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Abstract—Several of the most powerful supercomputers in
the Top500 and the Graph500 lists continue choosing a torus
topology to interconnect a large number of compute nodes.
In some cases, a torus network with five or six dimensions is
implemented, however, one notices that the costs of implementing
an interconnection network increase with the node degree. In
previous works we defined and characterized the nD Twin (nDT)
torus topology in order to virtually increase the dimensionality of
a torus. This new topology reduces the distances between nodes
and therefore increases network performance. In this work, we
present how to build a 5DT torus network using commercial 6-
port network cards. The main issues of this approach are detailed,
and we present solutions these problems. Moreover we show,
using the same components, that the performance of the 5DT
torus network is higher than the performance of the 3D torus
network for the same number of compute nodes.

I. INTRODUCTION

Nowadays, high performance computing (HPC) systems can

comprise thousands of nodes. This large amount of nodes im-

poses severe performance requirements on the interconnection

network, which plays a major role in determining the overall

system performance.

There are many design issues that may affect the choice of

an appropriate interconnection network. Among them, the net-

work topology has a significant impact on the interconnection

network performance in this kind of systems, and therefore

its choice is an important design decision. Fat-tree [1] and

torus topologies [2] are widely used for implementing indirect

and direct networks, respectively. In November 2016, there are

four supercomputers using the torus topology in the top ten of

the Top500 list [3] and seven in the top ten of the Graph500

list [4] (e.g., K-Computer [5] and several supercomputers of

Blue Gene/Q family [6]), while the remaining supercomputers

use some kind of indirect network topologies (e.g., fat-tree or

Dragonfly).

When a HPC system grows, there are important network

characteristics to consider in addition to the network perfor-

mance, such as economical cost, power consumption, reliabil-

ity or scalability. Although the fat-tree topology provides equal

access bandwidth to every node and is appropriate for running

parallel applications that generate a lot of communication

among all the nodes, the torus topology provides a reduced

hardware and an excellent scalability, allowing an easier

implementation when the number of nodes grows. In addition,

the torus topology supports several routing algorithms that

increase the path diversity so that the fault tolerance and

load balance become feasible. For all these reasons, the torus

topology is a common topology used in the greatest HPC

systems, according to the Top500 and the Graph500 lists.

In torus topologies, the network performance is very de-

pendant on the number of dimensions. When the number of

dimensions is increased, the average number of hops between

any pair of nodes is reduced and therefore, the network latency

is also reduced. Then, the higher the number of dimensions,

the higher the network performance obtained. However, to

build torus networks with more dimensions requires to in-

crease the number of ports in the communication hardware,

increasing its complexity. Therefore, the network deployment

becomes more expensive; and once the HPC system is running,

the maintenance cost is also higher.

In previous works, we have proposed a new topology, called

n-dimensional twin torus, or just nDT torus [7], which allows

us to increase the number of dimensions of the torus. For

example, if we have 4-port communication cards to build a

torus network, we can build a 2-dimensional (2D) torus1 or

we can build a 3DT torus [8]. In the 3DT torus, each node

in the network comprises two 4-port cards: one port of each

card is used to interconnect the cards and the six remaining

ports are used to connect the node to its neighbours in the

three dimensions of the 3D torus.

1Note that two ports are required for each dimension in the n-dimensional
torus.



In general, an nDT torus can be built using (n + 1)-port

cards: one port from each card interconnects both cards and

the 2n remaining ports compose the nDT torus node. In [7], we

show how the network diameter and average distance decrease

when building an nDT torus instead of a n+1

2
D torus. As

a consequence, the performance of the network is increased

without extra economic investment.

In the previous work, we evaluated the nDT torus topology

by simulation, assuming a simple card architecture to model

the network. In this paper, we present a new study using a

more accurate model based on commercial communication

hardware. Specifically, we have developed a model based

on the EXTOLL technology [9], [10]. EXTOLL permits to

contruct direct networks with a node degree of six, and

was designed specifically for the use in high-performance

computing. It comes with dedicated support for fine-grained

communication, as well as bulk data transfers. It features

state-of-the-art techniques like virtual output queueing, virtual

channels and link-level retransmission. Since EXTOLL cards

have six communication ports, the common approach is to

build a 3D torus network, but using our proposal, to build a

5DT torus network is feasible.

