
Automated Partitioning of Data-Parallel Kernels
using Polyhedral Compilation

Alexander Matz
alexander.matz@imc.com

IMC Trading B.V. *
Amsterdam, Netherlands

Johannes Doerfert
jdoerfert@anl.gov

Argonne National Lab
Chicago, Illinois, USA

Holger Fröning
holger.froening@ziti.uni-

heidelberg.de
Institute of Computer Engineering
Heidelberg University, Germany

Abstract
GPUs are well-established in domains outside of computer
graphics, including scientific computing, artificial intelli-
gence, data warehousing, and other computationally inten-
sive areas. Their execution model is based on a thread hierar-
chy and suggests that GPUworkloads can generally be safely
partitioned along the boundaries of thread blocks. However,
the most efficient partitioning strategy is highly dependent
on the application’s memory access patterns, and usually a
tedious task for programmers in terms of decision and im-
plementation.

We leverage this observation for a concept that automati-
cally compiles single-GPU code to multi-GPU applications.
We present the idea and a prototype implementation of this
concept and validate both on a selection of benchmarks. In
particular, we illustrate our use of 1) polyhedral compilation
to model memory accesses, 2) a runtime library to track GPU
buffers and identify stale data, 3) IR transformations for the
partitioning of GPU kernels, and 4) a custom preprocessor
that rewrites CUDA host code to utilize multiple GPUs. This
work focuses on applications with regular access patterns
on global memory and the toolchain to fully automatically
compile CUDA applications without requiring any user in-
tervention.
Our benchmarks compare single-device CUDA binaries

produced by NVIDIA’s reference compiler to binaries pro-
duced for multiple GPUs using our toolchain. We report
speedups of up to 12.4x for 16 Kepler-class GPUs.

Keywords: Multi-GPU, Polyhedral Compilation, LLVM, Static
Analysis, Code Generation, GPU Communication, Runtime
Systems

1 Introduction
GPUs are prime examples for massively parallel processors
and have gained significant traction in the computing land-
scape. They have established themselves in many domains re-
quiring high bandwidth or high computational performance.

* This work was done while the author with the Institute of Computer
Engineering at Heidelberg University.

They excel in their high computational power and their en-
ergy efficiency in terms of performance-per-Watt.
The execution model of GPUs follows the Bulk Synchro-

nous Parallel (BSP) programming paradigm [1], which is de-
signed around creating programs with many more parallel
tasks than the underlying hardware can execute simultane-
ously. This "excess" parallelism is called slackness and allows
latency hiding and high portability between different pro-
cessor architectures, classes, and generations, which might
differ in their number of execution units. The data-parallel
programming languages implementing the BSP model (e.g.
OpenCL and CUDA) facilitate this, hiding architectural as-
pects from the user while providing consistent performance,
independent of actual hardware configurations.

However, performance portability is only observed as long
as accesses from processors to memory are equidistant. Indi-
vidual GPUs today have such an equidistant (or symmetric)
memory architecture, but a multi-GPU system qualifies as a
non-uniform memory architecture (NUMA), breaking this
assumption. We anticipate that future (single) GPU architec-
tures will shift towards NUMA, as technology constraints
might require techniques like multi-chip modules, hierarchi-
cal memory systems or heterogeneous memory [2].

Multi-GPU programming requires modifications through-
out host and device code. These orchestration efforts are
completely incompatible with the single-device program-
ming model, whether these GPUs are within one machine or
multiple machines. Most high-level optimizations on GPUs
aim to reduce stress on the memory subsystem by explicitly
caching or reordering memory accesses. Introducing multi-
ple GPUs adds another layer to the execution hierarchy, but
not to the memory hierarchy, requiring locality optimiza-
tions across multiple GPUs to use different communication
methods than within a single GPU.
In this work we introduce an automatic, compiler-based

GPU partitioning concept, which allows for a simplified scale-
out of single-device GPU programs to almost any number
of GPUs. It transparently integrates multiple GPUs into the
single-GPU execution and memory model, hiding the com-
plexity of inter-GPU communication and work partitioning
from the user. Since no user intervention is required, we can
maintain the simplicity and efficiency of single-GPU com-
puting, while providing scalable multi-GPU performance.

