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ABSTRACT
Data movements through interconnection networks exceed local
memory accesses in terms of latency as well as energy by multi-
ple orders of magnitude. While many optimizations make great
effort to improve memory accesses, large distances in the network
can easily dash these improvements, resulting in increased overall
costs. Therefore, a deep understanding of network locality is key
for further optimizations, such as improved mapping of ranks to
physical entities.

In this work, we are looking at locality in the hardware-independent
application level and at locality aspects of common network struc-
tures. In order to quantize the former, two new metrics are intro-
duced, namely rank locality and selectivity. Our studies are per-
formed on a selection of 16 exascale proxy mini apps, with a scale
ranging from eight to 1152 ranks. These traces are statically an-
alyzed regarding their spatial communication pattern at the MPI
level. The resulting practice in actual hardware is evaluated with
a network model, which implements topologies such as tori, fat
tree, and dragonfly, and an according minimal routing. As a result,
this work is founded on a large set of experimental configurations,
based on different applications, scales, and topologies.

While in most traces single ranks have a wide range of commu-
tation partners, 90% of the communication is exchanged only with
a small set of ten or fewer other ranks. Results suggest the 3D torus
as the most favorable topology for a small number of ranks, while
for larger configurations the fat tree is preferable. Furthermore, we
show that in general, the network is highly underutilized and that
in 93% of all configurations less than 1% of network resources are
actually used. Overall, this indicates that static analyses could assist
to select an advanced mapping, which assigns groups of heavily
communicating ranks to nearby physical entities. This could help
to minimize the total number of packet hops and, thereby, improve
latency and reduce the probability of congestions.

CCS CONCEPTS
• Computing methodologies → Parallel programming lan-
guages; • Networks→ Network performance analysis.
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1 INTRODUCTION
At the end of further frequency scaling, trends in high-performance
computing (HPC) shift to an increase of parallelism to maintain
Moore’s Law. More parallelism enables the integration of special-
ized hardware and new architectural approaches in order to speed
up particular operations. Along with these benefits, parallelism

also increases the demand for more communication, since applica-
tions need to spread their data across the system and keep them
synchronized.

However, data movements are costly regarding both time and
energy. While inside the memory hierarchy data movement costs
increase with different levels, they are even several magnitudes
higher when data passes the interconnection network. Reducing
this network overhead requires a deep understanding of communi-
cation and topological characteristics and their correlation.

Particularly, if the communication pattern exhibits sufficient lo-
cality, tuning the mapping of ranks to physical nodes for a certain
application and topology can reduce network-level data movements
substantially. Thus, on the application side, probably the most im-
portant characteristic is the application’s communication pattern.
Especially locality, in terms of communication distance and vol-
ume between distinguished ranks, affects performance and data
movement costs. The distance between two ranks, respectively the
number of hops, as well as the injected data, are the measures for
the actual amount of traffic propagating on the network.

When locality and communication patterns are studied so far,
these explorations focus either on memory locality or abstract
density plots, which provide good human readability, but are not
suitable for further analyses and abstract comparisons. Closest
to this purpose is the work of Kim et al. [6], which investigates
communication event locality, message destination locality, and
message size locality. However, these analyses are more than 20
years old and the authors report that their metrics are oblivious to
variations in system configuration and problem size.

In order to gain a better understanding of locality, the presented
work introduces objective metrics for locality that allow a better
understanding of communication patterns. While these metrics are
derived at MPI level, we provide further studies, how this applies to
certain hardware configurations. These studies include the impact
of multi-core scaling, as well as the effects of different topologies.
We provide insights on which application benefits from a low-
diameter topology, such as dragonfly, which need high bisection
bandwidth, for instance in a fat tree, and which application are
exploiting the three-dimensional character of a torus.

In particular, we make the following contributions:

• Introduction of rank locality and selectivity as high-level
metrics which describe communication volume and distance
between ranks in MPI traces in a hardware-agnostic view.

• Analyses of topological locality for different hardware config-
urations. In particular, how different topologies affect locality
regarding average hop distance and packet hops.

• A qualitative comparison of high-level metrics with topo-
logical locality as ground truth to assess the fitness of the
high-level metrics as an abstract workload characterization.
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The remainder of this work is structured as follows: Section
II provides short background information about MPI communica-
tion and basic network properties, followed by a brief overview of
related works. In Section IV, the methodology of this analysis is
provided. In particular, we introduce new metrics to describe net-
work locality. The next Sections (V& VI) reports the locality results
for MPI level studies and topology level, respectively. Section VII
discusses the findings, followed by a summary in Section VIII.

2 BACKGROUND
This section provides a brief overview of the data structures and
technologies on which our analyses are based. First, on the software
side, more information about the input data is provided, followed
up by the hardware properties underlying these studies.

2.1 Traces
Analyses on network locality require input data about the data
volume that is transferred on the interconnection network. Since
theMessage Passing Interface (MPI) is the de-facto standard for data
exchange and synchronization in HPC, this input data is acquired
by tracing MPI calls when executed on real systems.

2.1.1 Message Passing Interface. MPI is an abstract interface for
transmitting data and synchronization purposes in parallel appli-
cations. Therefore, the application starts multiple simultaneously
running processes (ranks), which are communicating via MPI mes-
sages. The data exchange between two ranks in a point-to-point
(p2p) fashion is represented by an MPI_Send() and an MPI_Recv()
call, respectively, that contain detailed information about the trans-
mitting data, such as size (e.g. data type and number of elements),
source and destination memory addresses, and a communicator.
The communicator describes the set of eligible ranks that take part
in the communication. In addition to this point-to-point communi-
cation, MPI provides also collective operations for communication
between a group of ranks. These collective operations are often used
for synchronization purposes, but also allow for shared data pro-
cessing or data distribution. In the context of collective operations,
the participating ranks are determined by the communicator.

