
Relaxations for High-Performance Message Passing on Massively Parallel SIMT
Processors

Benjamin Klenk, Holger Fröning *
ZITI, Institute for Computer Engineering, Heidelberg University

Mannheim, Germany
{benjamin.klenk,holger.froening}@ziti.uni-heidelberg.de

Hans Eberle, Larry Dennison
NVIDIA Corporation

Santa Clara, CA
{heberle,ldennison}@nvidia.com

Abstract—Accelerators, such as GPUs, have proven to be
highly successful in reducing execution time and power con-
sumption of compute-intensive applications. Even though they
are already used pervasively, they are typically supervised
by general-purpose CPUs, which results in frequent control
flow switches and data transfers as CPUs are handling all
communication tasks. However, we observe that accelerators
are recently being augmented with peer-to-peer communication
capabilities that allow for autonomous traffic sourcing and
sinking. While appropriate hardware support is becoming
available, it seems that the right communication semantics
are yet to be identified. Maintaining the semantics of existing
communication models, such as the Message Passing Interface
(MPI), seems problematic as they have been designed for the
CPU’s execution model, which inherently differs from such
specialized processors.

In this paper, we analyze the compatibility of traditional
message passing with massively parallel Single Instruction Mul-
tiple Thread (SIMT) architectures, as represented by GPUs,
and focus on the message matching problem. We begin with
a fully MPI-compliant set of guarantees, including tag and
source wildcards and message ordering. Based on an analysis of
exascale proxy applications, we start relaxing these guarantees
to adapt message passing to the GPU’s execution model. We
present suitable algorithms for message matching on GPUs
that can yield matching rates of 60M and 500M matches/s,
depending on the constraints that are being relaxed. We discuss
our experiments and create an understanding of the mismatch
of current message passing protocols and the architecture and
execution model of SIMT processors.

Keywords-Heterogeneous systems, GPU Computing, Com-
munication Models, Message Passing

I. INTRODUCTION

The accelerated processing model, in which CPUs are
the main processor and accelerators are used as an offload
device for compute-intensive tasks, is changing. Accelerators
are becoming peer devices, bearing more responsibility and
operating on the same level as CPUs. A prime example is
Intel’s Knights Landing many-core processor (KNL), which
connects to the QuickPath Interconnect (QPI) and is able
to boot an operating system (OS) [1], and NVIDIA’s Pascal
GPU architecture with its hardware-supported unified virtual

*This work was performed while the first two authors were affiliated
with NVIDIA Corporation.

(a) CPU-centric communication (b) GPU-centric communication

Figure 1. Comparison of a traditional CPU-centric system and a system,
in which CPUs and GPUs are peers in the network.

memory (UVM) [2]. With this new paradigm, the user
has to explicitly deal with interactions between accelerators
themselves, in addition to accelerator and CPU interactions.
Suitable abstractions are inevitable to make large systems
programmable in an efficient and performant way.

Many High-Performance Computing (HPC) systems are
comprised of clustered compute nodes, connected by high-
performance networks. Thus, communication is key to high
performance. In the aforementioned CPU-centric model, the
CPU is the only device that sinks and sources traffic, as
shown in Figure 1(a). With accelerators becoming peers,
illustrated in Figure 1(b), the need for them to control
communication is becoming more and more important.
For example, Intel’s KNL embeds an OmniPath network
interface controller (NIC), and NVIDIA just released the
NVLink-capable Pascal GPU. While the hardware support
is now available, the question what the right communication
semantics for these highly-parallel processors are remains
open.

While there are various message passing models for
assorted application domains, the Message Passing Interface
(MPI) for HPC may be the most dominant one. In typical
cluster systems MPI has become the de-facto standard for
communication across OS boundaries. Messages that are
sent across the network fabric are placed in queues on
the receive side. Receive operations take messages from
queues and forward the data to the user application. MPI’s

semantics are rich, making it a user-friendly abstraction. For
example, when receiving data the user only has to specify the
source of the message and MPI guarantees in-order delivery.
Additionally, the user can apply a wildcard to the source
specifier to receive messages from any source process.

To receive the right message, the MPI system needs
to match incoming messages with receive requests. The
matching is complex as it needs to deal with wildcards and
ordering. As a result, most MPI implementations use lists for
this purpose, which have to be traversed for every incoming
message or receive request. Message matching is key to high
message rates and also to the application’s performance. For
example, the Fire Dynamics Simulator (FDS) application has
been accelerated by 3.5x just by improving MPI’s matching
process without touching the application itself [3].

While list-based approaches work fairly well for latency-
optimized processors, massively parallel processors need to
exploit parallelism to perform well. Implementing MPI-like
messaging on GPUs seems difficult and rather inapplicable.
Additionally, due to their highly parallel nature, GPUs could
be expected to exchange significantly more messages than
CPUs. A node’s CPU generally runs tens of processes, while
GPUs run grids of thousands of cooperative thread arrays
(CTAs), each being independently executed. It seems fair to
presume that many of these CTAs need to send and receive
messages. Thus, the matching of messages becomes a major
limiter for high message rates.

The design space for GPU-centric communication is still
wide open and we want to create an understanding of
implications that result from processing messages on GPUs,
particularly message matching. We present an algorithm for
message matching on a GPU that is fully compliant with
MPI and analyze its performance and limitations. We further
relax some of MPI’s constraints, allowing for more paral-
lelism and assess the feasibility of these relaxations based
on a comprehensive analysis of exascale proxy applications.
With this work we make the following contributions:

• We present a trace-based analysis of exascale applica-
tions with regard to characteristics that have an impact
on the matching problem.

• We introduce a tag matching algorithm that complies
with MPI-like semantics and report performance on the
three latest generations of GPUs. We also identify parts
of the semantics that make it hard to map the matching
task to a GPU.