Alexander Matz, Johannes Doerfert, and Holger Fröning

Our hybrid optimization scheme relies on both static and
dynamic program analysis. To minimize overhead at execu-
tion time, a polyhedral model of the program is analyzed
and used to generate optimized transfers between GPUs at
run-time.

In particular, this paper makes the following contributions:

• An application model and toolchain that enable auto-
matic partitioning of GPU applications with regular
memory access patterns.

• A supporting runtime system that efficiently tracks
buffer usage of GPU applications and identifies stale
data based on a kernel’s memory access patterns.

• Automatic creation of communication and synchro-
nization code using the CUDA Runtime API, orches-
trating the execution of partitioned kernels on multi-
ple GPUs.

• An analysis of the performance and run-time overhead
of the resulting distributed applications for selected
workloads on up to 16 GPUs.

This work provides a detailed description of an automati-
cally partitioning compiler prototype for data-parallel lan-
guages that exploits the associated thread hierarchy. Addi-
tionally, we analyze the performance of the resulting bina-
ries with a particular focus on the overhead at run-time. We
consider this run-time overhead to be of particular impor-
tance because even small sequential overheads can severely
limit the scalability of a distributed application.
While we initially focus on GPUs within one machine,

our automatic communication generation scheme can also
be applied to GPU clusters and cloud installations. Our tool
stack is based on the gpucc CUDA compiler integrated into
the LLVM/Clang compiler framework [3]. CUDA and gpucc
were chosen for pragmatic reasons and we see no conceptual
difference when replacing CUDA with OpenCL, for instance.

The remainder of this paper is structured as follows. Sec-
tion 2 provides background information required for the rest
of this work, followed by an overview of the compilation
toolchain in Section 3; The polyhedral application model
used for the generation of optimized communication code
is described in Section 4. Sections 5 and 6 explain the host
code transformations and polyhedral code generation, re-
spectively. The kernel partitioning mechanism is described
in Section 7. Section 8 presents the runtime support system
for the kernel orchestration. Performance results are evalu-
ated in Section 9. Relevant work is discussed in Section 10
and the work then concludes with Section 11.

2 Background
In this section, we shortly review the current state-of-the-
art of GPU architecture and execution models, multi-GPU
programming, the LLVM compiler framework, and the poly-
hedral model.

2.1 GPU Architecture and Execution Model
The architecture of GPUs is a consequence of a fundamen-
tally different focus than that of CPUs: while CPUs feature a
moderate amount of cores that are highly optimized for se-
quential performance, GPUs consist of many simple cores
that are primarily suited for data-parallel workloads. To sat-
isfy the data-requirements for this large number of processor
cores, the GPU memory system is optimized for bandwidth
instead of latency. The higher memory latencies can success-
fully be hidden by minimizing the cost of context switches
and scheduling an excess of tasks onto the available execu-
tion units. Any threads that are waiting on memory are sim-
ply scheduled out for threads that are ready to execute.

Parallel performance is further improved by limiting mem-
ory consistency between threads. All threads are grouped
into independent collections, so-called thread blocks. Reli-
able communication is only possible within a thread block
thereby eliminating synchronization overhead between them.

The execution model of current GPUs is organized around
a regular, hierarchical 3D grid. The highest level in the hier-
archy is the grid itself, which is a 3D array of thread blocks.
All thread blocks are again 3D arrays of threads and all share
identical dimensions. The execution grid can be fully de-
scribed by the grid size and thread block size each for the
three dimensions. Threads are uniquely identified by the po-
sition of the thread block that contains them and their posi-
tion within the thread block.