2.1.2 Dumpi Trace Format. The dumpi trace formatwas introduced
to gather more detailed information about MPI calls than other
available trace formats. It was developed as part of the SST/macro
simulator by the U.S. Sandia National Laboratories 1, which also
provide a rich repository of traces from various applications [3].
Besides CPU and wall time for entering and leaving an MPI rou-
tine, dumpi traces contain every MPI function call along with its
parameters.

2.2 Interconnection Network
While MPI provides the software interface for data transfer, the
actual data transmission is performed by the interconnect.

2.2.1 Data Transfer. The interconnection network is composed
of two major components: switches and links, where a link is a
connection between two switches or a switch and a node. Usually,

1https://github.com/sstsimulator/sst-dumpi

when packets travel through the network, they have to pass multi-
ple links and switches. Every time a packet is transmitted on a link
it is referred to as hop. Internal switching logic, such as crossbar,
routing units, or arbiter, does not consume significant power (∼15%)
compared to the SerDes, which convert the parallel internal into a
serial external data stream (∼85%) [19]. Because current intercon-
nection technology consumes power statically at all time, links are
a sweet spot for power and energy saving.

2.2.2 Topology. This work focuses on three of the most common
topologies that also represent different topology types, such as
direct/indirect and hierarchical/non-hierarchical networks.

3D Torus. A 3D torus is a direct topology in which nodes are
arranged similar to a 3D mesh with wrap around links that connect
the first and last node of every dimension. Therefore, every dimen-
sion can be seen as a ring instead of a chain, which reduces the
diameter. The main feature of a direct topology is the integration of
a switch inside a node. Since switches are connected directly to the
PCIe bus, there is no additional hop to the switch required. While
tori are highly modular in terms of scaling, they scale not linearly
in bisection bandwidth and diameter.

Fat Tree. The fat tree topology is an indirect, tree-based inter-
connection pattern, which provides the same bisection bandwidth
at every stage [10]. Therefore, the branches become thicker at the
same scale as there are leaves connected to a switch. To ensure
a constant bisection bandwidth, every stage provides the same
amount of switches in which half the links are used for the upward
and the other half for the downward direction. The top state is
an exception, where only half the switches are used to connect all
child switches. Last, all compute nodes are connected as leaves in
the last stage.

Dragonfly. The dragonfly topology was first introduced by J.Kim
et al. [5] as a hierarchical, indirect topology, which provides a low
diameter and minimizes the usage of costly optical links. The con-
cept is based on multiple groups, in which all nodes are connected
to according switches via local links and all groups are connected
via global links with each other. Although there is no strict rule
for the connection pattern, the following rule is recommended to
ensure a balanced channel load: there should be twice as many
routers in each group (a) as nodes connected to each router (p),
and links within each router used to connect to other groups (h).
Particularly, in the context of this work, the groups are connected
in a palm tree pattern.

3 RELATEDWORK
The fundamental problem of using models to represent the commu-
nication behavior of parallel applications is summarized by Singh
et al. [17]. In particular, it is incomplete to describe communica-
tion without regarding its relationship to the parallel computation.
Since irregular, dynamically behaving applications are common-
place, simulation tools aremandatory for an in-depth understanding
of communication behavior.

Locality characterization in HPC application has up to now
mostly been used in the context of memory locality, i.e. which

https://github.com/sstsimulator/sst-dumpi
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amount of locality is found and exploited. Murphy et al. [12] char-
acterize the sensitivity of HPC applications to memory latency and
bandwidth, which is also a question of locality. In another work,
the authors report a similar analysis of working set (size) [14]. Fur-
thermore, they provide a formal definition of temporal and spatial
locality and an analysis of those metrics for HPC apps, including
SPEC and benchmarks from Sandia [13]. Further work on mem-
ory locality is provided by Ibrahim et al. [4]. Manian et al. analyze
locality in the context of GPU allocations and MPI [11].

Regarding parallel communication characterization, Chodnekar
et. al. [2] introduce a couple of metrics related to communication
characterization, including message generation frequency, the spa-
tial distribution of messages, and message length. By using statisti-
cal regression analysis of the log of network activity, the message
inter-arrival time and spatial distribution are determined. While
the methodology is reported as feasible for a couple of workloads,
the authors also note some particular limitations if there are no
distinct phases of an application, as for multigrid applications. MPI
communication locality is furthermore studied by Kim et al. [6],
with particular treatment of communication event locality, message
destination locality, and message size locality. For a limited set of
rather old benchmarks (NAS [1] and MICOM [16]), the authors ob-
serve that the proposed metrics are relatively insensitive to system
and problem size variations.

Characterizing communication patterns can also shed light on
locality. In this context, a variety of related work exists, for in-
stance [8, 9, 15, 18]. However, such analyses are usually limited to
rather abstract density plots characterizing communication calls
and volume. In the best extend, a visual analysis is required to
understand to which amount locality is present. One of the most
recent works is in this context is presented by Klenk et al. [7],
which also used exascale proxy apps as underlying workload set for
detailed characterization. Contrary to locality, this work focuses
on abstract MPI behavior instead.

4 METHODOLOGY
In order to gain deep insights into the communication patterns of
HPC exascale applications, a wide set of MPI traces is analyzed.
The following section describes the selected applications as well
as the analyzing procedure. Furthermore, a set of new metrics is
introduced to characterize different locality aspects of the commu-
nication behavior of these applications.

Locality in MPI-based applications is mostly characterized by
communication patterns represented in heat maps so far. While
this is well suited for humans to understand patterns of a small
number of ranks, heat maps become increasingly unclear with
the number of ranks. Additionally, they are not qualified to be
interpreted abstractly. As shown in related work, communication
analysis still lacks more detailed metrics to describe the locality
of communication patterns. We introduce the following metrics to
close this gap. In particular, these metrics aim to understand the
spatial distribution of messages from a network point of view and
how it can be utilized for further improvements.
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Figure 1: Illustration of selectivity metric. For an exemplary
rank (LULESH, rank 0), the communication volume (y axis)
to every other communication partner (x axis) is shown.