• We propose optimizations and trade-offs that relax
MPI’s guarantees to increase the matching rate. We
show how these relaxations improve performance and
their applicability to exascale applications.

Note that our results and insights are not limited to MPI;
they are also applicable to other message passing paradigms.
We understand that MPI serves as a proxy here, as its
messaging system provides many features. Similarly, even
though we evaluate the proposed relaxations for GPUs,

the insights are also interesting for CPU-centric messaging,
including both general-purpose and many-core architectures.

We also understand that GPUs are not going to run a full
MPI stack, as GPUs struggle with single thread performance
and lack dynamic in-kernel memory management. However,
we want to leverage insights from MPI to design better
suited communication models for GPUs.

The remainder of this work is structured as follows:
Section II provides the background on GPUs and MPI.
Section III elaborates on related work. Section IV presents
our analysis of exascale applications regarding their com-
munication behavior. Section V presents our algorithm for
MPI-like tag matching on the GPU, followed by relaxations
we propose to increase performance. Section VII discusses
the results and insights and Section VIII concludes.

II. BACKGROUND AND METHODOLOGY

This section presents an overview of current GPU archi-
tectures and their programming and execution model. MPI
is introduced as a prime example for message passing inter-
faces. At the end of the section, we present our methodology
to evaluate the matching process.

A. GPUs and their role in the network

General-purpose GPU (GPGPU) computing has been
highly successful in accelerating compute-intensive appli-
cations. NVIDIA’s GPUs implement a great number of
streaming multiprocessors (SMs), ranging to more than
60 in the recently released Pascal architecture. Each SM
comprises hundreds of simple compute cores, making the
GPU a massively-parallel processor. However, unlike CPU
processors, GPUs are optimized for throughput rather than
latency and cores execute instructions in order at much lower
clock rates.

GPUs offer a throughput-oriented memory system with
high-bandwidth off-chip memory. Each SM provides an
explicitly managed scratch-pad memory (called shared mem-
ory) and a large register file. Accesses to these local re-
sources are fast, though an extensive use reduces the number
of threads that can be grouped together on a CTA.

NVIDIA GPUs are programmed by CUDA (Compute
Unified Device Architecture). A compute kernel comprises
thousands of CTAs with each CTA consisting of up to
1024 threads. Multiple CTAs can map to a single SM. The
code is executed in groups of 32 threads in that the same
instruction is dispatched to the whole group, called a warp.
The scheduler picks available warps and dispatches their
instructions to the hardware. Warps that wait for memory
accesses are tracked by a scoreboard and noted as inactive
until the operation is finished. Having plenty of warps ready
to be scheduled allows to hide long instruction latencies.

To operate efficiently, all threads within a warp have to
follow the same control flow. Results from diverging threads

are simply masked off. Within warps, CUDA provides syn-
chronization primitives that allows data to be communicated
(warp shuffle) or evaluated (warp vote) efficiently. For exam-
ple, the ballot intrinsic takes a condition and returns a 32-bit
vector wherein the least significant bit (LSB) represents the
first thread of the warp and is set if the condition evaluates
to true. Additionally, bit functions like finding the position
of the first set bit (ffs) or counting leading zeros (clz) are
also supported by the hardware.

Traditionally, GPUs have been perceived as plain ac-
celerators, attached via PCIe and controlled by the CPU.
However, this has also been the main bottleneck since the
GPU needs data to be available in its high-bandwidth on-
device memory. That is why NVIDIA introduced Unified
Virtual Memory (UVM), for sharing CPU and GPU memory,
and NVLink, a high-bandwidth interface. The role of the
GPU is changing now that multiple GPUs can be clustered
with NVLink, and GPUs are becoming more and more
autonomous and independent. Through NVLink, GPUs can
access remote memory directly, spanning a virtual address
space across the network. Communication between GPUs
in traditional networks has always been performed by the
CPU, requiring running kernels to be interrupted and control
returned back and forth between GPU and CPU. With GPUs
being peers in the network, the need for sourcing and sinking
network traffic in the GPU becomes inevitable.

B. MPI
The Message Passing Interface (MPI) has become the

standard communication method for clustered systems with
distributed memory. The receiver of small messages has
to either buffer the data of the message within the MPI
framework, or if a matching receive has already been posted,
the data is copied directly to the buffer in user space.
For large messages, the target matches the message with
a receive request and then initiates the data transfer from
the source directly to the user buffer on the receiving side.

Message matching is based on a tuple containing the
message source (src), a tag, and a communicator (comm).
The user can use wildcards for src (MPI ANY SOURE)
and tag (MPI ANY TAG). In addition, MPI guarantees that
messages sent between the same process-pair are matched
in order.

Incoming messages that have been received, but could
not be matched with any receive request that has been
posted so far, are kept in the so-called Unexpected Message
Queue (UMQ). Any new incoming receive request has to
look for a message in that queue first. If no match can
be found, the receive request is appended to the Posted
Receive Queue (PRQ). The PRQ is the counterpart to the
UMQ, where any incoming message looks for already posted
receive requests. Common MPI implementations implement
UMQ and PRQ as lists since elements can be easily removed
without reordering other elements.

C. Methodology

In our vision, GPUs communicate autonomously as de-
picted in Figure 1. Like any other messaging-based system,
each GPU implements a message queue and keeps connec-
tions to its peers. NVLink and PCIe systems allow GPUs
to address a peer’s memory directly by spanning a virtual
global address space (GAS) across the network. ’Send’
operations write messages to queues in remote memory
and ’Receive’ operations query the local queue for new
messages. For this work, we presume that there is one com-
munication kernel running on a single GPU streaming pro-
cessor (SM) while other SMs are executing the application’s
grid, similar to network on-loading protocols with dedicated
communication cores [4] [5]. With message passing layered
on top of the GAS, the user calls send/recv routines inside
its application kernel, which is concurrently running along
with the communication kernel. The matching and other
communication tasks are performed in the background by
the communication kernel.

