An Overview of MPI Characteristics of Exascale
Proxy Applications

Benjamin Klenk, Holger Froning

Institute of Computer Engineering
Ruprecht Karls University, Heidelberg
Mannheim, Germany
{benjamin.klenk, holger.froening}@ziti.uni-heidelberg.de

Abstract. The scale of applications and computing systems is tremen-
dously increasing and needs to increase even more to realize exascale
systems. As the number of nodes keeps growing, communication has be-
come key to high performance.

The Message Passing Interface (MPI) has evolved to the de facto stan-
dard for inter-node data transfers. Consequently, MPI is well suited to
serve as proxy for an analysis of communication characteristics of exas-
cale proxy applications.

This work presents characteristics like time spent in certain operations,
point-to-point versus collective communication, and message sizes and
rates, gathered from a comprehensive trace analysis. We provide an un-
derstanding of how applications use MPI to exploit node-level paral-
lelism, always with respect to scalability, and also locate parts which
require more optimization. We emphasize on the analysis of the message
matching and report queue lengths and associated matching rates.

It is shown that most data is transferred via point-to-point operations,
but the most time is spent in collectives. Message matching rates signif-
icantly depend on the length of message queues, which tend to increase
with the number of processes. As messages are also become smaller, the
matching is important to high message rates in large-scale applications.

1 Introduction

While there are many challenges on the road toward exascale computing, com-
munication is key to both performance and energy efliciency. It is projected that
an exascale computing system comprises 50 times more nodes than systems de-
ployed in 2010 [1]. Additionally, the number of available processing elements
increases even more as nodes become more parallel themselves, including mas-
sively parallel and heterogeneous processors.

Data movement within such highly parallel environments cannot rely on a
single paradigm, but needs to be hierarchical and specialized. A single global
address space is just as unpromising as solely relying on message passing. Com-
puting has become heterogeneous and thus the processor’s different execution
models require different communication models [2].

Nonetheless, message passing has become the de facto standard for data
movement between nodes as it abstracts communication to a well understood
concept of messages being sent and received by a source and destination pro-
cess. Besides high productivity, message passing allows messages to be sent asyn-
chronously to overlap communication with computation, and provides collective
operations, such as barrier and broadcast. In particular, the Message Passing
Interface (MPI) is in wide use, especially in large scale applications. In spite
of increasing heterogeneity, message passing is expected to remain the domi-
nating communication model for data exchanges across operating system (OS)
boundaries, even in future hierarchical communication systems.

With exascale computing ahead of us, application developers as well as sys-
tem architects need to understand how data is exchanged. Applications have to
be optimized to minimize communication overhead and systems have to provide
an environment for the application to achieve best possible performance. Both
cases require communication to be well understood in order to tweak applications
and systems for performance.

Consequently, a set of MPI applications has been compiled by the U.S. De-
partment of Energy (DOE), representing applications that are expected to run
on exascale systems. Traces are provided that reflect the communication behav-
ior on current systems with varying scale.

In this work, we analyze these trace files to provide an understanding of var-
ious aspects of message passing for such large-scale applications. Besides general
statistics, such as overall communication time, message size, and data transfer
volume, we provide a comprehensive analysis with regard to the message match-
ing. The matching process significantly adds latency if long queues have to be
searched in order to find a matching message. The matching is important, as
it has been shown that solely speeding up the matching process can reduce an
application’s run time by a factor of 3.5x [3]. We report queue lengths as well as
search depths and message rates of various exascale-like applications.

The results of this work can be used by application developers to under-
stand consequences of various MPI aspects. Furthermore, systems architects
learn about applications’ demands, hence systems can be tailored to further
accelerate common patterns. We also want to motivate programmers to consider
similar analyses for their applications. In summary, we provide the following
contributions:

— Comprehensive analysis of exascale proxy applications with respect to com-
munication characteristics, such as message size and rate, number of com-
munication partners, and time spent in particular MPI routines

— Analysis of queue lengths and search depths to further understand perfor-
mance and implications of the matching process

— Based on our data, we discuss our observations and show limitations and
challenges that arise at large scale
The remainder of this work is structured as follows: Section 2 provides the

background on MPI and our methodology. Section 3 shows related work, followed
by an overview of the applications we are analyzing in Section 4. Next, Section 5

reports general MPI statistics, while Section 6 particularly assesses the message
matching process. We discuss our observations in Section 7 before we conclude
in Section 8.

2 Background

In this section we want to introduce MPI as prominent and widely used message
passing system. A brief overview of our methodology completes this section.

2.1 The Message Passing Interface

MPI has become the de facto standard for data transfers in High Performance
Computing (HPC) systems, due to its productivity and abstract interface. Each
data transfer is declared as a message that is sent and received by two processes.
Messages are delivered according to their origin and destination, but also require
to be annotated with a tag and communicator. The tag allows for selection of
messages between the same process pair and the communicator is a subset of all
available processes, but can also comprise all processes of an application.

A process receives messages by calling a recv routine. The receive request
needs to be matched with the right message, based on origin, tag, and commu-
nicator. This is widely known as tag matching and can significantly contribute
to latency [4].

An important aspect of the matching performance is the length of the Unex-
pected Messages Queue (UMQ) and Posted Receive Queue (PRQ). Any incom-
ing message for which a receive request has not been posted yet is added to the
UMQ. Similarly, any receive request is added to the PRQ for which no message
has been received yet. With longer queues, the search time and thus latency is
increased, particularly limiting the rate at which small messages are exchanged.

Apart from direct messages between two distinct processes, MPI allows mul-
tiple processes to participate in collective communication routines. Collectives
are executed by all processes of the communicator that is passed to the MPI rou-
tine and allow for synchronization, such as the barrier. Others enable collective
data processing, such as determining the maximum of data that is distributed
across multiple processes, namely (all-)reduce operation. Collectives for plain
data distribution are implemented by broadcast, gather, and scatter operations.

Other MPI extensions, such as one-sided semantics, are beyond of this work’s
scope as we did not encounter them in the traces we analyzed.

