1024 1.90 G 1.78 G 256 k
512×512×256 1.93 G 1.13 G 1 M
512×512×512 3.81 G 2.26 G 1 M
512×512×640 4.75 G 2.83 G 1 M
640×640×128 1.54 G 0.89 G 1.5 M
640×640×256 3.01 G 1.77 G 1.5 M
640×640×384 4.48 G 2.56 G 1.5 M

The benchmark is started with a block size of 64×4 threads.
These sizes are selected in such a way that each of the three
problem sizes results the same amount of data transfer, while
the number of data points to calculate differs. By this, we can
vary the ratio between communication and computation.

The results are shown in Figure 8. The hybrid version,
in which the CPU controls the communication, is always
performing best, especially for small problem sizes. However,
this corresponds to the results from our previous work [3].
This kind of workload allows to exploit overlap to hide the
communication overhead, which is clearly done for host-
controlled communication. For GPU-controlled communica-
tion, such an exploitation is not (yet) possible, resulting in
an increased execution time for the GPU. Another reason is
that the communication overhead on the CPU negligible small,
since CPUs are optimized to execute sequential workload,
which is required to source and sink communication requests
to Infiniband hardware. However, for larger problem sizes,
the performance of the GPU-controlled versions become more
and more closer to the hybrid version, if stream or device
synchronization is used. Only the version using in-kernel
synchronization is performing bad for all problem sizes. The
stream synchronization is performing best for all problem sizes
using GPU-controlled communication.

The reason for this becomes clear if we look at the commu-
nication overhead for different configurations and methods. In
Figure 9 the execution time for two problem sizes is shown.
The complete execution time is separated into computation
time and communication overhead.

(a) 256×256×256 (b) 640×640×384

Fig. 9. Communication overhead for the different problem sizes

For the hybrid approach the overhead is very small for
both problem sizes, actually it is in the area of measurement
uncertainty. The data transfer can completely be overlapped
with the computation, resulting in the best performance.

For GPU-controlled communication using stream-
synchronization or device synchronization, the communication
overhead for the small problem size is large in relation to the
computation time. Therefore, the communication overhead
has got a relatively large influence to the performance. The
overhead using the stream synchronization is the smallest.
However, for larger problem sizes, the communication
overhead stays constant while the computation time rises,
making the overhead less relevant for larger problem sizes.

This is different for the in-kernel synchronization. Here,
the communication overhead rises for larger problem sizes.
We assume two reasons for this: first, for the larger problem
size more thread blocks are started, resulting in an increasing
overhead for inter-block synchronization. Second, if more
thread blocks are started, a thread block advancing slower
(e.g., the thread block that starts the communication) can slow
down all the other thread blocks, so the effect of in-kernel
synchronization is strengthened.

VIII. POWER ANALYSIS

In this section we analyze the power consumption and
energy efficiency of the previously described approaches.

For the hybrid version, the CPU is set to sleep while
waiting for the completion of a data transfer and the particular
computation kernel. However, to avoid performance losses, the
sleep period can set to maximal 1000 µs.

For the approaches using GPU-controlled communication,
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the CPU is set to sleep right after starting the master kernel.
Since the runtime of this master kernel is much longer, here a
sleep period of 5000 µs can be used without any performance
losses.

The benchmarks are run with 1000 iterations and the power
consumption of GPU, CPU and DRAM is measured during
the complete execution time. The energy efficiency of the
different methods for an execution on two GPUs, expressed in
MFLOP/s/Watt (or MFLOP/Joule), is shown in Figure 10.

The results show that stream synchronization, allowing the
GPU to autonomously control the communication, is the most
energy-efficient method for all problem sizes, although the per-
formance for small problem sizes is recognizable worse then
for the hybrid version. However, for larger problem sizes, the
energy efficiency compared to hybrid approach is significantly
better. For instance, for a problem size of 640×640×386, the
energy efficiency of the stream synchronization is about 10%
better than the hybrid version. The main reason for this is
the execution time of a single iteration, therefore the relation
between communication and computation.