Our first step is to characterize the matching problem by
analyzing MPI traces of real applications. We provide an
analysis of the characteristics that have an impact on the
matching performance. This includes the source rank and
tag usage and their distribution, the usage of wildcards, and
the depth of UMQ and PRQ. The applications we believe
to be representative are the U.S. Department of Energy
(DOE) Mini-apps [6]. The DOE has made the traces publicly
available and we used Python and R scripts to extract the
information needed for our analyses from the trace files.
General statistics are collected by parsing the trace files,
while others require message queues to be restored any time
a matching is attempted. The results help to assess feasibility
of the relaxations of the message passing protocol we are
going to introduce later.

We present an algorithm that performs tag/src matching
on GPUs and run experiments to assess the performance,
based on micro-benchmarks and synthetic scenarios. We
have to rely on micro-benchmarks as it is not possible to
run the applications on GPUs without supporting a full MPI
stack on the GPU itself. Nonetheless, these experiments pro-
vide insights into the distinct characteristics of the matching
problem as well as performance limits and limitations. We
run our experiments on three generations of GPUs: Kepler1,
Maxwell2, and the recently released Pascal3. Note that we do
not compare the GPU with the CPU matching performance.
CPUs are highly optimized for a high number of instructions
per cycle at high clock rates, making them perform well
at sequential tasks. Rather, we want to present challenges
faced by doing message passing according to MPI semantics
on the GPU. Nonetheless, we experimentally assessed the

1Tesla K80 (single GPU) CUDA v. 7.0.27, NVIDIA driver v. 346.46
2Tesla M40, CUDA v. 8.0.27, NVIDIA driver v. 361.72
3GTX1080, CUDA v. 8.0.23, NVIDIA driver v. 367.35

CPU’s matching rate with various MPI implementations and
found that 30M matches/s can be achieved with short queues.
However, this rate drops to below 5M matches/s for queues
longer than 512 entries. More detail can be found in [7].

In the last part of this work we relax matching semantics.
This allows us to better map the message passing model to
the GPU’s execution model. We analyze how these relax-
ations improve the matching rate with respect to synthetic
and real application scenarios. Our goal is to show how
communication semantics have to look for massively parallel
processors, such as GPUs. In addition to performance, we
assess the feasibility of the relaxations with respect to our
findings from the application analyses.

III. RELATED WORK

UMQ and PRQ lengths were also analyzed by Brightwell
[8] and Goudy [9]. They report that applications from the
NAS Parallel Benchmark (NPB) suite generate a significant
amount of unexpected messages resulting in queue lengths
of up to 200 entries for UMQ and up to 140 processes.
Furthermore, PRQ is always smaller than UMQ and average
search lengths are always less than 30 entries. They ran
their experiments on dual Pentium 4 Xeon Processors with a
Myrinet-2000 network interface. Of note, the authors stated
that it is necessary to analyze real applications. Based on
this, Underwood et al. [10] propose a list-acceleration unit
for NICs and show benefits as long as the queue fits in
on-NIC memory. Keller et al. [11] did a similar analysis
of large-scale applications, showing that the UMQ length
scales linearly with the process count for a thermodynamics
application on the Jaguar and JaguarPF systems. However,
this only applies to rank 0 while other ranks do not exceed
a queue length of 200. UMQ lengths for other applications
are much smaller, ranging between 10 and 30 entries.

Zounmevo et al. [12] propose two new algorithms for
message matching on CPUs, both aimed at reducing the
memory footprint and enhancing scalability. Their approach
partitions the rank-space such that multiple queues can be
implemented. Each entry is given a sequence number to
comply with wildcards. Their results show significant rel-
ative performance improvement for two applications (nbody
and radix sort) on a small scale InfiniBand Cluster with
AMD Opteron CPUs, but no absolute performance numbers
are provided. Flajslik et al. [3] use hashes to address multiple
queues and insert so-called marker entries to restore order
and support wildcards. Their approach yields 3.5x better
performance than traditional, list-based matching algorithms
for the Fire Dynamics Simulator with 1,792 processes and
256 queues on a 64-node InfiniBand and Xeon CPU cluster.
They also looked at LAMMPS and integer sort (NPBS), but
only reported a reduction in match attempts as opposed to
overall performance.

Some work also exists regarding direct GPU-GPU com-
munication. Stuart et al. [13] implemented a messaging

scheme on GPUs. However, a CPU thread is needed to
execute the messaging process. The authors claim that
message passing is not possible on GPUs since they do not
have access to network devices.

This changed with NVIDIA’s introduction of GPUDi-
rect RDMA, which is used in our previous work [14]
to implement GGAS, a global address space for GPUs.
It is based on an FPGA NIC to forward load and store
operations across the network fabric. We then compared
this PGAS model with RDMA and MPI and showed that
direct GPU communication is favorable for a wide range of
communication patterns [15].

Another work [7] presents a more comprehensive analy-
sis of Exascale traces, which comprises point-to-point and
collective communication, with a focus on the CPU.

To the best of our knowledge, our work is the first to
analyze Exascale traces with regard to UMQ and PRQ
lengths. Also, we are not aware of any work that implements
message matching on GPUs.

IV. EXASCALE TRACE CHARACTERISTICS

This section presents findings from our exascale proxy
application analysis. These traces are important as they
provide insights on the matching requirements and potential
for possible relaxations, both in terms of performance and
feasibility. Our findings can also be applied to applications
with similar behaviors and communication patterns and are
not limited to accelerators.

A. Communication characteristics
In the following we present our observations from the

application analyses with regard to the matching process.
The applications are introduced in Table I. These proxy
applications cover a wide area and are considered repre-
sentative for current and future HPC systems.