2.2 Multi-GPU Programming
Several approaches to simplify multi-GPU with varying lev-
els of abstraction and room for optimizations programming
exist.
The CUDA API directly provides support for multiple

GPUs, allowing the distribution of tasks between multiple
GPUs. The API is low-level, utilizing it compares to using
pthreads for multi-core utilization. Writing multi-GPU code
this way requires careful manual orchestration of kernels
and data movements and tends to be tedious and error-prone.
Slightly higher abstraction is provided by libraries and

frameworks that work on the level of compound data types
(e.g. vectors and matrices). Such frameworks can be imple-
mented as a BLAS library, with the GPU-specific code being
hidden away in the library. This approach is productive and
achieves high performance for applications that only use the
limited set of operations provided by these libraries.
Other approaches take inspiration from functional pro-

gramming and focus on the scalable composition of user-
provided kernels. A set of computational patterns, such as
map, filter, or reduce operations with user-provided
kernels are combined to build more complex systems. This
approach typically scales well and has been the basis of

Automated Partitioning of Data-Parallel Kernels using Polyhedral Compilation

Google’s MapReduce [4] and Apache’s Spark [5]. The cop-
perhead library also follows this approach and implements
it for GPUs using the Python programming language [6].

2.3 LLVM Compiler Infrastructure
The LLVM project is a collection of reusable compiler com-
ponents for program analysis and optimization. It is based
on a platform-agnostic, assembly-like intermediate repre-
sentation (IR) that acts as the interface between all compo-
nents [7]. This well-defined intermediate representation al-
lows easy reuse of existing functionality, e.g. alias analysis
or common subexpression elimination, as well as the rapid
development of narrowly focused new components.

Generally speaking, there are three stages in modern com-
pilers:

1. The front-end, which translates human-readable source
code into a compiler-specific intermediate representa-
tion.

2. Optimizers that take code in intermediate representa-
tion as input and optimize it for better performance or
smaller code size. This is also called the middle-end.

3. The back-end, which translates code from intermediate
representation to machine code.

The LLVMprojects provides several front-ends for popular
programming languages, various middle-end analyses and
transformations, as well as a variety of back ends for common
architectures.

2.4 Polyhedral Model
The Polyhedral model is a program representation for the
analysis of control flow and memory accesses. It uses sym-
bolic affine formulas as a concise representation of memory
accesses in loop nests [8].
Both loop iterations and memory accesses are described

as unions of Z-Polyhedra. Each Z-Polyhedron is in turn de-
scribed by a set of inequalities in Presburger arithmetic. The
points inside the Z-Polyhedron then represent loop itera-
tions or memory accesses.

S1 B { [y,x] | 0 ≤ y ≤ x ∧ 0 ≤ x ≤ 4 } (1)
M B { [y,x] → [y ′,x ′] | y ′ = y + 1 ∧ x ′ = x + 3 } (2)
S2 B M(S1) = { [y,x] | 1 ≤ y ≤ x − 2 ∧ 3 ≤ x ≤ 7 } (3)
U B S1 ∪ S2 (4)

In Figure 1 the two-dimensional integer sets defined in Equa-
tions 1, 3, and 4 are presented. The set S1, defined in Equa-
tion 1, is depicted in part 1a. Part 1b shows the image of S1
under the function (or map) M , as defined by Equation 2.
The resulting set S2 can be described by Equation 3. Figure
1c shows the union of both sets.

Polyhedral optimization consists of three steps: 1) build a
polyhedral model of the application 2) transform the model
to represent the same computation but with improved per-
formance, and 3) regenerate the application code from the

(a) The set S1.
(b) Translated S2 B
M(S1).

(c) Union U B S1 ∪
S2.

Figure 1. Visual representation of the integer set S1, its im-
age S2 under the functionM , thus S2 B M(S1), and the union
of S1 and S2.

optimized model. Since Z-Polyhedra typically represent loop
nests and their memory accesses, the primary task of the
code generator is to emit optimized loops that iterate over
all points in the set efficiently. In addition, code can be gen-
erated to compute polyhedral expressions, for example, the
lower bound of a Z-Polyhedron in a particular dimension.

Libraries such as piplib [9], omegalib [10], and isl [11] pro-
vide implementations for the mathematical concepts under-
lying polyhedral compilation. For this work, we decided on
using the integer set library (isl), which is used by the LLVM
polyhedral optimizer Polly [12–14]. The isl library provides
models to represent polyhedral sets and maps and imple-
ments many operations on them, e.g. translations, intersec-
tions, and projections. Additionally, it provides a code gen-
erator for polyhedra and polyhedral expressions, which this
work heavily relies on.

3 Compilation Toolchain
In this section, we provide a high-level overview of the com-
ponents making up the toolchain and their interactions.