2.2 Methodology

The foundation of our work are the exascale proxy application traces, made
available by the U.S. Department of Energy (DOE) [5]. The traces cover a wide
range of applications with different communication patterns and characteristics.
Traces of the Design Forward program comprise only a single iteration, whereas
the other programs do not provide any information on this manner.

For our analyses, we developed a script-based framework in Python and R
to parse and analyze trace files and verified results with a different approach
using bash commands. Traces are available in the dumpi format !, whose library
intercepts and logs every MPI call with its entrance and exit timestamp. In
addition to the calls themselves, routine-specific meta data is logged. While an
MPI_Send contains the destination rank and message size, an MPI_Allreduce
also comprises the operation that is executed on the data. Traces are available
for each rank separately.

While some data can be gathered by simply parsing the files, more complex
characteristics require additional processing. For example, the determination
of MPI queue length and search depth requires the queues to be rebuilt and
searched for every occurring MPI_Send, MPI_Recv, and MPI_Wait(all).

Although plenty of insights can be gained by a trace-based analysis, there
are limitations. For example, not all traces provide information on custom data
types, thus the exact size of messages cannot be reported for all applications.
Instead, we can only report the number of elements in given messages. Similarly,
if a new mapping of ranks is generated by MPI_Cart_create, for example, the
queues cannot be rebuilt easily. Furthermore, it remains unclear whether and
how much communication is overlapped with computation as dumpi tracks MPI
calls only.

Unfortunately not all applications provide information on the systems the
traces were generated on. Applications from the Design Forward program also
offer Integrated Performance Monitoring (IPM) data 2, which contains MPI time,
message size distribution, and load balancing information. Nonetheless, we want
to report these metrics for all applications and chose to report numbers from
our own analyses. Note that these numbers can differ since metrics are collected
by different methods.

3 Related Work

There are two fields that are related to this work: general MPI statistics and the
analyses of matching and queues, respectively. A brief overview of existing work
is presented in the following.

Early work on analyzing communication characteristics focused on the NAS
Parallel Benchmark (NPB) suite [6] [7]. Their finding was that collectives are
rather static, meaning that parameters can be determined at compile time and
associated messages sizes are rather small. Furthermore, 5 out of 8 applications
heavily use point-to-point communication with a share of more than 80%. Mes-
sage sizes never exceed 64kB on 64 nodes in any NPB applications.

Vetter [8] and Kamil [9] looked at a small set of various applications and
analyzed MPI metrics similar to our choice. They also found that in their set of
applications the number of peer processes any rank communicates with and the
message size of collective operations are rather small.

! http://sst.sandia.gov/about_dumpi.html
2 http://ipm-hpc.sourceforge.net/

A similar analysis was done by Raponi et al. [10], in which MPI time and
number of calls were studied. The set of applications differs from ours, except for
AMG. However, they looked at small scale with only one application exceeding
512 ranks, while AMG was run with 128 ranks. The analysis showed similar
results regarding the data transfer volume, which is strongly dominated by point-
to-point communication. Traces were also analyzed by Lammel et al. [11], who
proposes a trace analysis tool. Various MPI metrics are reported as well.

Other work also exists in the area of queue and matching analyses. UMQ and
PRQ lengths were analyzed by Brightwell et al. [12], but only for the NPB ap-
plications again. They found that a significant amount of unexpected messages
results in queue lengths of up to 200 entries with up to 140 processes. Further-
more, PRQ is always smaller than UMQ and average search lengths never exceed
30 entries. Note that they stated that it is necessary to analyze real applications,
rather than benchmarks. Based on this, Underwood et al. [13] developed a list-
acceleration unit in hardware. Benefits were shown as long as the queues fit
in on-NIC memory. Keller et al. [14] analyzed large-scale applications, showing
that the UMQ length scales linearly with the process count for a thermody-
namics application on the Jaguar and JaguarPF systems. However, ranks other
than 0 differ significantly with not exceeding a queue length of 200. Reported
UMQ lengths for other applications are much smaller, ranging between 10 and
30 entries.

New matching algorithms have been proposed by Zounmevo et al. [15], aim-
ing at reduced memory footprint and enhanced scalability. One algorithm uses
multiple queues, statically assigned to ranks. Sequence numbers are used to com-
ply with wildcards. Significant relative performance improvements were achieved
for two applications (nbody and radix sort), but absolute numbers are missing.
Flajslik et al. [3] also proposed a new matching algorithm, based on hash tables.
Using this algorithm, the Fire Dynamics Simulator was run 3.5x faster by only
replacing the matching algorithm and no further optimization of the application.
The authors in [4] proposed a dynamic matching algorithm and reported match-
ing times for several benchmarks. However, no queue lengths or search depths
were analyzed.

In previous work [16], we analyzed the GPU’s capability to perform message
matching and proposed an appropriate algorithm. We found that the message
passing protocol would need to be relaxed with regard to wildcards and ordering
to suit the GPU’s execution model. The conclusions can also be applied to the
CPU’s protocol to allow for more optimizations and faster matching, especially
as the number of cores per CPU keeps increasing.

4 Application Overview

This section provides an overview of the applications we are analyzing in this
work. Table 1 summarizes the applications’ communication pattern and general
statistics for each application. Note that numbers of our scalability analysis can
differ from this table since we did not include small scale configurations.

Table 1. Exascale proxy applications and various MPI characteristics (Non.Bl. S/R = share of
non-blocking Send/Recv operations ; Unxp.Msgs. = share of unexpected messages).