In Figure 11 the power consumption of the different com-
ponents over time for a problem size of 640× 640× 384 is
shown. The figures show the course of the power for a single
machine. While the GPU’s power consumption is identical for
the hybrid, stream- and device-synchronization methods, the
values for CPU and DRAM differ. For the hybrid version,
a CPU thread is required to control the communication. Al-
though the communication is handled by the network device,
the CPU cannot enter a sleep state for a longer period and
therefore it consumes about 50 Watt. If the GPU controls the
communication, the CPU can be set to sleep for the complete
execution time of the kernel. Therefore, it then only consumes
between 24 and 29 Watt.

The DRAM power consumption can hardly be recognized in
Figure 11, however it also differs for the hybrid and the GPU-
controlled versions. During execution time, for the hybrid
version DRAM consumes about 3.9 Watt, while the GPU-
controlled versions require only about 2.2 Watt.

Another interesting observation is that using in-kernel syn-
chronization the GPU consumes considerable less power com-
pared to all other methods. The reason for this may be that the
in-kernel synchronization slows down the complete GPU and

therefore not all SMs can be fully utilized. However, while this
leads to a lower power consumption, the increased execution
time outweighs this benefit for almost all cases. Only for a
very small problem size the in-kernel synchronization method
shows benefits (see Figure 10).

IX. CONCLUSION

We have shown that GPU-controlled communication results
in performance losses compared to a hybrid solution, in which
the CPU controls the communication while computational
tasks are off-loaded to the GPU. However, the smaller the
communication overhead in contrast to the computational work
is, the smaller is this effect.

For GPU-controlled communication, the intra-GPU syn-
chronization between the individual thread blocks is the most
important factor for performance. The best results are reached
if the communication functions are added as kernels to the
same stream as the compute kernels. Although the perfor-
mance of GPU-controlled communication still is unconvinc-
ing, the power saving that can achieved with this method is
very promising. For large problem sizes, up to 10% of the
energy can be saved by moving communication tasks to the
GPU. Alternatively, one can argue that the CPU is available
for other tasks.

In particular, we showed that energy savings are possible by
relieving the CPU from controlling the work flow between the
GPU and the network device. This could only be achieved by
CUDA Dynamic Parallelism, which allows the GPU to start
and stop compute and communication kernels independent
from the CPU.

Especially for small problem sizes, the communication
overhead still carries a lot of weight. The main reason for
this is that a complex communication protocol like Infiniband
verbs is not very suitable for the high degree of parallelism
of GPUs. We have shown this in detail in our previous work
[3], [9]. In summary, power savings are possible at the cost of
increased execution time, which however is a viable way for
a higher energy efficiency.

As even higher energy savings would be possible if the
GPUs could handle communication more efficient, we plead
for specialized communication models and methods for future
GPU-accelerated systems, which allow an easier sourcing and



(a) Hybrid (b) Stream synchronization (c) Device synchronization (d) In-kernel synchronization

Fig. 11. Power over time for the Himeno benchmark using a problem size of 640×640×384 and different communication methods

sinking of communication requests than the Verbs protocol.
It seems that the Verbs interface is a poor match to the
GPU execution model. Considering upcoming technologies
like Nvlink, which helps to overcome the PCIe bottleneck,
such an approach will be pioneering for future energy-efficient,
GPU-centric high performance systems.

In our future work, we plan to explore other GPU-controlled
communication methods to find a suitable, fast and energy-
efficient model that is most suitable for GPU architectures.
Also, we hope to extend our experiments to larger clus-
ters and to a broader spectrum of applications with distinct
communication characteristics. We think that future energy-
efficient systems require specialized processors like GPUs to
improve the performance-per-Watt metric. However, commu-
nication models and methods have to match these specialized
architectures, as otherwise gains in energy efficiency can be
diminished or even be neutralized.
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