Number of src and tag wildcards used: the first surpris-
ing observation is that none of the analyzed applications uses
the tag wildcard, and only two applications (Design Forward
MiniDFT and MiniFE) apply the src wildcard (see Table I).
Note that we extract this information from the traces and
not from the source code (the dumpi trace format contains
such information) and there is no information whether all
traces also cover the initialization phase, in which wildcards
might be more prominently used. Nonetheless, initialization
is outside the critical path and can be performed by the
CPU before the application is handed off to the GPU.
MPI’s matching process is complicated by the support for
wildcards, which seems quite unnecessary with regard to
most exascale proxy applications.

Number of communicators: except CESAR NEKBONE
(2) and Design Forward MiniDFT (7), all applications use a
single communicator for point-to-point communication. The
communicator is part of the matching criteria and would
inherently offer parallelism since no wildcard can be applied.

Application Description Comm. Pattern src WC tag WC #communicator Peers #tags
MOCFE (CESAR) * Neutronics code Nearest neighbor no no 1 4 2944
NEKBONE (CESAR) Fluid Dynamics code Nearest neighbor no no 2 29 1044
CNS (EXACT) Compressed Navier-Stokes Nearest neighbor no no 1 72 67
MultiGrid (EXACT) MultiGrid solver (BoxLib) Nearest neighbor no no 1 37 845
LULESH (EXMATEX) Hydrodynamic simulation Nearest neighbor no no 1 19 2
CMC (EXMATEX) † Classic Monte Carlo Nearest neighbor - - - - -
AMG (DF) Algebraic MultiGrid Solver Nearest neighbor no no 1 79 1
AMR Boxlib (DF) Adaptive mesh refinement Irregular (sparse) no no 1 35 631
MiniAMR (DF) ‡ Adaptive mesh refinement Irregular (sparse) - - - - -
BigFFT (DF) † Large 3D FFT Many-to-many - - - - -
Crystal Router (DF) MPI many-to-many code Staged all-to-all no no 1 6 14
Fill Boundary (DF) Halo update (BoxLib) Nearest neighbor no no 1 23 24
MultiGrid (DF) MultiGrid solver (BoxLib) Nearest neighbor no no 1 10 104
MiniDFT (DF) * VASP electronic structure calculation Many-to-many yes no 7 19 19666
MiniFE (DF) * Finite element solver Staged all-to-all yes no 1 15 3
SNAP (DF) ‡ Neural particle transport Nearest neighbor - - - - -
PARTISN (DF) * Neural particle transport Nearest neighbor no no 1 1 § 3444

Table I
APPLICATIONS THAT ARE PART OF OUR ANALYSIS. EACH APPLICATION PROVIDES TRACES WITH VARIOUS NUMBER OF RANKS. THE NUMBERS

PRESENT THE AVERAGE ACROSS THE MAXIMUMS OF EACH CONFIGURATION.

* The queue analysis of this application was not possible since rank numbers are renamed, resulting from MPI’s cart create.
† The application does not use send/recv operations.
‡ The trace file was too large to process.
§ Only one rank is communicating with all other ranks. Any other rank does not exchange messages with all other ranks.

Unfortunately applications do not allow for much parallelism
by only using a single communicator.

Number of peers a rank is communicating with:
most applications exchange messages with about 10-30 peer
ranks. This is a result from the nearest neighbor communica-
tion pattern that can be found in the majority of applications.
EXACT CNS (72) and Design Forward AMG (79) spread
their messages across the most ranks, however, this is still
only a fraction of the total number of ranks the application is
launched with. This makes communication rather local and
opens up considerable optimization potential with regard to
process mapping and topology.

Distribution of src and tag space: another interesting
aspect is how often certain source and tag values are used.
We observed that this varies significantly across the appli-
cations. For example, Design Forward MiniDFT, CESAR
MOCFE, and Design Forward PARTISN use thousands of
different tags. On the other hand, Design Forward AMG,
EXMATEX LULESH, and Design Forward MiniFE use less
than four different tags. We will show later that this has
an impact on the choice of data structure as traditional lists
can be replaced with hash tables. In addition, none of the
applications needs tag values longer than 16 bits. Together
with the 32-bit value for the source and some bits for the
communicator, the entire header could fit into a single 64-bit
word.

UMQ and PRQ length: the most critical characteristic
with regard to matching is the length of PRQ and UMQ.
The UMQ is depicted in Figure 2 and we omitted the
graph for the PRQ due to their similarity. The longer the
queues the more time is needed to find the right match.

Figure 2. Maximum length of each rank of the UMQ for different
applications. The red dot represents the mean, the dotted blue line indicates
an arbitrarily chosen reference of 512 messages. The extensions of the boxes
mark minimum and maximum.

Based on the trace files, we reconstruct the queues to assess
their maximum length at any matching attempt. Our first
observation is that UMQ and PRQ show similar queue
lengths. Most of the applications’ queues range below 512
entries. EXACT MultiGrid and CESAR NEKBONE have the
longest queues with the mean across all ranks being 2,000
(median at 1,500) and 4,000 (median at 1,800) entries,
respectively.

V. MESSAGE MATCHING ON GPUS
This section describes how tag matching is performed on

the GPU. While CPUs keep message and receive request
queues separated from UMQ and PRQ, we unify them in

Figure 3. Message matching algorithm on the GPU. The picture shows four warps with a generic warp size of four threads.

Figure 4. Single CTA matching rate for the GPU algorithm on various
GPU architectures.

our GPU implementation. The UMQ is placed at the head
of the message queue and the PRQ at the head of the receive
request queue, respectively. Both queues reside in global
memory on the GPU and we assume that new messages
and receive requests are always placed into global memory.
Furthermore, since the matching only concerns the endpoint,
no messages are actually sent between GPUs in our synthetic
scenarios.