Due to the specific characteristics of EXTOLL cards, we

have had to incorporate a new crossbar architecture into our

previous network model, including a new flow control mecha-

nism, a new routing algorithm, among other resources that will

be outlined in Section III. The rest of the paper is organized

as follows: In Section II we present an overview of the

EXTOLL architecture and the nDT torus topology. Section III

explains the implementation of the EXTOLL model and the

implementation of the 5DT torus using the EXTOLL model.

In Section IV, we evaluate by simulation the performance

of several 3D torus and 5DT torus networks with the same

number of nodes. Finally, Section V outlines the conclusions.

II. BACKGROUND

In this section we review the previous work. Section II-A

shows a brief description of the EXTOLL card and a more

detailed description of the EXTOLL switch, which is the

focus of this paper. Section II-B formally defines the nDT

torus and shows a brief explanation about the nDT torus port

configuration and the nDT torus routing algorithm.

A. The EXTOLL technology

EXTOLL is an interconnection network technology de-

signed for achieving a very low latency, a high bandwidth,

a high sustained message rate and a high availability in large-

scale networks (up to 64k nodes). EXTOLL cards offer six

ports, allowing to build any direct topology with a maximum

degree of six. Among them, the 3D torus is the preferred

topology for large networks.

Figure 1 shows the top-level block model of the EXTOLL

architecture. Three main logical blocks can be distinguished:

the host interface, the network interface controller or NIC and

the network switch, drawn in green, blue and red, respectively.
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Fig. 1. Top-level block diagram of EXTOLL architecture.

The host interface connects EXTOLL to the host system using

PCIe or HyperTransport interface.

The second block, the EXTOLL NIC, implements differ-

ent modules to transform the packets sent through the host

interface to network packets and vice versa. There are five

functional units (FUs) integrated into the EXTOLL NIC. The

Virtualized Engine for Low Overhead (VELO) [11] unit is

dedicated to low latency transfer of small messages, while

the Remote Memory Access (RMA) [12] unit employs Di-

rect Memory Access to handle large messages. The Address

Translation unit (ATU) is used to fast translation from virtual

address to physical address for the RMA. The Shared Memory

Functional Unit (SMFU) [13] allows load/store forwarding

between the different address spaces of multiple nodes. Finally,

the Control & Status Register unit is used to configure the EX-

TOLL card, to acquire status information and for debugging

purposes.

The third block implements a complete crossbar-based

switch. The main EXTOLL switch features are described be-

low, although there are other features not discussed here, such

as the multicast hardware support, since these characteristics

are out of scope of this work.

The EXTOLL switch has ten ports: four of them connect

the switch with the NIC FUs, while the remaining six ports

interconnect the EXTOLL switch with other switches. The net-

work switch implements virtual cut-through [14] as switching

technique, the iSLIP scheduling algorithm [15] and a credit-

based flow control.

The EXTOLL switch is an IQ (Input Queued) switch [16],

[17]; i.e., there are only buffers at the input ports. A typi-

cal problem of IQ switches is head-of-line (HOL) blocking.

Basically, when the first packet in the buffer is blocked, the

remaining packets stored in the buffer and destined to other

output ports which could be forwarded, are also blocked.

Since the HOL blocking can reduce dramatically the network

performance, EXTOLL implements virtual output queuing

(VOQ) [14], [18] at switch level; i.e, each packet is stored in a

different queue depending on its output channel, and therefore,

the negative effect of the HOL blocking is reduced.

To provide a quality-of-service mechanism, the EXTOLL



switch offers four different Traffic Classes (TCs). The software

decides on which TC the packets are injected, and the pack-

ets cannot change their TC during their transmission. Each

TC has two deterministic virtual channels (VCs) to enable

the implementation of deadlock-free routing algorithms [19].

Moreover, each TC can perform its own routing function in

order to balance the network load; and there are two TCs that

include a third VC to allow the implementation of adaptive

routing algorithms [20]. In order to support multiple TCs, VCs

and the VOQ-switch technique, the EXTOLL switch includes

multi-queue FIFO buffers [21].

The EXTOLL switch implements a table-based routing

algorithm. Each input port has a dedicated routing table, thus

allowing that multiple input ports perform the routing simul-

taneously, and it is not necessary to arbitrate among multiple

input ports trying to read the same routing table. Moreover,

the table-based routing allows to build arbitrary topologies and

to recover the network when there are component failures.