4.1 MPI Level
AtMPI level, there is no information about the actual path amessage
is taking in the network, its particular length or the network’s
utilization. But there are still useful insights about locality that can
be found in this layer. For example, the identification of certain
communication partners or groups could help to improve mapping
and reduce the overall number of hops.

4.1.1 Locality. Rank locality represents the spatial distance of com-
munication at the MPI level which means the communication dis-
tance between two distinguished MPI ranks. Given a rank sourcing
the communication ranksource , a rank sinking the communication
rankdest , and based on a linearization of the different rank IDs
according to their numerical ID, the distance between two ranks
and the according locality are defined as

dist = |ranksource − rankdest | (1)

locality =
1

dist
(2)

Thus, lower distances describe a higher locality and vice versa,
where a distance of one (i.e. communication with direct neighbors)
results in a locality of 100%. Note that this is an abstract metric,
which neglects topology and mapping, and corresponding effects.
Still, it can be evaluated based on traces, with no replay necessary.

To quantize this metric, we define rank locality as the maximum
spatial distance for which 90% of the overall traffic is covered. Since
only applications with global communicators are considered, collec-
tive communication can be assumed uniform between all nodes. As
a consequence, only point-to-point messages are considered here.

4.1.2 Selectivity. Selectivity can also be derived completely from
the MPI level. It describes how many partner ranks are dominating
the communication of one rank in a certain application. For a given
source rank, this metric is calculated by determining destination
ranks and sort them by data volume exchanged between this pair
of ranks. Figure 1 depicts the concept for an exemplary rank. The
y-axis indicates the communication volume that is sent to every
other rank and the x-axis shows the corresponding receiving ranks.
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As locality, this metric also refers only to point-to-point com-
munication in the context of this work. However, when including
more diverse collective patterns, this type of communication should
also be included for both metrics. Again, for quantization reasons,
a threshold of 90% of the given rank’s total communication volume
was selected to describes how many destination ranks participate
in the communication set of each rank. While many workloads
establish at least little communication across all ranks, there are
significantly fewer ranks that contribute to the majority of overall
communication.

4.2 Topological Locality
Contrary to the MPI level, the network level allows estimating
effects of network parameters, such as mapping, topologies, or
routing, on communication patterns. In order to address topology
and mapping effects based on rank locality, we define topological
locality as the distance in number of network hops between the
source rank and the destination rank. Therefore, we provide non-
temporal models for different topologies, including shortest-path
routing algorithms.

The entire analysis is based on this model and not simulated. This
means, without the temporal character of a simulation, the results
do not contain any information about the interaction of traffic
flows. For all calculations, we assume the full network capacity is
available for every particular message. Although this representation
is simplified, it allows deriving certain network values that are not
affected by the interaction of messages.

4.2.1 Packet Hops. This metric indicates how many hops are per-
formed by packets in the network until all data has reached its final
destination. MPI messages are split in the according number of
packets, with a maximum payload size of 4kB. The number of hops
a particular packet has to traverse is calculated by the respective
routing algorithm. Formally, this metric is described as:

packethops =
∑

p∈packets

#hops(p) (3)

Due to the non-temporal character of this model and resulting the
abstinence of congestions and load balancing, we selected shortest-
path routing for all topologies in order to provide fairness and
emphasize the impact of the particular topology. This metric is
also highly depending on the injection rate of a given application,
respectively its communication intensity. However, it can directly
be translated to network latency and energy consumption.

4.2.2 Average Number of Hops per Packet. From the total amount of
packet hops, the average number of hops can be derived as follows:

hops =
packethops

#packets
(4)

This metric provides details about the mean distance a message has
to travel in the network. It is particularly helpful when comparing
different topology/application combinations. Furthermore, it is a
measure for the efficiency of exploiting locality effects, for instance
by a suitable mapping, as a lower value indicates a better locality
for a certain topology/application combination.

4.2.3 Network Utilization. This metric depicts the share of exe-
cution time in which the network is actually transmitting data.
It is also an indicator of the probability of congestions, including
different increments in hierarchical topologies. This can provide
useful insights for system architects about how to provision net-
works for particular applications. Although energy saving is not
common in interconnection networks yet, this metric can also help
to estimate the minimum energy that is required by the network,
when energy-saving mechanisms are applied. We define network
utilization as:

utilization =
datavolume

BW · texecution · #links
(5)

To provide fairness for all topologies, only links and switches
are considered that are actually transmitting data, in particular
when the configuration provides more nodes than the applica-
tion has ranks. For the fat tree, the total number of links equals
#nodes · #staдes (only half the links for the last stage), the torus has
three links per node, which equals one per dimension, assuming
that switches are integrated into the NIC. The standard dragonfly
is configured with the same amount of global links as nodes are
connected to each router and twice as many routers per group. This
results in 3.5 to 3.8 links per node in this study, depending on the
particular configuration. We assume BW = 12GB/s to be realistic
for a representative interconnection network.