A. Algorithm

Our algorithm is divided into two parts: scan and re-
duce. Scan builds a matrix where matching messages are
entered for every receive request. Messages are represented
as rows and receive requests as columns. Due to wildcards
or identical source and tag specifiers, a message can match
multiple receive requests, creating dependencies between
elements within a row. Since multiple messages can also
match the same receive request, dependencies also exist

between elements within a column. The algorithm and setup
are depicted in Figure 3. The letters in the message queue
indicate which receive requests match with this particular
message. For example, B,C means that this message matches
with receive request B and C.

The scan is performed by a large number of threads, each
matching one message with all receive requests. The number
of threads determines the number of rows of the matrix.
Due to the limited amount of available shared memory, the
scan is performed hierarchically: in the first step, all threads
within a warp perform a vote, using CUDA’s ballot intrinsic.
The vote returns a 32-bit vector, each bit representing one
thread of the warp. A set bit means the message matched
the receive request. The bit-vector is written to the matrix,
which comprises as many rows as warps being used. This
minimizes the number of rows, because effectively only
one bit is stored for every thread. Algorithm 1 describes
the procedure in pseudocode. The window variable is the
number of receive requests being scanned. Instead of reading
the entire message or receive request, only src and tag are
being read. The communicator is inherently given since we
presume one matching engine per communicator.

The top-left of Figure 3 shows the message queue and
warps, where each thread is assigned to one message. On
the right, the receive request queue that is scanned in the
first phase is shown. As can be seen, each warp writes its
intra-warp vote result for every receive request to the matrix.
After the scan, the second phase needs to reduce the column
vectors to a single match vector.

Due to dependencies between columns, the reduce phase
is sequential. Also, as so far all NVIDIA GPUs only support
32 warps per CTA, the matrix height is limited to 32.
Consequently, one warp is sufficient to reduce a single
column.

The reduce phase is presented as pseudocode in Algorithm

2 and shown in Figure 3. At the first column, each thread
starts off with a 32-bit mask that has all bits set, each bit
representing a message. The bit-mask is necessary to resolve
the dependency within a row, meaning one message can only
match one receive request. Whenever a match occurs, the
mask is modified and bits are erased. Next, each thread reads
one element from the column, where thread n reads the nth
element. The assignment is important since lower IDs belong
to messages earlier in the queue. The ballot intrinsic is used
again to determine threads that found a match. Note that the
mask needs to be applied here to avoid re-matching the same
message. The find first set (ffs) intrinsic returns the position
of the first set bit and determines the lowest ID of the warp
that placed its vote in the column. Again, lower IDs have
higher priority due to ordering. Another ffs is required to
identify the exact position of the thread within the warp that
gets the match. Last, the appropriate bit of the mask needs
to be erased and the next column can be reduced.

Looking at Figure 3 again, the first column of the matrix
contains only a single set bit. The matching message is
determined by the row and the bit position within the
element of the matrix. In this example, a warp contains four
threads and a total of four warps are used. Only thread 3 sees
a match in its element at position 3. Since the element was
written by warp 3 in the first phase, the matching message
can be found at position 14 (warp ID x warp size + bit
position - 1). The next column contains several matching
messages. The first thread gets the match due to its lowest
thread ID. Again, the first bit within the element points to
the matching message, which can be found at the head of
the queue. This procedure is repeated until all columns are
reduced. Note that it also works with wildcards as the third
column shows.

The main bottleneck of this algorithm is the sequential
reduce phase, while the first phase can be executed by
several warps in parallel. However, both phases can be
pipelined to overlap execution. After the reduce, the column
can be reused and overwritten by the scan phase again. The
same applies to the receive requests that can be overwritten
by pre-fetching new requests after the scanning is done.

The result of the matching algorithm is a vector that
indicates the position of the matched message for every
receive request. In real applications, matches cannot be
found for all receive requests, leaving no-matches in the
vector, possibly making it even sparser.

The last step of the matching algorithm is to compact the
queues to advance the head pointer and start matching on
the remaining requests. The compaction is composed of a
prefix scan and memory move operations. In cases when the
number of matches is very low, the bubbles can be tolerated
and the compaction can be skipped.

Algorithm 1 Multi-warp scan
1: SendObj = sendBuffer[thread:id]!getObj()
2: for i from 0 to window - 1 do
3: RecvObj = recvBuffer[i]!getObj()
4: int32 vote = ballot(SendObj == RecvObj)
5: voteMatrix [warp:id * window + i] = vote
6: end for

Algorithm 2 Algorithm to reduce a column-vector, which
contains the vote results, to a single match.

1: int32 mask = 0xFFFFFFFF
2: if thread:id < warps then
3: for i from 0 to window - 1 do
4: int32 vote = voteMatrix[thread:id * window + i]
5: int32 bidders = ballot(vote & mask)
6: if thread:id == ffs(bidders) -1 then
7: int32 match = ffs(vote & mask) - 1
8: mask = mask & ⇠ (1<<match)
9: result[i] = thread:id * warp:size + match

10: end if
11: end for
12: end if

B. Synthetic micro-benchmarks

In order to assess the performance of our algorithm we
use a synthetic workload on different GPU generations. With
our algorithm, up to 1024 messages can be matched in
one iteration and unlike list-based approaches the order of
receive requests has no impact on the matching rate. The
message queues in this benchmark contain random tuples in
random order, but all tuples of the message queue match with
tuples in the receive queue, thus no elements are left in the
queues after the matching. Figure 4 shows the performance
for different queue lengths. Note that queues with less than
64 elements are scanned by a single warp and no matrix is
generated.

The performance of our algorithm is steady and yields
around 3M matches/s for a Kepler-class GPU, around 3.5M
matches/s for a Maxwell M40 and 6M matches/s for a Pascal
GTX1080. Since the scan has linear time complexity, the
higher clock rate of the M40 and GTX1080 yields superior
performance. At a queue length of 1024, the performance
drops because all warps are required to perform the scan
and the reduce phase cannot be overlapped anymore.