[Application Pattern Ranks MPI (Comm) time Unxp.Msgs. Non-Bl. S/R Peers|
MOCFE Nearest 64 74 (8) % n/a 100/100 % 2
(CESAR) © Neighbor 256 86 (6) % n/a 100/100 % 3
(Near.N.) 1,024 92 (9) % n/a 100/100 % 4

NEKBONE Nearest 64 11 (7)) % 40 % 99.9/99.9 % 18
(CESAR) Neighbor 256 34 (11) % 35% 99.9/99.9% 8
1,024 78 (23) % 45 % 99.9/99.9 % 29

CNS Nearest 64 3(2) % 28 % 0/92.5 % 26
(EXACT) Neighbor 256 24 (20) % 40 % 0/98.5 % 44
CNS Large Nearest 64 3(3)% 30 % 0/60.8 % 26
(EXACT) Neighbor 256 11 (11) % 27 % 0/85.7% 20
1,024 43 (39) % 34 % 0/98.4 % 72

MultiCGrid Nearest 64 63) % 277 % 0/100 % 14
(EXACT) Neighbor 256 16 (12) % 47 % 0/100 % 37
MultiCGrid Nearest 64 3 % 0% 0/100 % 14
Large Neighbor 256 5(3) % 31 % 0/100 % 17
(EXACT) 1,024 22 (18) % 33 % 0/100 % 20
LULESH Nearest 64 1) % 21% 100/100 % 14
(EXMATEX) Neighbor 512 8 (8) % 20% 100/100 % 19
CMC 2D Nearest 64 76 (76) % n/a n/a n/a
(EXMATEX) Neighbor 256 78 (78) % n/a n/a n/a
1,024 84 (84) % n/a n/a n/a

AMG Nearest 216 303) % 4% 100/100 % 57
(DF) Neighbor 1,728 1(1) % 46 % 100/100 % 79
13,824 0 (0) % 48 % 100/100 % 92

AMR Irregular 64 9(5) % 27 % 0/99.9 % 18
Boxlib (DF) 1,728 12 (10) % 37 % 0/99.9 % 35
BigFFT Many- 100 99 (3) % n/a n/a n/a
(DF) to-Many 1,024 99 (3) % n/a n/a n/a
10,000 99 (0) % n/a n/a n/a

BigFFT Many- 100 72 (29) % n/a n/a n/a
Medium to-Man 1,024 81 (19) % n/a n/a n/a
(DF) 10,000 99 (1) % n/a n/a n/a
Crystal Staged 10 23 (23) % 46 % 0/100 % 3
Router (DF) All-to-All 100 63 (63) % 31 % 0/100 % 6
Fill Boundary Nearest 125 40 (27) % 34 % 0/100 % 16
(DF) Neighbor 1,000 52 (44) % 30 % 0/100 % 20
10,648 72 (70) % 32 % 0/100 % 23

MultiGrid Nearest 125 40 (17) % 41 % 0/100 % 14
(DF) Neighbor 1,000 66 (58) % 39 % 0/100 % 10
10,648 70 (69) % 38 % 0/100 % 8

MiniDFT Many- 125 15 (15) % n/a 32/3.4 % 19
(DF) * to-Many 424 11 (11) % n/a 31.3/22% 30
MiniFE Staged 144 7(6) % n/a 0/100 % 12
(Mantevo) * All-to-All 1,152 7(6) % n/a 0/100 % 15
PARTISN (DF) Near.N. 168 51 (50) % n/a 0/0 % 1
[Average n/a n/a 41 (21) % 36 % n/a 23]

“The queue analysis of this application was not possible since rank numbers are renamed,
resulting from MPI’s cart create.

The second column of the table shows the communication pattern of the
applications. Although we analyze a wide range of applications, it seems that
nearest neighbor communication is by far the most prominent one, whereas no
application relies on pure all-to-all communication. Only Crystal Router and
MiniFE, both from the Design Forward program, implement a staged form of
all-to-all. Crystal Router and AMG use send /receive operations only and refrain
from using any collective data transfer operation. BigFFT (Design Forward)
and EXMATEX’s CMC 2D, on the other hand, completely rely on collective
communication.

We determine the number of peer ranks a rank is communicating with by
counting how many different ranks are addressed with all send and receive op-
erations together. On average across all applications, only a mean of 23 ranks
participate in point-to-point communication with any given rank. It suggests
that point-to-point communication is rather local, which allows for optimiza-
tions regarding process mapping and topology.

We also want to constitute that except for two applications, namely MiniDFT
and MiniFE, we did not see any wildcard for the source specifier in any MPI_Recv
operation. Wildcards introduce additional complexity in the message matching
process, which seems quite unnecessary for the vast majority of applications.
Additionally, we could not find tag wildcards in any trace file either, questioning
whether MPI needs to support wildcards at the cost of complex matching algo-
rithms. However, it is possible that trace files omit MPI’s initialization phases,
in which wildcards may be used more often. It would still be desirably if MPI
allows the user to refrain from using wildcards during compute phases to allow
for optimized message matching algorithms [3] [15].

Although messages within different communicators can be matched in par-
allel by replicating the associated data structures, applications do not seem to
use multiple communicators. We observe that only MiniDFT groups ranks in
7 different communicators for point-to-point messages and Nekbone in 2, re-
spectively, while all other applications rely on a single communicator. Given
that communicators can be matched independently, we advocate to use multiple
communicators to reduce matching overhead, allowing for higher message rates
to be achieved.

The fifth column of the table shows the share of all messages that are un-
expected. On average across all applications, 36% percent of all messages do
not find a matching receive upon arrival and need to be placed in the UMQ.
This is distributed as follows: applications and configurations with less than 100
ranks send 30% unexpected messages (15 samples), less than 500 ranks 34% (28
samples), and more than 1,000 ranks 39% (8 samples). Although the number
of unexpected messages seems to increase with the scale of the application, the
increment is not significant. Nonetheless, we observe a significant increase of
unexpected messages with the number of ranks in the AMG (Design Forward)
application, from 12% with 8 processes to 46% with 216 processes. However,
increasing the scale to 1,728 processes has no further impact. Another example
is Crystal Router, for which we observe that the number of unexpected messages

increases with scale, from 31% at 10 processes to 46% at 100 processes. However,
more samples would be needed to allow for more profound statements.