4.3 Applications
The selection of HPC applications aims to cover multiple differ-
ent communication types and patterns at different scale. Exascale
mini apps, introduced by the DOE, hit all these criteria. A reposi-
tory maintained by Sandia National Laboratories provides traces
of these mini apps in the dumpi format2. While this repository
contains a multitude of applications at different scale, we select
the traces shown in Table 1 for our analyses. Table 1 also provides
a brief overview of the fundamental MPI characteristics, such as
communication volume (Vol.) of both collective and point-to-point
communication, total execution time, and the according throughput
(Vol./t). Applications that are marked with a star (*) make use of MPI
Derived Data Types. Since the dumpi repository does not contain
any header or other information about the actual size of the used
data types, we selected one byte as the according size. Although we
assume actual size to be bigger, this enables scaling results easily to
the actual size if needed. Furthermore, some applications make use
of custom communicators, in particular those representing custom
carts of ranks (i.e., as a result of MPI_Cart_create), or subtracting
certain ranks (MPI_Cart_sub). Changes in the communicator affect
the identification of particular ranks, due to another lack of infor-
mation in the traces. Therefore, it cannot be ensured that ranks
are still mapped to their particular identifier. In order to remain
consistent through the entire execution, traces with these types of
collectives are not considered in the context of this work.

4.4 Hardware Parameters
To determine the number of hops a message has to travel in the
network, a routing algorithm and formal definition of the particular

2https://portal.nersc.gov/project/CAL/doe-miniapps.htm
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Time Vol. P2P Coll. Vol./t
Application Ranks [s] [MB] [%] [%] [MB/s]

AMG

8 0.03 3.0 100.0 0.00 116.3
27 0.16 13.6 100.0 0.00 86.98
216 0.30 136.9 100.0 0.00 461.5
1728 2.92 1208 100.0 0.00 413.7

ïż£ AMR
Miniapp

64 12.93 3106 99.66 0.34 240.3
1728 42.69 96969 99.45 0.55 2271

ïż£ BigFFT
(Medium)

9 0.18 299.2 0.00 100.0 1659
100 0.50 3169 0.00 100.0 6340
1024 1.89 32064 0.00 100.0 17003

ïż£
Boxlib CNS
large (*)

64 572.19 9292 100.0 0.00 16.24
256 169.05 15227 100.0 0.00 90.08
256 150.92 15227 100.0 0.00 100.9
1024 67.54 34131 100.0 0.00 505.4

ïż£
Boxlib

MultiGrid C

64 231.42 23742 99.94 0.06 102.6
256 62.01 44535 99.95 0.05 718.2
256 60.28 44535 99.95 0.05 738.8
1024 20.88 75181 99.94 0.06 3600.9

ïż£ CESAR
MOCFE (*)

64 0.38 19.0 5.01 94.99 50.3
256 1.10 81.6 5.51 94.49 74.11
1024 3.95 686.2 6.96 93.04 173.9

ïż£ CESAR
Nekbone (*)

64 11.83 5307 100.0 0.00 448.8
256 3.17 1272 50.66 49.34 401.8
1024 5.15 13232 99.98 0.02 2568.8

ïż£
Crystal Router

10 0.14 133.8 100.0 0.00 930.3
100 0.71 3439.9 100.0 0.00 4854
1000 1.28 115521 100.0 0.00 90491

ïż£

ïż£

EXMATEX
CMC 2D
Multinode

64 842.80 16.0 0.00 100.0 0.0190
256 208.44 16.1 0.00 100.0 0.077
1024 58.85 16.4 0.00 100.0 0.279

ïż£EXMATEX
LULESH

64 54.14 3585 100.0 0.00 66.23
64 44.03 3585 100.0 0.00 81.43
512 50.24 33548 100.0 0.00 667.8

ïż£FillBoundary 125 2.32 10209 100.0 0.00 4393
1000 5.26 92323 100.0 0.00 17549

ïż£
MiniFE

18 59.70 1615 100.0 0.00 27.06
144 61.06 16586 99.99 0.01 271.63
1152 84.75 147264 99.96 0.04 1737.7

ïż£MultiGrid_C 125 0.77 374 100.0 0.00 4889.0
1000 3.57 2973 100.0 0.00 832.83

PARTISN (*) 168 2.2E+6 42123 99.96 0.04 0.02
SNAP (*) 168 1.2E+6 128561 100.0 0.00 0.11

Table 1: Overview of MPI-based exascale proxy applications

topology are required. We assume six-port NICs that are directly
integrated into nodes for the 3D torus and 48-port switches as com-
ponents for the fat tree. The dragonfly configurations are selected
accordingly to suggestions by J.Kim et al. [5], with a = 2h = 2p. An
overview of all different configurations is shown in Table 2 (rad
being radix, st being number of stages). Note that, especially for fat
tree and dragonfly, not all topology configurations can be chosen
accordingly to the number of ranks. To provide fairness in the uti-
lization comparisons, only actual used links in these configurations
are taken into account. Additionally, shortest path routing is used
for all three topologies, since traffic flows are not considered and,
therefore, no load balancing is required.

Furthermore, the execution of collective operations in HPC sys-
tems can differ between multiple network technologies or vendors,
due to custom implementations, such as special broad- and multi-
cast support. However, themodel in this work aims to be technology
independent and follows a simpler and more robust approach: col-
lectives are translated to point-to-point messages, which are sent
in the pattern of the particular operation. For example, a gather
call is performed by all ranks sending a p2p message to the root
node. This means, there is no tree structure or similar to spread
collectives over the network. Although this implementation often
differs from today’s hardware, our approach ensures that the net-
work is maximally utilized to give a stable estimate. Notably, data
in vector-based collectives is split evenly across all ranks.