Queues that contain more than 1024 elements require mul-
tiple iterations and the performance drops accordingly. At
this point, the order of the receive requests matters. While an
ordered queue would yield the same performance as shown
in the graph, a reversed queue would decrease performance.
However, as the trace analysis showed, the vast majority
of applications have queues smaller than 1024 elements.
Nonetheless, we are going to discuss longer queues later

Figure 5. Matching rate for multiple queues on the Pascal-class GTX1080.
The numbers represent the number of CTAs, running on the same SM.

when we introduce relaxations.

VI. RELAXATIONS

The previous message matching algorithm completely
complies with MPI semantics, but the resulting dependen-
cies limit parallelism and hence the matching performance.
However, multiple levels of parallelism are possible. The
top level partitions among communicators, as there exist no
dependencies. Unfortunately, applications tend to use only a
single communicator, as our application analyses revealed.

The next level could partition among ranks, but this is im-
possible due to wildcards. Consequently, our first relaxation
proposal is to prohibit the use of the any source wildcard.
Note that prohibiting tag wildcards would allow to further
partition among tags, but tags are usually not uniformly
distributed, resulting in an imbalanced utilization of queues.

Another limitation is caused by unmatched messages,
which result from the entire PRQ being traversed with no
matching request found. Having all receive requests posted
before new messages arrive removes that inefficiency and
guarantees that each message matches in one iteration. This
brings us to our next relaxation: no unexpected messages.

As described earlier, exactly-one matching is guaranteed
by naming and ordering. Ordering is another severe limita-
tion for the matching process since it creates dependencies.
However, without ordering the user has to take care to
identify the right messages, for example, using tags to
uniquely identify the right message. On the other hand, in
a strict Bulk Synchronous Parallel (BSP) [16] model, tags
can be reused after synchronization. This brings us to the
last relaxation we are proposing: no implicit ordering.

A. Rank partitioning - no source wildcard

Prohibiting the src wildcard allows the rank space to be
statically partitioned and arranged into multiple queues. The
number of queues depends on the number of peer a rank

is communication with and messages that are exchanged.
Queues should be kept moderate in length in order to yield
high matching rates.

Generally, the more queues are used the better the perfor-
mance since more parallelism can be exploited. However,
this is only valid if each queue contains at least 32 entries
in order to efficiently use warps on the GPU. In fact, this is
interesting since the single queue approach benefits from less
than 1024 entries in the single queue, while implementing
many queues requires many messages from different sources
in order to equally utilize multiple queues.

Figure 5 depicts the performance for different numbers
of queues plotted against the total queue length. In addition,
the annotated numbers show the number of CTAs that are
required. Note that all CTAs run on the same SM and the
graph refers to the Pascal GTX1080. In this experiment,
the GTX1080 yields an average speedup of 2.12x over the
Kepler K80 and 1.56x over the Maxwell M40, respectively.

The first observation is that performance scales almost
linearly for up to four queues, afterwards it is just below
linear due to extra overhead. If queues are split up, each
queue becomes smaller and provides less opportunity to
overlap both the scan and reduce phases. As a result the
pipelining is less efficient. Also, the synchronization re-
quired for pipelining applies to all warps and not only to
the warps that process the same queue.

If the queue length exceeds 1024 elements, one CTA
cannot provide enough threads unless one thread matches
more than one message. A single SM is able to schedule
warps from up to 16 CTAs concurrently as long as shared
memory and register resources are sufficient. As can be seen,
increasing the number of CTAs allows for longer queues,
but also reduces efficiency and performance. According
to NVIDIA’s occupancy calculator, this algorithm allows
two CTAs to run in parallel. Hence, more CTAs leads
to serialization and performance is reduced. Nonetheless,
more CTAs provide more threads allowing for larger queues,
which are necessary in some cases. If multiple SMs were
used, the performance would be increasing linearly since all
CTAs would be running in parallel, however, less resources
would be available to execute the application.

Besides performance, feasibility of our relaxations is im-
portant. The number of peers a rank is communicating with
constitutes the maximum number of queues. We have shown
that most applications allow roughly 20 queues to be used,
while only a few applications allow more. Additionally, it
is important to look at the communication pattern. Having
multiple queues is only efficient if queues are evenly used. A
uniform distribution of ranks that are addressed would be the
best case. We analyzed how often a given rank addresses any
other rank. While most of the applications show a regular
and uniform behavior, CESAR Nekbone and AMR Boxlib
showed a rather irregular communication behavior.

(a) Uniqueness of tuples (b) Hash table performance

Figure 6. The left graph shows the maximum occurrence of a given {src, tag} tuple among all tuples and destinations. The lower the better for hash
tables, which performance is shown in the right graph.

B. No unexpected messages
Our second relaxation prohibits the use of unexpected

messages, which has two performance implications. First,
after matching a compaction step is required to remove
matched elements. Experiments have shown that this reduces
the matching rate by about 10%. Second, non-matching
messages still propagate through the entire receive request
queue without any progress. In our algorithm performance
decreases linearly with the number of matched messages per
iteration. For example, if only half of the messages can be
matched, the matching rate shown in this paper is reduced
by about 50% as well.

While prohibiting the src wildcard has no implication
on how code is written for most of the applications we
have analyzed, not allowing unexpected messages has a
much greater impact. It would require the vast majority of
applications to be rewritten to remove the synchronization
of send/recv calls. Either barriers are required to ensure that
receives have been pre-posted or receivers have to be queried
to determine if they have posted the receive request already.

C. No wildcards and ordering
The last relaxation we propose is out-of-order delivery of

messages, removing dependencies and allowing hash tables
to be used as primary data structure. We also prohibit
wildcards for the sake of simplicity, but theoretically they
could be supported with hash tables as well. The main
benefit of hash tables is that they enable constant insert and
search time complexity, but for hash tables to perform well
the input data set should comprise as many unique values
as possible to avoid collisions.