The main drawback of the table-based routing is that large

tables are required at each input port. EXTOLL implements

hierarchical routing tables, reducing significantly the size of

the required tables.

Finally, note that the packets in EXTOLL switches have a

variable size. The minimum data granularity in the EXTOLL

switch is the cell, a data chunk of 128 bits. The packet size can

vary from 1 cell to 32 cells. The variable packet size allows

to perform large data transfers more efficiently and does not

waste buffer resources for small data transfers.

Furthermore, in order to improve the buffer usage, a fine

grain credit flow control is implemented. If each packet would

consume one credit, each credit consumption would have to

block the maximum packet size in order to not overflow the

buffer, independently of the real size of the packet. This would

be very inefficient since if there are a lot of small packets trav-

elling in the network, the credits could be consumed although

most of the buffer space was free. For this reason, each packet

is logically split in multiple smaller parts (cells), consuming

one credit for each part. Therefore, a packet consumes one or

several credits. This scheme allows to use the buffers more

efficiently.

B. The nDT torus

In order for this paper to be self-contained, we include a

minimal set of definitions and a brief explanation regarding

the nDT torus. More details can be found in [7], [8]. First, we

introduce the notation used and formally define the nD twin

torus topology [7].

Notation

• n: number of dimensions of the torus, where n ≥ 2.

• di: a dimension of the nD torus (or the nDT torus), 0 ≤
i < n.

• d+
i
, d−

i
: ports of the dimension di.

• PE0, PE1: processing elements of a nDT torus node.

Definition 2.1: An nD Twin torus, or just nDT torus, is

an n-cube k-ary (nD torus) topology, with k ∈ N
∗, k ≥ 2

(a) 3DT torus node (4-port cards).

(b) 5DT torus node (6-port cards).

Fig. 2. Examples of nDT torus nodes.

and n ≥ 3, where each node is basically composed of the

following main components:

• Communication hardware: it consists of two (n+1)-port

cards2, offering a total of 2n+2 ports. Two of these ports

(one in each card) are used to interconnect the cards, and

the 2n remaining ports are used to connect the node to

the other dimensions, building a torus topology with n

dimensions.

• Computing hardware: each internal (n + 1)-port card is

connected to a processing element (PE), and so there are

two PEs in each node. Therefore, there is a total of 2kn

PEs interconnected by the network.

For example, the 3DT torus and the 5DT torus nodes, shown

in Figure 2, comprise two 4-port cards and two 6-port cards,

respectively. Both nodes have two PEs3.

Then, each node has 2n ports split in two cards. To

establish communication between ports belonging to different

cards, it is necessary to use the internal link4, increasing

the communication latency. Hence, the important issue for

nDT torus topology is that, in order to reduce the latency,

it is important to avoid, as much as possible, the paths (and

therefore, the messages) passing through the internal link.

We performed an analytical study in order to determine

the optimal node configuration for the nDT torus [7]. We

considered for the study the DOR (Dimension Order Routing)

2When only one (n + 1)-port card is used per node, an n0D torus is
obtained, being n0 =

n+1

2
.

3The processing elements of current supercomputers are usually integrated
on the same board with several cores, caches, memory, etc. However, from
the topological point of view, we only need to consider the fact that packets
are sourced/destined from/to the PEs and the particular internal layout of PEs
is not relevant.

4Henceforth, we will use “internal link” to refer to the connection between
the two cards in an nDT torus node, and “external links” to refer to the
remaining ports.



routing algorithm [2]. This deterministic routing algorithm is

commonly used in k-ary n-cubes because it is a very simple

routing algorithm. Moreover, DOR is deadlock-free using two

virtual channels [19] or combining it with the bubble flow

control mechanism [22]. After selecting the routing algorithm,

we have determined the optimal configuration of the nDT torus

node, shown in Definition 2.2. Figure 2 shows the optimal

node configuration for the 3DT torus and the 5DT torus.

Definition 2.2: Given two communication cards, each one

with (n+ 1) ports, being n an odd number5 greater or equal

than 3, the port configuration that minimizes the number of

paths crossing the internal link in an nDT torus node is defined

as follows:

• The ports belonging to dimensions from d0 to dn−1

2
−1

are connected to Card0.

• The ports belonging to dimensions from dn−1

2
+1

to dn−1

are connected to Card1.