Torus Fat Tree Dragonfly
Size (x,y,z) Nodes (rad, st) Nodes (a,h,p) Nodes
8 (2,2,2) 8 (48,1) 48 (4,2,2) 72
9 (3,2,2) 12 (48,1) 48 (4,2,2) 72
10 (3,2,2) 12 (48,1) 48 (4,2,2) 72
18 (3,3,2) 18 (48,1) 48 (4,2,2) 72
27 (3,3,3) 27 (48,1) 48 (4,2,2) 72
64 (4,4,4) 64 (48,2) 576 (4,2,2) 72
100 (5,5,4) 100 (48,2) 576 (6,3,3) 342
125 (5,5,5) 125 (48,2) 576 (6,3,3) 342
144 (6,6,4) 144 (48,2) 576 (6,3,3) 342
168 (7,6,4) 168 (48,2) 576 (6,3,3) 342
216 (6,6,6) 216 (48,2) 576 (6,3,3) 342
256 (8,8,4) 256 (48,2) 576 (6,3,3) 342
512 (8,8,8) 512 (48,2) 576 (8,4,4) 1056
1000 (10,10,10) 1000 (48,3) 13824 (8,4,4) 1056
1024 (16,8,8) 1024 (48,3) 13824 (8,4,4) 1056
1152 (12,12,8) 1152 (48,3) 13824 (10,5,5) 2550
1728 (12,12,12) 1728 (48,3) 13824 (10,5,5) 2550
Table 2: Configurations for different topologies at scale

5 APPLICATION-LEVEL LOCALITY
This analysis focuses on the application level and includes all met-
rics that can be derived directly at MPI level without further under-
standing of the underlying network parameters, such as topology,
routing, or mapping. Since only global communicators are consid-
ered, collectives can be assumed as a constant bias on the network,
while communication variations occur from point-to-point mes-
sages. Therefore, only the latter are considered for these analyses.
Also note that during this work, all analyses are done statically
without considering any timing aspects, including load balancing
or possible congestion.

Table 3 provides an overview of all applications and results.
Regarding point-to-point messages, many workloads tend to com-
municate only with a small subset of the global communicator.
Therefore, the third column shows the number of peers for every
workload. This metric, introduced by Klenk et al. [7], indicates
the peak number of peer ranks any rank in this application is ad-
dressing during point-to-point communication. Particularly, peers
is significantly smaller than the number of ranks (ranks) for most
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workloads. This shows that communication happens only with a
smaller subset of all ranks, however, this metric does not provide
any insights about the distribution between peers.

0 1 2 3 4

(a)

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

(b)

Figure 2: Nearest neighbors (green) of a particular node
(blue) for one dimensional problem (a) and two dimensional
problem (b)

5.1 Rank Locality
The first analyzed metric is an application’s locality at the rank level.
This metric indicates the average communication distance between
ranks weighted by the transmitted data volume. The results for rank
distances at all scales are provided in Table 3. Note, that rank locality
is the reciprocal of the rank distance. One can already observe that
actual communication is much more selective than the number of
communication peers suggests. In particular, for applications for
which peers is close to ranks, such as CNS or PARTISN, rank locality
differs substantially, indicating a considerable amount of locality.

Nearest neighbor communication is a frequently used pattern
that also provides good locality properties. This type of commu-
nication would translate to a rank locality of more than 50% (or a
distance of less than 2) since the distances between the adjacent
nodes is constant at all scale. Note that, scattered messages to other
ranks are not considered since only the nearest 90% of data volume
are considered here. However, this scheme is only true for one-
dimensional workloads, as spatial distances in further dimensions
are not covered by this linear metric. Figure 2 depicts the different
neighbor schemes for one (Figure 2a) and two (Figure 2b) dimen-
sions. While in the former scheme the linear numbering matches
the spatial setting of neighbors, the latter shows further distances
between ranks in the y dimension, for instance from rank two to
seven. In particular, this results in a constant offset depending on
the number of nodes per dimension.

Regarding the analyzed applications, the distance increases for
all workloads with the number of ranks, which indicates that no
application communicates in a one dimensional nearest neighbor
pattern. Table 4 shows some exemplary results for rank locality

in different dimensions. Most workloads show no special correla-
tion to a particular dimension, as represented by CNS and Multi-
Grid_C here. Although locality improves for all applications with
the number of dimensions, this is rather caused by a decreasing
diameter than a particular correlation. The only workload that has a
two-dimensional structure is PARTISN, as rank localitypeaks when
mapped to a 2D grid. The class of three-dimensional workloads
includes LULESH, AMG and Neckbone (64 ranks), which results in
a rank locality of 100%.

5.2 Selectivity
The selectivity metric indicates the number of ranks that make up
the largest part (here set to 90%) of the overall point-to-point com-
munication. For this metric positions and layouts are neglected and
single rank pairs are sorted by data volume exchanged. Figure 3
depicts the trends for each application, with several ranks sorted
according to exchanged data volume on the x-axis, and y-axis re-
porting the relative amount of communication volume. In particular,
selectivity is the point in which a curve cuts the 90% traffic share.
Although most applications differ in their communication patterns
there is a clear trend that 90% of the communication originates from
only six or even fewer ranks. Only AMR (1728 ranks), CNS (1024
ranks), MOCFE (256 and 1024 ranks), and Nekbone (1024 ranks)
have a selectivity larger than ten. Even in the largest configuration
of 1728 ranks, 90% of the total point-to-point communication of
each rank is still limited to a maximum of 13 ranks (AMR).
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Figure 3: Selectivity trends for all workloads

Additionally, the overall trend is a slightly increasing selectiv-
ity with the number of ranks. However, while scaling ranks, the
increase in selectivity is also slowing down, indicating a saturation.
Figure 4 exemplarily depicts this trend. The curve of the four AMG
application’s sample sizes is shifting to the right with an increasing
number of ranks. Although other applications vary in slope at a dif-
ferent scale, they show similar trends. In particular, there are three
workloads (CNS, MOCFE, and MultiGrid_C) that slightly decrease
selectivity when increasing the number of ranks.
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MPI Level Metrics 3D Torus Fat Tree Dragonfly
Rank Selec- Utili- Utili- Utili-

Distance tivity Packet zation Packet zation Packet zation
Workload Ranks Peers (90%) (90%) Hops hops [%] Hops hops [%] Hops hops [%]