In Figure 6(a) we show the uniqueness of {src, tag} tuples
among all destinations within an applications. For example, a
value of 50% means that a single tuple appears in 50% of all
messages to a given destination. This would be a bad case for

hash tables since many collisions would reduce performance
significantly. However, as can be seen, most applications
range in single digit percentages, supporting the choice of
hash tables.

We implemented a two-level hash table with the primary
table being five times larger than the secondary table. First,
all threads fetch a receive request from the queue and insert
it into the primary hash table. If there is a collision, the
receive request is inserted into the secondary table. In case
of another collision, the thread holds on to the request for
the next iteration. During the second phase, each thread
fetches a message, calculates the hash key, and queries the
primary table. If no entry matches, the secondary table is
queried and if no match can be found again, the match is
deferred to the next iteration. The more collisions occur,
the more iterations are required to match all elements. We
chose Robert Jenkin’s 32-bit (6-shifts) hash function [17],
which we found to be in wide use. Future work might
further investigate various combinations of hash functions
and collision resolution policies.

The performance of our hash table approach is depicted
in Figure 6(b). Relaxing the ordering opens up a tremendous
speedup for the matching process. With 1024 elements and
one CTA, a matching rate of 110M matches/s (Kepler)
can be achieved, while 32 CTAs yield 150M matches/s
(Kepler). An impressive performance is observed on the
Pascal GTX1080, which yields about 500M matches/s. This
translates into a speedup of 3.3x over Kepler. Note that due
to the SM’s limited resources the execution of multiple CTAs
is serialized. Also note that we chose random values for the
{src, tag} tuple for our experiments.

Although the performance is remarkable, relaxing order-
ing has significant implications on the user, who now bears
more responsibility than with ordered message delivery. The
tag has to be used to uniquely identify messages from the

Wildcards Ordering Unxp. msgs. Part. Data structure Perf. User implication Comments
yes yes yes no Matrix Low None MPI (<6M matches/s)
yes yes no no Matrix Low Medium ⇠ 6M matches/s
no yes yes yes Matrix High Low < 60M matches/s due to compaction
no yes no yes Matrix High Medium ⇠ 60M matches/s)
no no yes yes Hash Table Very High High < 500M matches/s
no no no yes Hash Table Very High High ⇠ 500M matches/s

Table II
SUMMARY OF OUR RELAXATIONS AND THEIR IMPLICATIONS. Part. SHOWS WHETHER PARTITIONING IS POSSIBLE OR NOT. PERFORMANCE NUMBERS

REFER TO THE PASCAL-CLASS GTX1080 GPU.

same source, hence applications have to be rewritten and
restructured. We still think this would be applicable in many
iterative and BSP-like applications.

VII. DISCUSSION

We focused on the message matching as it is key to
high message rates, which again is key to many applications
[18]. Furthermore, high message rates are also essential in a
PGAS model, which receives noticeable attention on GPUs
[19]. Note that the matching performance of our algorithms
is summarized in Table II.

A. Communication characteristics

The application analysis showed that point-to-point com-
munication is generally limited to a fraction of the total
number of available ranks. Assuming the src wildcard was
prohibited this allows for 10-30 queues to be implemented
in most applications. Furthermore, queues rarely exceed 512
entries and only two applications show queues in the range
of 2,000 to 4,000 entries, with both UMQ and PRQ showing
similar lengths.

Although we have studied CPU-centric applications we
believe these insights are also valuable for GPU-centric
communication models. Use cases include porting of ex-
isting applications to heterogeneous systems with compiler-
assisted mechanisms, preserving the application’s behavior
and exposing comparable communication patterns to GPUs.
Furthermore, communication is part of the algorithmic na-
ture of the problem and should depend only to a limited
extend on the architecture the application runs on.

B. User implications through proposed relaxations

While prohibiting wildcards seems applicable in most
cases, requiring all messages to be expected needs far more
changes in the applications’ codes. Additional synchroniza-
tion becomes necessary, which has to be ensured by the user.
However, this is already a widely implemented optimization
and well understood by many HPC programmers. LULESH,
for example, already posts the vast majority of receive
requests in advance.

Giving up ordering guarantees seems to have a great
impact since applications needed to be restructured and
rewritten, again mandating additional synchronization. How-
ever, tags can be used to restore ordering at the user level.

MPI was designed for CPUs to cover a broad range of
applications and many features aim to ease programming.
However, scientific applications on GPUs are generally well
structured and strictly follow the BSP model, so that we
believe these features can be spared in the GPU domain.
Thus, we consider these relaxations to be feasible.

C. Architectural challenges

The fully MPI-compliant algorithm offers only a limited
amount of parallelism and performance is low due to the
GPU’s low single thread performance. Another issue is the
lack of a sufficient number of available warps to hide long
instruction latencies. Newer GPU generations show better
performance, but only due to higher clock frequencies. We
endorse new architectural features like variable warp sizes
[20], which helps with the matching of shorter queues, and
better dynamic parallelism [21], which allows for adjusting
kernel parameters to queue sizes. Furthermore, we hope
for more control over scheduling and dynamic memory
management within GPU kernels to support further parts
of the messaging stack.

VIII. CONCLUSION

In this paper we analyzed exascale proxy applications
to understand their communication behavior. We found
that send/recv communication is usually limited to a small
number of ranks and that message matching queues contain
less than 512 entries for most applications. We presented
a matching algorithm for GPUs that complies with MPI’s
constraints. However, the achieved matching rate of roughly
6M matches/s on Pascal-class GPUs seems incompatible
with future requirements. We experimentally relaxed MPI
semantics to extract more parallelization out of the matching
task and were able to report speedups of 10x when prohibit-
ing wildcards, and 80x by allowing out-of-order message
delivery. In particular, prohibiting wildcards seems feasible
since the vast majority of applications do not use them.