• The two ports of the dimension dn−1

2

are distributed

between the two cards. Since k is odd, the number of

paths that cross the internal link is the same, regardless

of the card in which each port is connected. Hereon in,

we assume that the port d−
n−1

2

is connected to Card0 and

the port d+
n−1

2

is connected to Card1.

Once the optimal configuration is obtained, a few modifica-

tions to the DOR algorithm are required in order to route the

messages in the nDT torus. We call this modified version the

DORT routing algorithm. Basically, a message is routed by the

n dimensions following a strictly ascending (or descending)

order. Since the nDT torus node comprises two internal cards,

once the output port is selected, DORT checks whether the

output port is connected to the current card. Depending on the

result, the message is routed to the output port or to the internal

link. Finally, when the message reaches the destination node,

destination PE is checked. The message is routed to the NIC

if the destination is the PE attached to the current card, or it

is routed to the internal link if the destination is the other PE

in the node.

However, this routing algorithm is not deadlock-free due to

the use of the internal link. Fortunately, this problem can be

solved by adding a few virtual channels to the internal link

(0, 1 or at most 2 extra virtual channels, depending on the

number of dimensions and the mechanism chosen to avoid

the deadlock). No modification in external links is required.

A more detailed analysis is shown in [7].

Since this study is focused in building 5DT torus networks

using EXTOLL cards, and EXTOLL cards use virtual channels

to avoid deadlock, we show a brief explanation about how

DORT routing ensures the deadlock-freedom in 5DT tori using

virtual channels (VCs).

If we analyse in detail the use of the internal link, we

can distinguish three cases, depending on the destination of

the message after using the internal link: i) The message

5The nDT torus node for even values of n is also defined in [7], but we
have omitted this definition here because the study presented in this paper
mainly focuses on 3DT and 5DT tori.

destination is the PE connected to the other card in the 5DT

torus node6; ii) the message uses the internal link to be injected

into the network in a dimension connected to the other card

(e.g., a message is routed in Card0 to d4); iii) the message is

travelling through dimension d2.

Then, a message can use the internal link regardless of

the dimension where it is travelling. New cycles could be

generated and as a consequence, the deadlock could appear.

For example, let’s consider a message routed in a 5DT torus,

such that the message needs to use the five dimensions

following an ascending order. First, the message is routed in

d0, after that the message is routed in d1 and so on. We know

that when the message has already been routed in d1, the

message cannot be routed in d0 again, avoiding the cycles

between messages travelling in d0 and d1. However, the use

of an internal link does not follow any order. The message

is routed to the internal link before travelling in d0, after

travelling in d4, travelling through d2, etc.

To avoid that, the internal link requires four VCs instead

of the two VCs required by the external links. The first and

second VCs are used for sending the messages of the case i)

and ii), respectively. The third and the fourth VCs are used for

sending the messages of case iii). Since the message is routed

in d2, two VCs are required for case iii), in the same way that

the external links require two VCs.

III. MODELLING EXTOLL CARDS

As mentioned above, the purpose of this work is to address

a study of the 5DT torus topology built using the EXTOLL

switch. Obviously, the most accurate study would be obtained

using a real cluster whose interconnection network is com-

posed of hundreds of EXTOLL cards. However, this option is

unfeasible because we do not have access to a cluster of these

characteristics. Moreover, if available, a lot of time is needed

to reconfigure the hardware to perform the experiments, and

most important, the system reconfiguration could interfere with

the work of other cluster users. For these reasons, as usual,

we have performed this study by simulation.

Then, the first step is to develop an EXTOLL switch

model that is accurate enough. We refer to this model as the

EXTOLLsim model. Since we want to evaluate the network

performance from the topological point of view, we have

focused on the development of a model for simulating the

EXTOLL crossbar. The host interface is not modelled and the

model of the NIC FUs has been simplified. In other case, the

development cost would have been higher and the obtained

results would not be more significant than using a simpler

model. For example, if the host interface would have been

included in the EXTOLLsim model, there would be a latency

in the communication introduced by the host interface model.

However, this latency would be independent of the network

topology and would have no effect for the purposes of this

6Remember that the ports of dimensions d0, d1 and the port d
−

2
are

connected to Card0, while the ports of dimensions d3, d4 and the port d+
2

are connected to Card1, as can be observed in Figure 2b.



Fig. 3. EXTOLLsim logical model.

study. Therefore, the only significant result obtained would be

to make the simulations more inefficient in terms of time.