A mechanism to avoid unexpected messages is to post non-blocking
MPI _Irecv operations in advance to provide MPI with the appropriate user-
space buffer for the expected message. We count occurrences of blocking and
non-blocking send and receive operations for each application and found that no
general statement for all applications can be made and refer to the results shown
in the table. Nonetheless, it seems to be a common pattern to send messages in
a blocking way and receive them by non-blocking receive operations.

We also want to state that Design Forward’s MiniDF T is the only application
that uses MPI_Rsend and MPI_Sendrecv_replace in addition to the standard
blocking and non-blocking send routines. We have not observed any synchronous
or buffered send operations in any other application.

Another important metric of any large-scale application is how much time is
actually spent for data transfers versus computation. The accumulated time of
all MPI calls is divided by the total application time, which is determined here
by the first and last MPI operation that appears in the traces. Although this
approach does not represent the exact application time as it does not account
for non-MPI operations, it still allows for a good estimate. Second, the commu-
nication time is the accumulated time for all data transferring or synchroniz-
ing MPT calls, such send/recv, collectives, and MPI_Wait(all). Comparing both
times provides insights on how much MPI overhead an application contains. For
example, overhead is increased by creating new datatypes, communicators, or
groups. Both MPI and communication time are determined for rank 0.

The time spent in MPI routines averages about 36% of the application time
across all applications and configurations (67 samples). If we consider only ap-
plications with less than 100 ranks, the MPI time averages 20% (24 samples),
whereas applications with less than 500 ranks spent 27% (48 samples) of their
time in MPI functions. The larger the scale the more time is spent in MPI, as
applications with more than 500 ranks show an average MPI time of 57% (19
samples) and more than 1,000 ranks result in 60% (16 samples). This is not sur-
prising as most traces are generated with the same input and problem size and
the impact of communication usually increases with strong scaling. The actual
communication time, however, is lower with an average of 20% across all appli-
cations and only 12% for applications with less than 100 ranks. Again, increasing
the scale also increases the communication time as applications with more than
500 ranks show an average of 29%.

On average, 73% of the MPI time is spent for communication routines like
send/recv or collectives. However, there are a few applications with significantly
higher MPI than communication time. Mocfe and BigFFT both contain the
most overhead with spending only 10-20% of their MPI time for communication
and synchronization. For example, Mocfe (1,024) spends 75% of its application
time a single MPI_Cart_create call. Thus, actual communication times may be
higher during the application after initialization is complete.

send
send

} gather
gather

1,000,000~

send

® 3
g § R
-1 ¢ -
g e g2
o 2 2 |2
operation 100,000 3 8 mﬁ'—_v H El g 5
b=} 53 = ° »
Bl aitoal 5 3 _ 518 s i3 -
5 10,000- T 2 § o2 2 8
'bcas(o 3 2 L2 5 .
)] 8 55 E]
.ga(her 5 ' E
[} 1,000~
‘reduce g
B £ T
send = 2
100- | %
3
g
2
10 I]
g

| beast
Ireduce
N beast

[reduce
- reduce

Ireduce

1- L L1 i IR

s e 0 “ o 030\ \ 3 %zm N 129 10f o 10f) \ATX\ of e o \\‘ae\ 0 01 N o “nm 0 02‘“ @\'L\ e R \,e(a\\
e t\e 0 oy O ! 0 oat® 9°
00 N\ N ot r\ o
N i o N\\ NG ® \ 5
eel*“ W e ed W™ of W of O e \\\0 6"‘ «j\ S \.o"\
(e ogsk‘ e\g? aﬂx & Wt \M*

Fig. 1. Message sizes for various MPI operations and applications.

type 100% -
BYTE

| B s
DOUBLE
.FLDAT
INT 50% =
| [t
LONG LONG 25% -
. PACKED
USER TYPE 0% - — -

!
) :.\ ST S S S \‘z\
e 37—\ B0 o 00 kﬂl,\s\'l:’: \«E:Ga@:“‘qam“"io “7'0\'\“"' \—\k‘J; m“!ffa ‘:Ne
R e A e S e
= o \J\P‘ e * of e
of ® P

Frequency

'
F) ,@B\

Fig. 2. Datatype distribution for each application.

Traces for different problem sizes are also available for some applications,
namely BigFFT (Design Forward), and EXACT’s CNS and MultiGrid. In all

cases the MPI time is lower for larger problem sizes due to an increased amount
of computation.

5 General MPI Statistics

This section presents our findings regarding general MPI characteristics, such as
data volume, message size, and usage of various MPI operations and features.

Message size: The message size for common MPI operations and various appli-
cations is depicted in Figure 1. The graph shows the message size as a boxplot
(1%, 214 and 3" quartile, minimum, maximum) and considers all messages from
all ranks of a given application and configuration. At last, an overall message
size distribution is shown across all applications and configurations, however,
applications are not equally represented as some applications exchange much
more messages. Generally it can be said that point-to-point messages contain

10

Data volume
(elements)

100% -

operation

allgather 75%-
.allreduce

allscatter
M alitoall

barrier 50%-
Wbcast

gather
reduce
Wood 2%

0%~

e A0 Qa 11%\0 ﬁb'\\,\“) \\ 01“\ \\ m'*\% w“g‘ \w, o mﬂk o ““‘?\s (7_55\ NS @55\ oo Q’L‘“ A 01“\ @\E o «51\ \«eﬁ\
o R ‘\d cﬁe N\G OF ' cet 1 [OOSRt \\\G (92 \, 4
[“d \G \\]\\Y\ \3 SN W \ 2 \\h \,\3 \M\
9‘?? e W a‘é{(e 1J>~ e‘I\P‘OXI\ e :;(?)/* RS ‘l\
e 5 AR e
of © *p\
©

(a) Transferred data

100% - [| ‘ —‘

operation

allgather 75%-
Malireduce

allscatter
Walttoall

barrier E 50%-
Wbcast = °

gather

reduce

scatter
Wsend 25%-

" . l

|
|

o o O o9 “63&\ oM wﬂ*\ o) s.ﬂm \,ﬂm 00(301 u““me, (7_56\ @ Q«LA\N:@ o olm \Qw* \5\2 a \51\ 0@3\

0
o o O oyoce ore, 6 O GoF ! cet U (08 e 2, Le ¥
o PR ot NG R MO o0 P W \3\9‘? et HCT S\ W \3Y WV e g e
W32 OF ooue W pR Ta of *[\P\ o‘(\(_:,‘\ _(g/\ O
o O OF T o e Fed S ’J W <<t m“ e

(b) Communication time

Fig. 3. Transferred data and communication time, broken into various MPI operations

more elements than collective messages. In fact, collectives are often called with
a single data element.