Our work is built on top of gpucc [3], a CUDA compiler im-
plemented within the LLVM framework. Except for our run-
time library, which implements the buffer management, and
a source-to-source translator written in lua, all our analyses
and transformations are implemented as part of the gpucc
pipeline [15]. Note that in contrast to CPU-only applications,
GPU applications target two different architectures at once
and therefore require two separate compilation paths. To par-
tition GPU applications, our pipeline performs the following
five high-level tasks distributed over two passes of gpucc:

1. Analyze the GPU kernels and create high-level appli-
cation models of their memory behavior (first pass, de-
scribed in section 4).

2. Apply source-to-source transformations to reference
multi-GPU primitives (non-gpucc, described in sec-
tion 5).

3. Generate communication code from the memory be-
havior model that dynamically identifies stale and up-
dated kernel data (second pass, described in section 6).

4. Create partitioned copies of the GPU kernels comput-
ing partial results (second pass, described in section 7).

Alexander Matz, Johannes Doerfert, and Holger Fröning

5. Link the application against our runtime library that
implements the multi-GPU primitives (second pass,
described in section 8.

gpucc

Rewriter

host device

Polyhedral
Analysis

gpucc

host device

linking

Kernel
Partition

Polyhedral
Codegen

Runtime
Library

CUDA

Binary

Figure 2. Toolchain overview

Figure 2 illustrates how the individual steps are integrated
into a single compilation pipeline. The first pass of gpucc is
required only to obtain the memory behavior models, other
results, e.g. object files, are discarded. After the source-to-
source rewriter transforms the application, gpucc is invoked
a second time to generate the multi-GPU application. This
repeated invocation of gpucc introduces redundant work,
resulting in a compile time increase from 1.9× - 2.2× for the
tested applications.

4 Polyhedral Application Models
In this section, we describe how polyhedral program analy-
sis [16] allows building a model of an application’s memory
accesses. The analysis is a stand-alone LLVM pass that gen-
erates polyhedral memory accesses descriptions similar to
the representation used by polyhedral optimizers [14, 17].
However, the pass is designed as a general-purpose analy-
sis and can generate (approximate) results for any reducible
control flow graph. While we currently ignore low-level cor-
rectness issues, such as potential integer overflows, we can
use the same techniques as polyhedral optimizers to ensure
soundness [18].
The application model of a kernel describes all memory

accesses to externally visible arrays as polyhedral integer
maps that map a thread id (in the grid) to zero or more points
in each array. Since optional write accesses exist, all relevant
memory accesses are first collected and then categorized as
either “must” or “may”. While available, this information is

currently not exploited, optional “may”-accesses are treated
as “must”-accesses. This is a pessimistic approximation and
utilizing it can improve performance, but it does not impact
correctness.

4.1 Memory Access Maps for CUDA
The code describes the instructions of an individual thread
in the execution grid. Its coordinates are specified in a two-
level hierarchy, the thread block index being the first level,
specified via blockIdx.{z,y,x}, and the thread’s position
within the thread block being the second level, specified
via threadIdx.{z,y,x}. Since the grid itself is later parti-
tioned (ref. section 7), memory locations are be expressed in
terms of these coordinates. However, as applications can con-
figure arbitrary thread block dimensions (accessible through
blockDim.{z,y,x} in the kernel code) the global thread
position in the grid contains a non-affine multiplication of
two variables, which is not directly supported in the poly-
hedral model. For a dimensionw ∈ {z,y,x} of the grid, the
global position is typically computed using the following ex-
pression:

threadIdx .w + blockIdx .w · blockDim.w (5)

Since the thread block size is unknown but fixed for one
launch of the kernel and the CUDA memory model guaran-
tees the independence of thread blocks, we can introduce a
new “block offset” dimension to encapsulate the non-affine
multiplication [19]. Thus, with

blockOff .w = blockIdx .w · blockDim.w (6)

, the global position of a thread in the thread grid becomes
the following affine expression:

threadIdx .w + blockOff .w (7)