Regarding the EXTOLL NIC, it has 4 FUs injecting traffic

to the EXTOLL network. However, without a detailed traffic

model, modelling all the FUs would only increase the memory

consumption and the execution time of the simulations without

significant differences in the results. For this reason, only one

generic FU has been modelled without losing accuracy. This

FU is not based on an specific FU of EXTOLL NIC, its only

purpose is to generate and inject traffic into the network using

synthetic traffic patterns or trace-based traffic. Therefore, the

EXTOLLsim model has only seven ports instead of ten ports:

one port is connected to the EXTOLL NIC and six ports are

connected to other EXTOLL cards.

Regarding the EXTOLL network, we have developed a

detailed model of the EXTOLL crossbar. The EXTOLLsim

model comprises four logical units, shown in Figure 3: the

routing units, the buffers, the arbitration unit and the cross-

bar unit. Each logical unit models different features of the

EXTOLL crossbar and has its own latency.

When a packet arrives at an EXTOLLsim card from a given

port, it is processed by the routing unit of that port7. Once the

routing process finishes, the packet is stored in the buffer,

which models a multi-queue FIFO buffer with VOQ-switch to

reduce the negative effect of HOL blocking.

If there are packets stored in the buffers, the arbitration unit,

which models the iSLIP scheduling algorithm [15], decides

which packets will go through the crossbar unit. Note that

the crossbar unit is not only responsible for forwarding the

packets to the next EXTOLLsim card, it is also responsible

for the proper function of the virtual cut-through switching

technique and the fine-grain credit flow-control. Finally, as the

real EXTOLL switch, the EXTOLLsim model also implements

variable-sized packets, four traffic classes (TCs) with their

multiples VCs, and supports multiple topologies and routing

algorithms, including adaptive routing algorithms.

7Although the EXTOLL switch implements a table-based routing, the
EXTOLLsim model implements the routing as hardware routing units. The
reproduced behavior is the same but our implementation saves a big amount
of main memory during the simulation because the routing tables are not
modelled.

Fig. 4. Wrong (dashed line) and correct (solid line) Y link selection in case
of tie routing in the Y dimension.

A. Deadlock-free routing for 5DT tori using the EXTOLL

cards.

Once the EXTOLLsim model has been developed, the next

step is to build the nD and nDT torus and to define the routing

algorithm of both topologies. Since EXTOLL cards have six

communication ports, a 3D torus and a 5DT torus can be built.

Regarding the routing algorithm, the DOR routing algorithm

has been chosen for the 3D torus. As commented above,

the DOR algorithm avoids deadlock using two VCs [19].

The EXTOLL crossbar provides two deterministic VCs per

each TC in order to avoid deadlock. Then, when a packet

is travelling in a dimension di, the di-coordinate of the

current node and the di-coordinate of the destination node

are compared. If the destination node di-coordinate is greater

than the current node di-coordinate, the packet is routed to the

first VC, called upper-VC. In other case, the packet is routed

to the second VC, called lower-VC.

A third VC is used in the adaptive TCs allowing the

implementation of a fully-adaptive routing algorithm for the

3D torus using the Duato’s protocol [20]. A round-robin arbiter

is used to choose among the selectable adaptive channels.

Nevertheless, the implementation of the DORT routing

algorithm in the 5DT is not possible using EXTOLL cards.

As commented in Section II-B, DORT requires four VCs in

the internal link8 to avoid deadlocks [7]. EXTOLL cards do not

have enough deterministic VCs to implement this algorithm.

However, an EXTOLL card still has the TCs. Each TC can

use different paths to route packets destined to the same node.

Then, we have designed a new routing algorithm for the

nDT torus, based on the DOR routing algorithm, that avoids

deadlock using the TCs. We call this algorithm TS-DOR (Twin

Source Dimension Order Routing).

Many of the cycles introduced by the internal link are

generated by the packets injected from the PE1. Using DORT,

in most of the cases the packets generated by the PE1 must

cross the internal link to be routed in d0. However, this

internal-link hop can be avoided if the packets are routed

first in the dimensions connected to the Card1. There are

some routing approaches in the field of network-on-chips that,

in order to balance the network traffic, propose to use two

VCs to route the packets following different dimension orders

8Remember that no modifications are required in the external links.



[23]. For instance, for 2D mesh topologies, in the first virtual

network the packets are routed following X − Y order, while

in the second virtual network the packets are routed following

Y −X order.