Taking the scale of applications into account, point-to-point messages tend
to become smaller with an increasing number of ranks. This is observed in half
of the applications (6 out of 12), whereas Crystal Router, DF MiniDFT, and DF
MultiGrid show an increase in message size at larger scale. Contrary, messages
remain roughly constant in Mocfe, Fillboundary, and LULESH.

Broadcasts are mostly unaffected by scale as only MiniDFT shows an increase
in message size while other applications’ messages remain constant in size. The
message size of alltoall operations always decreases with an increasing number
of ranks. This is observed in BigFFT, EXACT MultiGrid, and AMR.

The most prominently used collective operation is (all-)reduce. Here, the
message size is constant over scale in two-thirds of the applications (6 out of
9). However, MiniDFT and AMR show an increase in message size. Nekbone,
however, first uses larger messages when the scale is increased from 64 to 256
processes, but messages become smaller again for 1,024 processes.

11

1,048,576~ :] [

m_m P R
262,144~ L] | SRR
65,536- i**! SR R R
! i H .. P .
T 16384~ = i H i j | i .
- ! | : EE
; %”a 4,096- " i f : | e
?Bﬁaﬂon .;g 9 l : . .
Boeane Bz 102 |
point-to-point @ 3)
53 256 : .
8 64-
= 1 L
16- !
o
4- i .
o
1-
g

1e-06 5e:06 1e-05 50-05 1e-04 5e-04 0001 0005 001 0.05 o1 05
Time interval [s]

Fig. 4. Message rates for various time intervals, measured across all applications. The
orange points indicate the number of messages (mean) that fall into a given time
interval.

Summarizing it can be said that messages tend to become smaller or remain
constant in size at larger scale. Nonetheless, a few applications show an increased
message size, for example MiniDFT’s messages become larger for both point-to-
point and collective messages.

Note that we cannot report the exact size of messages in terms of bytes
since some traces lack information on the composition of user-defined types.
However, Figure 2 shows the datatype distribution for each application. While
most applications represent their data as double, user defined data structures
are also prominent. Most applications use the same datatypes for point-to-point
and collectives, however, there are exceptions. Fillboundary, for example, mainly
uses double for point-to-point and long for collective operations. Nekbone uses
char for point-to-point and user-defined types for collectives.

Transferred data volume: Figure 3(a) breaks down the total volume of trans-
ferred data into various MPI operations. As can be seen, most data is sent via
point-to-point communication, except for a few workloads that primarily rely
on collective operations for data movement. For example, CESAR’s Mocfe and
EXMATEX’s CMC heavily rely on reduce and allreduce, respectively. Design
Forward’s MiniDFT almost entirely exchanges the data via all-to-all. Nonethe-
less, it is surprising how many applications rely on send/receive communication
for data movement.

An interesting aspect is the data volume transferred during an application’s
run time. However, this is relative since we can only determine how many ele-
ments are sent, rather than the exact number of bytes. The most communication-
intensive applications are Crystal Router (100 ranks) with 5.7G elements per
application time, and BigFFT (1,024 ranks) and Fillboundary (10,648 ranks)
with 3.3G elements/s each. Substituting application time with communication
time yields different results. Here, BigF'F'T (10,000 ranks) is by far the most
communication-intensive application with 112G elements/s, followed by AMG
(13,824) and LULESH (512) with 37G and 24G elements/s, respectively. The
lowest rate is achieved by CMC with 1.2K (64 ranks) to 24K (1,024) elements

12

per communication time. DF MultiGrid shows also low rates with an average of
about 100K elements/s across 125, 1000, and 10648 ranks.

The transfer rate can also be determined with regard to the number of ranks.
Here, MiniFe (18 ranks) shows the highest rate with 900M elements per com-
munication time and rank, followed by LULESH (16) and Crystal Router (10)
with each yielding about 400M elements/s per rank. Again, CMC also shows
the lowest rate in this analysis.

The vast majority of applications responds to an increase in scale with a
decrease in transferred elements per communication time. As we have shown
earlier, messages tend to become smaller at larger scale and thus communication
and synchronization overhead predominates at some point as well. Contrary, the
total data volume tends to increase with scale in most applications.

Communication time: Besides transferred data volume, the time spent in cer-
tain MPI operations is used to break down the MPI time. Results are shown in
Figure 3(b). Although each application behaves differently, collective operations
tend to contribute most to the application’s MPI time. This is due their implicit
synchronization and dependency on all ranks of the collective’s communicator,
whereas point-to-point communication just depends on two ranks, thus imbal-
ances are less impactful regarding the operation’s latency. However, only small
amounts of data are moved by collective operations.

Looking at the graph suggests that point-to-point operations take less time
than collectives, however, due to non-blocking send and receive operations the
time spent in MPI_Wait(all) routines needs to be factored in as well. For exam-
ple, Design Forward’s Crystal Router and AMG spent most of their communi-
cation time on waiting for non-blocking operations to be completed, as it only
uses non-blocking receive operations (see Table 1). Barriers, on the other hand,
are especially time consuming in large-scale applications, such as Fillboundary
and MultiGrid, both comprising 10,648 ranks.

Optimization of MPI communication needs to focus on collective operations
and load balancing at large scale. While the data volume is lower than for point-
to-point communication, the time spent in collectives is substantially higher.