AMG

8 7 3.7 2.8 4.2E+03 1.57 0.0052 5.7E+03 2.00 0.0303 8E+03 2.83 0.0116
27 26 8.7 4.2 2.9E+04 1.74 0.0012 3.5E+04 2.00 0.0034 7E+04 4.01 0.0034
216 127 35.8 5.2 5.5E+05 2.36 0.0008 8.2E+05 3.41 0.0032 1E+06 4.14 0.0021
1728 293 143.8 5.6 6.0E+06 2.62 0.0001 8.5E+06 3.62 0.0004 1E+07 4.28 0.0002

ïż£AMR_Miniapp 64 39 27.1 8.3 5.9E+06 2.93 0.0034 6.6E+06 3.20 0.0058 9E+06 4.19 0.0048
1728 490 348.3 13.0 8.9E+09 8.97 0.0278 4.9E+09 4.86 0.0229 5E+09 4.74 0.0119

ïż£ BigFFT
(Medium)

9 N/A N/A N/A 1.0E+06 1.56 0.6721 1.2E+06 1.78 3.0725 2E+06 2.91 1.2943
100 N/A N/A N/A 7.7E+07 3.40 7.4849 2.7E+08 3.52 10.5544 3E+08 4.36 7.6985
1024 N/A N/A N/A 6.4E+10 8.00 47.2317 3.5E+10 4.35 38.4346 4E+10 4.69 22.1491

ïż£
Boxlib CNS
large (*)

64 63 35.1 5.7 5.7E+06 2.99 0.0002 6.5E+06 3.23 0.0003 9E+06 4.23 0.0003
256 255 109.2 5.4 1.5E+07 4.93 0.0004 1.2E+07 3.75 0.0005 2E+07 4.49 0.0004
256 255 109.2 5.4 1.5E+07 4.93 0.0005 1.2E+07 3.75 0.0006 2E+07 4.49 0.0004
1024 1023 661.5 20.8 1.1E+08 7.97 0.0012 6.4E+07 4.35 0.0010 7E+07 4.68 0.0006

ïż£
Boxlib

MultiGrid C

64 26 27.1 4.4 2.6E+07 2.92 0.0011 3.0E+07 3.19 0.0020 4E+07 4.19 0.0017
256 26 54.3 4.4 3.9E+08 4.94 0.0035 3.0E+08 3.76 0.0045 4E+08 4.50 0.0032
256 26 54.3 4.4 3.9E+08 4.94 0.0036 3.0E+08 3.76 0.0046 4E+08 4.50 0.0033
1024 26 109.1 4.9 8.9E+09 7.96 0.0106 4.9E+09 4.33 0.0092 5E+09 4.67 0.0054

ïż£ CESAR
MOCFE (*)

64 12 51.3 8.9 2.4E+06 2.96 0.0498 2.7E+06 3.28 0.0769 3E+06 4.24 0.0605
256 20 195.3 14.0 6.2E+07 4.96 0.1216 4.7E+07 3.80 0.1368 6E+07 4.53 0.0895
1024 20 771.8 13.3 3.2E+09 7.98 0.4495 1.7E+09 4.36 0.3656 2E+09 4.69 0.2108

ïż£ CESAR
Nekbone (*)

64 27 15.8 4.8 4.0E+07 2.92 0.0027 4.6E+07 3.25 0.0090 6E+07 4.24 0.0081
256 15 28.4 5.4 1.2E+09 4.99 0.3447 9.0E+08 3.80 0.3882 1E+09 4.53 0.2541
1024 36 127.9 10.2 2.5E+10 7.96 0.0029 1.4E+10 4.35 0.0057 1E+10 4.69 0.0035

ïż£Crystal
Router

10 4 6.4 3.0 2.4E+05 1.74 0.0469 2.7E+05 2.00 0.1938 4E+05 3.18 0.0882
100 8 44.3 5.8 1.4E+06 2.41 0.0408 7.4E+06 2.76 0.0637 1E+07 3.61 0.0490
1000 11 334.3 8.9 2.8E+08 4.69 0.1475 1.9E+08 3.26 0.1531 2E+08 3.82 0.0959

ïż£

ïż£

EXMATEX
CMC 2D
Multinode

64 N/A N/A N/A 7.9E+05 3.00 2.0E-05 8.4E+05 3.28 3.0E-05 1E+06 4.25 2.4E-05
256 N/A N/A N/A 5.2E+06 5.00 0.0001 4.0E+06 3.81 0.0001 5E+06 4.54 0.0001
1024 N/A N/A N/A 3.4E+07 8.00 0.0008 2.0E+07 4.36 0.0007 2E+07 4.69 0.0004

ïż£EXMATEX
LULESH

64 26 15.7 4.5 2.3E+06 2.70 0.0004 3.8E+06 3.17 0.0013 5E+06 4.18 0.0011
64 26 15.7 4.5 2.3E+06 2.70 0.0004 3.8E+06 3.17 0.0016 5E+06 4.18 0.0013
512 26 63.7 5.0 1.7E+08 5.80 0.0005 1.3E+08 3.88 0.0020 2E+08 4.60 0.0012

ïż£FillBoundary 125 26 42.3 4.8 6.6E+06 3.27 0.0319 6.9E+06 3.32 0.0466 9E+06 4.13 0.0351
1000 26 219.1 5.3 9.9E+07 7.13 0.0245 6.6E+07 4.15 0.0248 8E+07 4.55 0.0160

ïż£
MiniFE

18 8 7.4 3.4 8.9E+05 1.82 0.0008 1.1E+06 1.90 0.0031 2E+06 3.69 0.0015
144 22 31.5 4.6 4.5E+07 3.97 0.0017 4.2E+07 3.62 0.0025 5E+07 4.40 0.0017
1152 22 91.8 5.1 4.6E+09 7.98 0.0039 2.6E+09 4.47 0.0037 3E+09 4.71 0.0022

ïż£MultiGrid_C 125 22 59.7 5.5 1.2E+06 3.52 0.0038 1.3E+06 3.57 0.0056 2E+06 4.33 0.0041
1000 22 392.0 5.4 1.0E+08 7.43 0.0013 6.0E+07 4.31 0.0013 7E+07 4.66 0.0008

PARTISN (*) 168 167 13.8 3.4 8.0E+07 2.70 7.4E-08 1.0E+08 3.04 1.6E-07 1E+08 3.88 1.2E-07
SNAP (*) 168 48 139.1 9.8 1.6E+08 3.85 4.2E-07 1.5E+08 3.74 6.2E-07 2E+08 4.41 4.0E-07

Table 3: Workload characteristics in different locality-describing metrics.