TS-DOR employs a similar approach to avoid the unnec-

essary use of the internal link for the PE1-sourced packets:

the PE0-sourced packets are routed from d0 to dn−1 while

the PE1-sourced packets are routed from dn−1 to d0. In the

EXTOLLsim model, we can use the TCs to avoid the deadlock

between PE0-sourced packets (routed from d0 to d4) and

PE1-sourced packets (routed from d4 to d0). Since there are

four TCs available, two of them (one adaptive TC and one

deterministic TC) are used to inject PE0-sourced packets and

the remaining two are used to inject PE1-sourced packets.

However, this approach only avoids the deadlock between

PE0-sourced packets and PE1-sourced packets. Fortunately,

the two deterministic VCs of each TC are enough to avoid

deadlock, employing the same approach used for the external

links.

Therefore, when a packet is routed in dimension dn−1

2

and

uses the internal link, TS-DOR takes the same decision that

would be chosen in the external links. If the destination node

(dn−1

2

)-coordinate is greater than the current node (dn−1

2

)-
coordinate, the message is routed to the upper-VC of the

internal link; otherwise it is routed to the internal link lower-

VC. If a packet is routed to the internal link for another reason,

the upper-VC is chosen if the packet goes from Card0 to

Card1; if the packet goes from Card1 to Card0 the lower-VC

is chosen.

Finally, when the number of nodes in dimension dn−1

2

is

even, there are nodes equidistant from the positive and the

negative (dn−1

2

)-dimension ports. Taking a wrong decision

while choosing the port causes the unnecessary use of the

internal link. Let’s consider a PE0-sourced packet in a 3DT

torus with 2 nodes in the Y dimension. Commonly, after

travelling through dimension Y , the packet will travel through

dimension Z. Choosing the port Y +, the packet needs three

hops to arrive at Card1 of the other node, while choosing the

port Y −, the packet only needs one hop. Figure 4 shows the

correct and the wrong decisions in this scenario. Then, to avoid

the unnecessary use of the internal link in case of tie, the port

d−
n−1

2

is chosen for PE0-sourced packets, while the port d+
n−1

2

is chosen for PE1-sourced packets.

IV. PERFORMANCE EVALUATION

In this section, we compare by simulation the 3D torus and

the 5DT torus performance using the EXTOLLsim model. The

main objective of this evaluation is to show that, using the

same number of EXTOLL cards to build the 3D torus,

we can improve the network performance building a 5DT

torus. Note that, unlike previous studies, we do not evaluate

the 5D torus. Since EXTOLL cards have 6 ports, building a

5D torus is not possible and performing this evaluation makes

no sense.

Specifically, we evaluate 3D and 5DT tori with 256, 512,

and 1024 PEs. Table I shows the topologies for each network

TABLE I
3D AND 5DT TORUS EVALUATED.

Number of PEs
Topology

3D torus 5DT torus

256 8×8×4 4×4×2×2×2

512 8×8×8 4×4×2×4×2

1024 16×8×8 4×4×2×4×4

size9. Remember that we consider PEs, not cores. Each PE

can have several cores, but has only one NIC. From this

study viewpoint, if the 256-PE network has 256 cores (using

single-core nodes) or 4096 cores (using 16-core nodes) does

not matter, since the number of NICs and switches are the

same in both cases. Although the evaluated networks are

small compared with the networks of the greatest Top500-list

supercomputers, these network sizes are reasonable for build-

ing supercomputers in research centres with limited economic

resources.

Regarding the network workload, we consider an scenario

with synthetic traffic model. First, we describe the different

case studies used in the simulations. After that, we provide

the simulation results and analyse them.

The network performance is evaluated generating the work-

load synthetically. We consider uniform traffic pattern for

modelling the destination distribution because it is commonly

used in network performance evaluations [2]. Regarding the

packet size, its values are uniformly distributed from the

minimum packet size (1 cell) to the maximum packet size

(32 cells).

We have performed a set of tests, varying the topology

in each case. Each test consists of 30 different experiments,

obtaining the normalized average throughput and the average

cell latency of each test case10. Note that the normalized

injection rate and the normalized average throughput are the

percentage of the host bandwidth injected and received per

each NIC, respectively11.

Figures 5, 6 and 7 show the results obtained for the 256-

PE tori, the 512-PE tori and the 1024-PE tori, respectively.