Message rate: The message rate of an application can be determined by count-
ing all messages that are sent during an application and divide the result by
the application’s run time. However, this does not reflect the application’s re-
quirements regarding the network’s performance. A better approach is to define
a time interval and count all messages that fall into it. If a bulk of messages is
sent before a long period of computation, the message rate during the actual
communication phase can demand high message rates from the network while
the network could idle during computation.

Figure 4 shows the message rate observed across all applications for a given
time interval and the number of messages that were counted during the time slot
(orange points). As expected, high message rates are measured for short intervals,
but the actual number of messages is fairly low. For example, 2 messages are
exchanged within 1us, resulting in a message rate of 2M messages/s. The sample

13

N 1%}
o S
[}
S

=)

Message rate [Mmsgs/s]

I o—6——o
o © e —n o 3

2 & % A6 32 gk g0 50 5\1\;’L‘,mehgeﬁ&\@%\ep%‘}ﬁjﬁ 2 s 8 18 o oh \'zé :;56 c_,’\'i ,\y} ,LS;ASS Apgé
Queue Length [msgs] Queue Length [msgs]
- cpp.stdlist - openmpi.1.10 —— mpich.3.2 —< mvapich2.2.2rc1 - opp.stdlist =~ openmpi.1.10 —— mpich.3.2 —< mvapich.2.2.2rc1
(a) Best case (b) Average case (randomized)

Fig. 5. Matching rate of different MPI implementations for best and average cases.

32,768

8,192-

2,048
0

§ 512-
£
3
2,

= 128-
-depih I3
3

-Ienglh 5 32
g
H

i &
g
<]

2

B O I BN B BN O NN S R
B T S Lo T IR RV L e
cﬁeﬂ“ o of o OF;-\\\%’“ oF W e <o P 1“\u\\\‘f"‘ g‘ﬁ‘“’xd e
2 X
(28

Fig. 6. Length and depth of the UMQ.

size is also low with 4 applications out of 48. We believe 100us to be more
representative as at least the median of the message count amounts to about
10 messages. The associated message rate is above 100k messages/s for half of
the applications with the maximum being 500k messages/s. It can also be seen
that the time between subsequent collective operations is larger than between
point-to-point operations, also an effect that is caused by collective’s implicit
synchronization.

6 MPI Message Matching

Two-sided communication requires messages to be matched with the target’s
receive requests. The matching is complex as MPI guarantees in-order delivery
of messages and allows for source and tag wildcards. Also, messages can arrive
unexpectedly.

14

32,768~
8,192-
2,048~
512-

128-

- depth
‘ length

32-

Queue length/depth [elements]

\\tm @2 “32‘“

28
I\ et
oo™ N
we e of
PR o
e

@ 129 A0 = A0 @ S @ @ o © @ @ o " &2 e 28D e
@ ot N e o o = "3
{ %01 & Vot W o (o
e <o o
©

NG e ouﬂd"N ?“u\“e(. » ¢
of ¢ e P W o

WM e
oF P e N\a“\ew‘“

Fig. 7. Length and depth of the PRQ.

Maitching performance: Messages and receive requests that cannot be matched
need to be stored in queues, although all major MPI implementations implement
lists. The length of these queues, or lists respectively, contributes to the memory
footprint and increases latency if matching elements are found toward the queues’
tail. Figure 5 shows the matching performance for two synthetic scenarios: best
case, in which each receive request matches the head of the UMQ and average
case with a randomized match position within the queue. The experiment has two
MPI processes running on the same node, whereas one process sends a certain
number of messages to the other process, followed by a barrier. The second
process receives all messages after the barrier. The match position is determined
by the tag used in the send and receive functions. The tag is ascending linearly
for the best case and randomized for the average case. Our test system is a single
node with an Intel Xeon CPU E5-2630 (Ivy Bridge) processor at 2.60 GHz with
1600 MHz DDR3 memory. We evaluate OpenMPI 1.10, MPICH 3.2, MVAPICH
2.2.2rcl1, and a list implementation based on C++’s Standard Template Library
(STL). Results are reported as average of thousands of iterations.

Results indicate that OpenMPI is optimized for small queues, while MPICH
becomes superior for queues longer than 64 elements. The STL implementation
is outperformed by far, demonstrating how MPI’s lists are optimized for the
matching purpose. Note that STL’s queue container performs even worse due to
its costly remove operation of elements at arbitrary positions.

Regarding the average case, matching rates drop significantly for queues
longer than 32 elements, reaching half of the peak matching rate at queue lengths
of about 128 elements. This can be observed for all MPI implementations. Note
that we also determined the worst case matching rate with receive requests al-
ways matching the tail of the UMQ, however, the course of performance is similar
to the average case with slightly lower absolute matching rates.

Queue lengths and search depth: As shown, the length of the queues has a sig-
nificant impact on the matching time, thus also on latency and message rate. On

15

the other side, if receive requests always match messages at the queue’s head, the
actual length is unconcerned, though memory footprint is still affected. Conse-
quently, the search depth is another important aspect. Together with the length,
the search depth is shown in Figures 6 (UMQ) and 7 (PRQ).

Generally, both UMQ and PRQ show similar lengths and search depths, al-
though the UMQ tends to be slightly larger in most applications. The longest
queues are observed in Nekbone and MultiGrid with the median length being
about 1,024. Overall, the length is smaller than 128 elements in half and smaller
than 512 in 75 % of the measured moments. Note that we determine the queue
length and search depth in any event of send/recv or wait operation and espe-
cially toward the end of the application the queues become often zero in length.
Thus, queues may be larger during the application’s most active communication
periods.

Furthermore, it is also interesting to compare search depth and length. If both
are similar, matches tend to be found rather at the end of the queue. However, if
the search depth is smaller than the length matches are often found near the head
of the queue. Regarding the UMQ), search depth is never significantly lower than
the measured length. Significantly lower would mean that the depth’s median is
below the length’s 1% quartile. This is different from the PRQ, where at least 6
applications show significant lower depth than length.