Furthermore, it appears that there are two classes of workloads.
The first one, including Boxlib MultiGrid C, Crystal Router, LULESH
and Multigrid_C, have a constant ratio between their selectivity and
number of peers at all scale. The other group includes the remaining
applications, which have more variance when scaling.

6 SYSTEM-LEVEL LOCALITY
After looking at the application level, system level effects are ana-
lyzed in this section. In particular, this includes the impact of differ-
ent hardware configurations on locality. Contrary to the abstract
metrics in the previous section, mapping on a particular network
topology provides precise results about the distances in terms of
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Rank Locality
Workload Ranks 1D 2D 3D

AMG 216 3% 17% 100%
1728 1% 8% 100%

ïż£Boxlib CNS
large

64 3% 13% 21%
256 1% 8% 13%
1024 0% 3% 7%

ïż£EXMATEX
LULESH

64 6% 24% 100%
512 2% 6% 100%

ïż£MultiGrid_C 125 2% 6% 17%
1000 0% 3% 9%

PARTISN 168 7% 100% 22%
Table 4: Exemplary workloads for different dimensionali-
ties in rank locality
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Figure 4: Scalability of selectivity (example: AMG)

hops and traffic volume in the network. These metrics can, for in-
stance, directly be translated to latencies or energy consumption
and, therefore, provide useful insights for further improvements in
the system’s design.

6.1 Multi-Core Effects
First, the impact of multi-core systems, respectively the ratio of
cores to network endpoints, on network traffic is studied. Recent
trends include an increasing number of cores per socket, allowing
to execute more ranks on the same node and, thereby, reducing the
amount of data that has to be exchanged on the interconnection
network.

Figure 5 depicts this scaling behavior for all applications that
are available with a configuration of at least 512 ranks. Smaller
configurations are not considered here since a problem size in the
same magnitude as the number of cores would sophisticate scaling
effects. The x-axis indicates the number of cores per socket, where
one core executes one rank. The y-axis shows the amount of inter-
node traffic relative to the one-rank-per-node configuration. Here,
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Figure 5: Network traffic for different cores-per-socket con-
figurations

traffic includes both point-to-point and collective messages. Note
that this study is topology-independent and only indicates how
much traffic is transmitted on the network, no matter the distance
between source and destination. Furthermore, a simple mapping is
used in which the number of ranks is consecutively mapped to one
node, according to the number of cores.

The variations in the course of the scaling are caused by mapping
effects. Since there are no optimizations done, a larger number of
cores per socket can split up a pair of ranks, which are heavily
communicating, while the same pair is located at the same node
at another configuration. However, the smaller values indicate the
optimum scaling here. Surprisingly, although the level of inter-node
traffic differs significantly between all applications, they all reach
their saturation at 8-16 cores per socket. This indicates that from
a network point of view, the optimum for minimizing network
traffic is reached at 16 cores per socket and there are no evident
improvements when further scaling, as long as the application’s
scale is much larger than the number of cores.

6.2 Topological Locality
The second part of the system-level studies focuses on how a topol-
ogy affects locality in terms of packethops and average number of
hops (hops). These analyses are performed with a simple mapping
of one rank per node. Additionally, collective communication is
translated into point-to-point messages, as explained in section 4.
The results for all configurations are provided in Table 3.

3D Torus. The 3D torus provides a fitting configuration for every
problem size due to its high modularity. Except for the SNAP ap-
plication, a torus provides the lowest average number of hops for
all small problem sizes (<256 ranks). Contrary, for a torus the hops
scales stronger with ranks than for other topologies, most likely due
to an accordingly increasing diameter. AMG is the only application
not following this trend. Although there are more applications with
a ranklocality of 100% in a 3D grid, the constant overhead caused by
collective operations increase the hops. Throughout all workloads,
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both hops and packethops scale with ranks, as distances and overall
communication increases.

Fat Tree. Three different configurations suffice to map all configu-
rations onto this topology. The deliberately high switch radix of 48
allows to set up large systems with only a few stages. The mapping
here is performed consecutively, which allows ignoring unused
nodes without affecting the results due to the tree-based character
of this topology. Generally, the fat tree provides good scalability
and hops only slightly increases with ranks. The maximum average
hop distance is 4.47 for MiniFE at 1152 ranks. Surprisingly, except
for AMR (1728 ranks), the fat tree provides always smaller hops and
a smaller number of packet hops than the low-diameter dragonfly.

Dragonfly. Similar to a fat tree, a dragonfly is limited to only four
different configurations. Although the mapping is again done in-
crementally, it seems to have a higher impact here. The number of
hops can vary from two in the best case to five in the worst case, for
all configurations. A dragonfly is known as a low diameter topology,
however, the hops remains only one time below the value of three
for a small configuration of only eight links, while it is close to the
maximum of five hops for most other cases. This indicates that,
because of the relatively small group size, locality effects cannot
be exploited here and most messages are exchanged between dif-
ferent groups. In particular, on average 95% of all messages overall
applications use a global inter-group link.