As accelerators are becoming peer processors, it seems
inevitable that they will independently source and sink
traffic. We observe that even though such accelerators have
been available for a long time, there is still little move-
ment towards more suitable and specialized communication
models. The insights from our experiments regarding GPU-
based matching and relaxations should lead to a better

understanding of the performance implications when per-
forming message passing on GPUs. However, many aspects
of such communication models are still left open, such
as the question of whether send/recv, collectives, put/get,
(partitioned) global address spaces (GAS), or some other
paradigm is most suitable.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their constructive
and insightful comments. We also thank the Networking
Research Group at NVIDIA for supportive discussions and
feedback, especially Ted Jiang and Matthias Blumrich.

REFERENCES

[1] A. Sodani, R. Gramunt, J. Corbal, H. S. Kim, K.
Vinod, S. Chinthamani, S. Hutsell, R. Agarwal, and
Y. C. Liu, “Knights Landing: Second-Generation Intel
Xeon Phi Product,” IEEE Micro, 2016.

[2] NVIDIA, “NVIDIA Tesla P100,” Whitepaper, 2016.
[3] M. Flajslik, J. Dinan, and K. D. Underwood, “Mitigat-

ing MPI Message Matching Misery,” in Proceedings
of the International Conference on High Performance
Computing (ISC), Frankfurt, Germany, 2016.

[4] A. Ortiz, J. Ortega, A. F. Diaz, and A. Prieto, “Com-
parison of Onloading and Offloading Strategies to
Improve Network Interfaces,” in Proceedings of the
Euromicro Conference on Parallel, Distributed and
Network-Based Processing (PDP), Washington, DC,
2008.

[5] M. G. F. Dosanjh, R. E. Grant, P. G. Bridges, and
R. Brightwell, “Re-evaluating Network Onload vs.
Offload for the Many-Core Era,” in Proceedings of the
IEEE International Conference on Cluster Computing
(CLUSTER), Chicago, IL, 2015.

[6] U. DOE, Characterization of the DOE Mini-apps,
Retrieved July 14, 2016 from https : / / portal . nersc .
gov/project/CAL/doe-miniapps.htm.

[7] B. Klenk and H. Fröning, “An Overview of MPI Char-
acteristics of Exascale Proxy Applications,” To appear
in the proceedings of the International Conference
on High Performance Computing (ISC), Frankfurt,
Germany, 2017.

[8] R. Brightwell and K. D. Underwood, “An analy-
sis of NIC resource usage for offloading MPI,” in
Proceedings of the IEEE International Parallel and
Distributed Processing Symposium (IPDPS), Santa
Fe, NM, 2004.

[9] S. Goudy, “A Preliminary Analysis of the MPI Queue
Characteristics of Several Applications,” in Proceed-
ings of the International Conference on Parallel Pro-
cessing (ICPP), Washington, DC, 2005.

[10] K. D. Underwood, K. S. Hemmert, A. Rodrigues,
R. Murphy, and R. Brightwell, “A Hardware Acceler-
ation Unit for MPI Queue Processing,” in Proceedings
of the IEEE International Parallel and Distributed
Processing Symposium (IPDPS), Denver, CO, 2005.

[11] R. Keller and R. L. Graham, “Characteristics of the
Unexpected Message Queue of MPI Applications,”
in Proceedings of the European MPI Users’ Group
Meeting Conference on Recent Advances in the Mes-
sage Passing Interface (EuroMPI), Berlin, Germany,
2010.

[12] J. A. Zounmevo and A. Afsahi, “An Efficient MPI
Message Queue Mechanism for Large-scale Jobs,” in
Proceedings of the IEEE International Conference on
Parallel and Distributed Systems (ICPADS), Singa-
pore, 2012.

[13] J. A. Stuart and J. D. Owens, “Message passing
on data-parallel architectures,” in Proceedings of the
IEEE International Parallel and Distributed Process-
ing Symposium (IPDPS), Rome, Italy, 2009.

[14] L. Oden and H. Fröning, “GGAS: Global GPU ad-
dress spaces for efficient communication in heteroge-
neous clusters,” in Proceedings of the IEEE Interna-
tional Conference on Cluster Computing (CLUSTER),
Indianapolis, IN, 2013.

[15] B. Klenk, L. Oden, and H. Fröning, “Analyz-
ing communication models for distributed thread-
collaborative processors in terms of energy and time,”
in Proceedings of the IEEE Symposium on Perfor-
mance Analysis of Systems and Software (ISPASS),
Philadelphia, PA, 2015.

[16] L. G. Valiant, “A Bridging Model for Parallel Com-
putation,” in Communications of the ACM, vol. 33,
New York, NY, 1990.

[17] R. Jenkins, Integer hashing, Retrieved July 14, 2016
from http://burtleburtle.net/bob/hash/integer.html.

[18] H. Fröning, M. Nüssle, H. Litz, C. Leber, and U.
Brüning, “On Achieving High Message Rates,” in
Proceedings of the IEEE/ACM International Sympo-
sium on Cluster, Cloud, and Grid Computing (CC-
Grid), 2013.

[19] S. Potluri, “TOC-centric Communication: A Case
Study with NVSHMEM,” in Proceedings of the Open-
SHMEM User Group Meeting, 2014.

[20] T. G. Rogers, D. R. Johnson, M. O’Connor, and
S. W. Keckler, “A Variable Warp Size Architecture,”
in Proceedings of the ACM/IEEE International Sym-
posium on Computer Architecture (ISCA), Portland,
OR, 2015.

[21] J. Wang, N. Rubin, A. Sidelnik, and S. Yalamanchili,
“Laperm: Locality aware scheduler for dynamic par-
allelism on gpus,” in Proceedings of the ACM/IEEE
International Symposium on Computer Architecture
(ISCA), 2016.