As seen, the 5DT torus obtains a better performance than the

corresponding 3D torus. When the network is not saturated,

the 5DT torus reduces the average network latency 10%, 15%

and 30% for the 256-PE, the 512-PE and the 1024-PE tori,

respectively, regardless the traffic pattern used.

Moreover, the 5DT torus saturates later, increasing the

accepted traffic. For 256-PE and 512-PE tori, the 5DT torus

achieves 20% and 12% more throughput than the correspond-

ing 3D torus. But the increment of performance is more

dramatic in the 1024-PE torus: the 5DT torus achieves 80%

of the maximum throughput, while the corresponding 3D

9Note that 5DT and 3D networks have the same number of PEs since the
5DT torus nodes comprise two PEs.

10We have also computed the confidence interval at 95%, but these intervals
are imperceptible in the charts at first glance and we preferred not to include
them.

11Since the host bandwidth is 10.4 GBytes/s, each 10% of the normalized
injection rate is approximately 1 GByte/s.
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Fig. 5. Network performance using synthetic traffic patterns for 256-PE tori.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

 N
o
rm

al
iz

ed
 A

v
g
. 
T

h
ro

u
g
h
p
u
t

Normalized Injection Rate

512 PEs. Uniform traffic pattern

Deterministic 3D torus
Adaptive 3D torus

Deterministic 5DT torus

 0

 100

 200

 300

 400

 500

 600

 700

 800

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

A
v
g
. 
C

el
l 

N
et

w
o
rk

 l
at

en
cy

 (
cy

cl
es

)

Normalized Injection Rate

512 PEs. Uniform traffic pattern

Deterministic 3D torus
Adaptive 3D torus

Deterministic 5DT torus

(a) Uniform traffic pattern.

Fig. 6. Network performance using synthetic traffic patterns for 512-PE tori.
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Fig. 7. Network performance using synthetic traffic patterns for 1024-PE tori.



torus only achieves 35%. This performance degradation is

common in large torus networks that employ virtual channels

for avoiding deadlock [24], [25]. Since the number of nodes

per dimensions in the 1024-PE 5DT torus is low (a maximum

of 4 nodes per dimension against the maximum of 16 nodes

in the corresponding 3D torus), the 5DT torus is not affected

by this degradation.

Note that the 3D torus performance is improved using an

adaptive routing. In any case, the 3D torus network latency is

still higher when the network is not saturated.

V. CONCLUSIONS

In previous works, we showed how to build an nDT torus

combining two cards of (n + 1) ports and how the network

performance is increased building the nDT torus instead of

the mD (m = n+1

2
) torus. Building an nDT torus the

distances between network nodes are reduced and therefore

the performance is increased.

Now, we apply those previous works to implement an nDT

torus using EXTOLL high performance interconnection cards

to perform the study. They have six ports allowing to build

a 3D torus and also support arbitrary topologies, allowing to

build an nDT torus topology, or more specifically, a 5DT torus

topology. For this reason, we include the EXTOLL switch ar-

chitecture in our previous network model. The implementation

of the EXTOLL model is also discussed.

For the nDT torus we have proposed the DORT routing

algorithm to minimize the use of the internal link. Unfortu-

nately, DORT cannot be applied to nDT tori since EXTOLL

switches do not have enough deterministic virtual channels.

For this reason, we develop a new deterministic deadlock-

free routing algorithm called TS-DOR (Twin Source DOR)

that combines the use of EXTOLL VCs and EXTOLL TCs to

ensure deadlock-freedom in a 5DT torus.

Finally, we compare the performance of the 3D torus and the

5DT torus using the EXTOLL simulation model. Both tori are

evaluated under uniform traffic pattern. As expected, the 5DT

torus increases the network performance without changing

the switch architecture, only modifying the topology and the

routing algorithm.
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[8] F. J. Andújar, J. A. Villar, F. J. Alfaro, J. L. Sánchez, and J. Duato,
“Building 3D torus using low-profile expansion cards,” IEEE Transac-

tions on Computers, vol. 63, no. 11, pp. 2701–2715, Nov 2014.
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communication engine for ultra-low latency message transfers,” in 37th

International Conference on Parallel Processing (ICPP-08), Sept 2008,
pp. 238–245.

[12] M. Nüssle, M. Scherer, and U. Brüning, “A resource optimized remote-
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