While lengths of UMQ and PRQ are similar, the PRQ’s search depth tends
to be lower. If a receive is posted, the UMQ needs to be searched for a matching
message and according to our results, the message tends to be found somewhere
near the end of the queue. However, if a message arrives the matching receive
tends to be found near the head of the PRQ. That suggests that the order of
which receive requests are posted likely matches the order of which messages
arrive, or receive requests match with multiple messages.

The median of all applications’ search depth ranges below 100 elements, both
for UMQ and PRQ. Combining this with the average case matching performance
in Figure 5, the effective matching rate in most cases amounts to less than 18M
matches/s. This is about 30% lower than the peak rate of 25M matches/s. Again,
communication intensive periods might show even longer queues and thus the
matching rate drops even further.

Strong scaling effects: The overall mean search depth of the mean across all of
the application’s ranks with less than 100 processes amounts to 29 elements,
while the median is 6. CESAR’s Nekbone’s search depth is 140 for 64 ranks,
significantly adding to the mean. Considering all applications with less than 500
ranks, the mean search depth increases to 68, while the median increases to 14.
On the other hand, the mean search depths for applications with more than 500
ranks amounts to 143 with a median of 38. The UMQ shows the same trends
with higher absolute values. With applications sending more messages at larger
scale, it is not surprising that queue lengths increase accordingly.

16

7 Discussion

This section summarizes the results and discusses our findings. While some in-
sights are already widely assumed to be true in the community, this work aims
to quantify these believes.

MPI time: We observed that a significant amount of time is spent in MPI rou-
tines, averaging about 36% across all studied applications. Directing research
towards optimizing communication, especially MPI, is therefore important. Es-
pecially at large scale, MPI can easily contribute to more than half of the total
application time. On the other hand, strong scaling applications show an in-
creased amount of messages and data volume, but also a decreased amount of
data per message. Consequently, large scale applications tend to send a sig-
nificant amount of small messages. This emphasizes the need for low latency
communication, thus rendering the matching of messages and receive requests
even more important.

Breaking down the MPI time into various operations, we have shown that
collective operations consume a significant amount of time compared to plain
send/receive communication. This is mainly due to the implicit synchronization
and the large number of processes that are involved. Contrary, the amount of
data that is transferred collectively is rather small since the bulk of data is
transferred via send/receive operations. We advise to use MPI’s non-blocking
collective operations to hide synchronization time through overlap with compu-
tation. Non-blocking collectives were introduced in MPI 3 [17].

Similar recommendations apply to send/receive communications as we sug-
gest using non-blocking operations whenever possible. Note that instead of
MPI_Wait, a non-blocking scheme using MPI_Test can be implemented to avoid
busy waiting on requests. On average across all applications, almost 40% of
messages are unexpected and all applications heavily use non-blocking receive
operations. Nonetheless, Design Forward’s Crystal Router and AMG spend still
more than 80% of their MPI time in MPI_Wait(all), possibly allowing for further
optimization.

The last important factor that contributes to MPI time is the barrier. We
observed that almost every application uses only a single communicator, even at
large scale. Hence, a large number of processes participate in barriers, penalizing
imbalances. Barriers need to be used carefully and programmers need to consider
using more communicators and groups to avoid synchronization at large scale,
as also advocated in [18]. However, we understand that this might not be ap-
plicable for all applications. Another solution could be the non-blocking barrier,
introduced with MPI 3. Instead of busy waiting on the arrival of all processes,
useful work could be done in the meantime.

It would be interesting to analyze the MPI time of certain operations even
further to obtain a detailed understanding of limiting aspects. For example,
the actual time spent for message matching can be assessed for point-to-point
operations. However, traces in the present form do not allow for such an analysis
and a more detailed profiling framework is required.

17

Message matching: The most dominant process within the whole matching of
messages and receive requests is to search through unexpected messages and
posted receives, respectively. We presented queue lengths and search depths to
assess the matching performance. As we have seen, an optimistic 70% of the
peak matching performance is achieved in most cases.

With an increased amount of messages and them becoming smaller at large
scale, the importance of the matching increases as well. While the choice of al-
gorithms is limited by MPI’s in-order delivery, source and tag wildcards, and
support for unexpected messages, not all of these features are required [16]. Al-
though we understand that out-of-order delivery could require to restructure
applications, we do not see a strong need for wildcards. Regarding the applica-
tions, none of them uses the tag wildcard and only two apply wildcards to the
source. Alternative matching algorithms [3] [4] [15] steer in the right direction,
but are still limited by wildcards. We suggest to support a mechanism that allows
users to disable wildcards and select a more performant messaging mode. As for
out-of-order delivery, tags can be used to re-establish ordering on user level. This
allows to replace queue structures with hash tables, for example, enabling better
performance.

Message rate and throughput: Surprisingly, we observed that message rates are
rather low in all applications we have studied. Within 100us, which we found
to be a reasonable time interval, a median message rate of 100k messages/s is
achieved with a maximum of 500k messages/s. Together with most applications’
mean message size of about 1K elements/s for point-to-point and collective oper-
ations, an effective message rate of 100M elements/s is achieved. This translates
to a throughput of about 400 MB/s for single precision and 800MB/s for double
precision data, respectively. Since messages are most likely not aggregated, this
is in the order of PCle 2.0’s bandwidth [19]. While it can also suggests that the
message rate is limited by PCle’s bandwidth, our trace-based methodology is not
sufficient to answer this question. Nonetheless, extremely fast interconnects are
still limited by PCle at end-point level. Tighter coupling of networking hardware
and processors certainly steer into the right direction and will help to increase
the network injection bandwidth.

8 Conclusion

We have presented and discussed several MPI characteristics of exascale proxy
applications like time spent in certain operations, message size and rate, and
queue lengths. Taking all applications with various scale into account, an appli-
cation spends 36% of its time in MPI routines. Strong scaling applications with
more than 1,000 ranks average an MPI time of even 60%. Most of this time is
spent in collective operations, while the majority of data is transferred by point-
to-point operations. We showed that messages become smaller at larger scale,
emphasizing the importance of message matching.