6.3 Network utilization
Network utilization is a useful parameter to estimate the dimen-
sioning of the network and minimal energy demand. The best
topology/application combination, as well as a smart mapping, are
the most suitable parameter to reach a reasonable utilization.

The first observation is that overall topologies, there is only one
application (BigFFT) that actually utilizes the network more than
1%, or in other words: for all but one application, 99% of the total
execution time, links are idling. Comparing the different topologies,
the general trend is that for most applications, a fat tree shows the
highest utilization, while especially for a large number of ranks, a
torus’ utilization exceeds the one of both fat tree and dragonfly.

7 DISCUSSION
At the hardware-agnostic application level, we introduced rank
locality and selectivity as new metrics to describe locality. While
selectivity for most workloads is pretty low, even compared to the
number of peers, rank locality decreases significantly with the num-
ber of ranks. This indicates that although there are just few distinct
communication partners, the data distribution in exascale apps is
not limited to neighbor ranks. One important factor for the commu-
nication pattern seems to be the dimensionality of the underlying
problem. This observation is also backed up by the multi-core study,
which shows that there is still a lot of inter-node network traffic,
even when using 48 cores/socket. Consequently, mapping ranks
consecutively to a given topology does not exploit the benefits of a
small selectivity, since communication partners are likely spatially
separated. In order to further reduce network traffic and profit from
faster on-chip communication, a deeper understanding of commu-
nication pairs is necessary. The low selectivity of most applications

suggests that a significant traffic reduction is possible only by using
an optimized mapping. Traffic can further be reduced by tailoring
the network topology to a given application, as the dimensionality
analyses suggest. However, the best approach and the degree of
possible optimization is highly depending on the application.

The dragonfly is often considered as a low-diameter topology.
However, its design prevents it from exploiting locality that is
present at the application level. This results in the highest average
number of hops for most configurations. As the maximum distance
for a dragonfly is bound to five hops, larger configurations might be
beneficial for dragonflies. The reason for the poor performance of
small configurations is probably the links/node ratio in the standard
configuration: with as many global links as nodes and twice as many
switches per group, the ratio of links/node varies from 3.5 to 3.8 for
the used configurations, while a torus has a constant ratio of 3 and
a fat tree one of below three. Also note, that this study considers
shortest-path routing, while in practice usually adaptive routing
is used in dragonfly networks, which often results in even longer
paths. Contrary, a 3D torus shows for many configurations the best
locality properties, despite a rather large diameter. This hints that
the three-dimensional character of many applications is a good
fit for a torus. However, at larger scales of 256 ranks or more, the
increasing diameter becomes a dominant factor.

Although it would be preferable to derive topology effects di-
rectly from the MPI layer, there is no explicit absolute correlation
between application-level and system-level locality. A low selectiv-
ity and rank distance often indicate a 3D torus to be the best fit, but
this does not hold true for all applications. Generally, although there
are many indications, it is hardly feasible to drive absolute findings
for all cases. However, the mini apps are selected to cover all kinds
of potential exascale workloads with different communication and
computation behaviors. Therefore, it is reasonable to assume that
they differ significantly regarding their locality properties. Further
studies with different subsets of similar applications could be useful
to identify correlations between these metrics.

Generally, the network utilization is very low for all configura-
tions, suggesting that a lot of energy is wasted in the interconnec-
tion network. As a reminder, most interconnection networks still
operate with constant power consumption, independent their uti-
lization.While advanced energy-savingmechanisms could probably
optimize energy efficiency, most current hardware does not support
them. Another approach could be operating at lower throughput,
as reducing the operating frequency should super-linearly decrease
power consumption. In this regard, further studies about the slack-
ness in MPI applications could be useful, representing how much
leeway a message has before the corresponding receive becomes
blocking. This would allow operating links with higher utilization,
such as global links in dragonflies, at a higher bandwidth than the
seldomly used local links.

8 SUMMARY
Transferring data on interconnection networks is neither efficient
in terms of execution time nor energy. Hence, reduced network
usage is desirable and can be achieved at many levels.

Looking at the application level, there are two main observations.
First, in all applications themajority of p2p communication happens
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only between a small set of ranks, i.e. they have a significantly
smaller selectivity than their number of ranks and even their peers.
In 89% of all configurations, these sets include less than ten ranks.
This suggests, that a smart mapping could dramatically reduce
network traffic, which would improve performance and also enable
power saving by scaling down network capacities. Second, the low
rank locality indicates that these sets of heavily communicating
ranks are not spatially grouped but spread overall ranks.

Independent of the low rank locality, the topological locality
increases significantly. This is caused by the multidimensional char-
acter of all studied applications, which is substantiated by the di-
mensionality studies in rank locality. A 3D torus seems to be the
most suitable topology for small workloads with ranks ≤ 100, while
for larger configurations the advantage of having a lower diameter
protrudes. Although the dragonfly is well-known as low-diameter
topology, the average numbers of hops are mostly higher than for
the other topologies. This indicates that the dragonfly cannot ex-
ploit the inherent workload locality properly, due to the comparable
low group size in the standard-setting. As a disclaimer, we want
to note that this study is solely based on a static analysis of traffic
patterns but not dynamic data of network monitoring. We believe
the introduced metrics to be of value for the community in spite of
being solely statically analyzed, it seems very promising to address
dynamic effects in future work.

Our studies show, that the maximum network utilization for
all topologies is noticeable low, where all but one application uti-
lize their links not more than 1% of the execution time. Although
static analyses are not eligible to provide accurate performance
results they present and upper limit for the maximum utilization
on a given topology. A higher utilization would be a better use of
resources, presumably despite an increased risk of interferences
between packets. Overall, these results suggest that exploiting lo-
cality in combination with a network of reduced bandwidth could
be a suitable approach to reduce energy consumption and provide
a higher utilization without affecting performance.
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