We showed that search depth and queue length for both UMQ and PRQ
are similar in most cases, suggesting that matching messages are rather found
toward the end of the queues. Across all applications again, the median queue

18 REFERENCES

length amounts to about 100 elements. This translates to a matching rate of 70%
of peak performance. Again, scaling applications to a large number of processes
renders queues longer and reduces matching rates even further.

Another important aspect we have shown is the effective message rate. We
observed that message rates are rather low, so that within a time interval of
100us only a median of 10 messages was counted, resulting in a message rate of
100k messages/s. Message sizes, on the other hand, show a median of about 512
elements/s for point-to-point and around 10 for collective operations.

While we gained valuable insights from the trace-based analysis, there are
limitations and not all questions can be answered. The MPI time, for exam-
ple, needs to be analyzed in more detail to understand what exactly is causing
overhead. We assume that load imbalances lead to significant overhead for col-
lective operations, but this needs to be verified using more detailed profiling
frameworks, which is not trivial at large scale.

We also encourage operators of large computing facilities to provide more
traces of their applications as access to these systems is often restricted. This
allows for more applications to be analyzed and understood.

Acknowledgments

We would like to thank Hans Eberle and Larry Dennison from NVIDIA Corp.
for insightful discussions that shaped the idea of this work. We also appreciate
the U.S. DOE’s effort of making the traces available to the public and thank all
contributors for generating and providing the trace data.

References

[1] “The opportunities and challenges of exascale computing,” summary re-
port of the advanced scientific computing advisory committee (ASCAC)
subcommittee at the US DOE Office of Science, Tech. Rep., 2010.

[2] B.Klenk, L. Oden, and H. Froning, “Analyzing communication models for
distributed thread-collaborative processors in terms of energy and time,”
in IEEE International Symposium on Performance Analysis of Systems
and Software (ISPASS), Philadelphia, PA, 2015.

[3] M. Flajslik, J. Dinan, and K. D. Underwood, “Mitigating MPI message
matching misery,” in International Conference on High Performance Com-
puting (ISC), Frankfurt, Germany, 2016.

[4] M. Bayatpour, H. Subramoni, S. Chakraborty, and D. K. Panda, “Adap-
tive and dynamic design for MPI tag matching,” in 2016 IEEE Interna-
tional Conference on Cluster Computing (CLUSTER), 2016.

[5] U.S. DOE, Characterization of the DOE Mini-apps, Retrieved 10/25/2016
from https://portal.nersc.gov/project/CAL/doe-miniapps.htm.

[6] A. Faraj and X. Yuan, “Communication characteristics in the NAS par-
allel benchmarks,” in TASTED International Conference on Parallel and
Distributed Computing Systems (PDCS), Cambridge, MA, 2002.

REFERENCES 19

R. Riesen, “Communication patterns,” in Workshop on Communication
Architecture for Clusters (CAC), Rhodes Island, Greece, 2006.

J. S. Vetter and F. Mueller, “Communication characteristics of large-scale
scientific applications for contemporary cluster architectures,” Journal of
Parallel Distributed Compututing, vol. 63, no. 9, 2003.

S. Kamil, L. Oliker, A. Pinar, and J. Shalf, “Communication requirements
and interconnect optimization for high-end scientific applications,” IFEFE
Transactions on Parallel and Distributed Systems, vol. 21, no. 2, 2010.

P. G. Raponi, F. Petrini, R. Walkup, and F. Checconi, “Characterization
of the communication patterns of scientific applications on Blue Gene/P,”
in IEEE International Symposium on Parallel and Distributed Processing
Workshops (IPDPSW) and PhD Forum, Washington, DC, USA, 2011.

S. Lammel, F. Zahn, and H. Froning, “SONAR: Automated communica-
tion characterization for HPC applications,” in International Conference
on High Performance Computing (ISC), Frankfurt, Germany, 2016.

R. Brightwell and K. D. Underwood, “An analysis of NIC resource us-
age for offloading MPI1,” in IEEE International Parallel and Distributed
Processing Symposium (IPDPS), Santa Fe, NM, 2004.

K. D. Underwood, K. S. Hemmert, A. Rodrigues, R. Murphy, and R.
Brightwell, “A hardware acceleration unit for MPI queue processing,”
in IEEE International Parallel and Distributed Processing Symposium
(IPDPS), Denver, CO, 2005.

R. Keller and R. L. Graham, “Characteristics of the unexpected message
queue of MPI applications,” in European MPI Users’ Group Meeting Con-
ference (EuroMPI), Stuttgart, Germany, 2010.

J. A. Zounmevo and A. Afsahi, “An efficient MPI message queue mecha-
nism for large-scale jobs,” in IEEE Conference on Parallel and Distributed
Systems (ICPADS), Singapore, 2012.

B. Klenk, H. Froning, H. Eberle, and L. Dennison, “Relaxations for high-
performance message passing on massively parallel SIMT processors,”
in IEEFE International Parallel and Distributed Processing Symposium
(IPDPS), Orlando, FL, 2017.

T. Hoefler, P. Kambadur, R. L. Graham, G. Shipman, and A. Lumsdaine,
“A case for standard non-blocking collective operations,” in Furopean Con-
ference on Recent Advances in Parallel Virtual Machine and Message Pass-
ing Interface (PVM/MPI), Paris, France, 2007.

P. Balaji, A. Chan, R. Thakur, W. Gropp, and E. Lusk, “Toward message
passing for a million processes: Characterizing MPI on a massive scale
Blue Gene/P,” Computer Science - Research and Development (CSRD),
vol. 24, no. 1-2, 2009.

M. J. Koop, W. Huang, K. Gopalakrishnan, and D. K. Panda, “Perfor-
mance analysis and evaluation of PCle 2.0 and quad-data rate InfiniBand,”
in IEEE Symposium on High Performance Interconnects, 2008.