Before starting the kernel, blockOff.{x,y,z} needs to
be initialized accordingly.
For each of the thread grid dimensions {z,y,x } we now

have three input dimensions blockOff, blockId, and threadId
that describe the thread’s position in the hierarchical grid.
This leads to the descriptions of memory accesses in an array
having having the form Z9 → Zd , with d being the number
of dimensions of the array.
The CUDA execution model guarantees thread blocks

to be an atomic unit of execution. This allows simplifying
the memory access descriptions by eliminating the threadId
dimension. Before projecting out of all three grid dimensions
a constraint is added for each: 0 ≤ threadId < blockDim,
which emulates thread blocks. The resulting memory access
maps are now a subset of Z6 → Zd . They accurately model
the memory behavior as seen from outside of a GPU kernel,

Automated Partitioning of Data-Parallel Kernels using Polyhedral Compilation

provided the constraint blockOff = blockId ∗ blockDim is
satisfied.

clang

Rewriter

host device

Polyhedral
Analysis

clang

host device

linking

Kernel
Partition

Polyhedral
Codegen

Runtime
Library

CUDA

Binary

(a) Partition

clang

Rewriter

host device

Polyhedral
Analysis

clang

host device

linking

Kernel
Partition

Polyhedral
Codegen

Runtime
Library

CUDA

Binary

(b) Read Set

clang

Rewriter

host device

Polyhedral
Analysis

clang

host device

linking

Kernel
Partition

Polyhedral
Codegen

Runtime
Library

CUDA

Binary

(c) Write Set

Figure 3. Read and written memory locations of a 5-point
stencil applied to a partition of the grid.

Figure 3 illustrates thememory access patterns of a 5-point
stencil, where each thread computes exactly one element in
the 2-dimensional result array. The thread grid partition on
the left has read accesses that also include the halo of the
target elements. The write accesses, on the other hand, are a
1:1 mapping of the thread grids to array elements.

While read maps can always be over-approximated with-
out compromising correctness, write maps need to be accu-
rate and any over-approximation can lead to incorrect results.
Additionally, write maps must be injective, indicating that no
two threads write to the same address. Since the CUDA exe-
cution model does not impose an order of execution between
threads or thread blocks, such writes can occur in any order.
Applications with this behavior exist, often as an optimiza-
tion relying on particular hardware characteristics. Since we
cannot replicate these characteristics with multiple GPUs,
write-after-write hazards prohibit multi-GPU execution.

After performing these checks, the application model is
saved to disk. For each kernel, a record is created that con-
tains the kernel’s name, suggested partitioning strategy, and
a list of its arguments. The read and write maps of arrays
are stored per-argument.

5 Host Code Transformations
This section describes the transformations applied to the
host code of the application, not including communication
code generation, which is explained in section 6. To utilize
multiple GPUs, the host code of the application needs to
be transformed to use multi-GPU primitives instead of the
CUDA API. This transformation can be applied on different
representation levels, including plain text, the abstract syntax
tree (AST), or the low-level intermediate representation (IR)
of the host code. We decided to use text substitutions with
regular expressions for the source-to-source transformation.
This allows for a simple implementation at the cost of not
supporting all possible CUDA applications. Three types of
substitutions are made.
The first type inserts information at the very top of the

source code file, including:

• An additional #include directive for the header file
of the runtime library.

• A new, empty definition for each GPU kernel with the
same signature as the original except an additional
parameter for partition information.

• Declarations (without implementation) for functions
describing the kernel’s access patterns. Their genera-
tion is explained in section 6.

The second type of substitution replaces CUDA API calls
with multi-GPU variants in our runtime library. Since the
replacements are designed to have identical signatures, the
substitution can be made by simply changing the name of the
called function. As an example, all cudaMalloc(&buffer,
size) calls are replaced by __mgpuMalloc(&buffer,

size) calls.
The last type of substitution alters kernel launches to

perform four tasks:

1. Partition the execution grid for the available GPUs.
2. Synchronize all buffers that are read from to contain

up-to-date values.
3. Launch each partition of the kernel on its respective

GPU.
4. Update the buffer tracker to account for all writes

performed by the kernel partitions.

Algorithm 4 shows the pseudo-code that is inserted to
replace kernel launches in the original program. The bodies
of the three top-level loops correspond to the tasks (2), (3),
and (4) in the list above and the grid partitioning from step
(1) is integrated into the loops themselves.

In the first loop, multi-GPU primitives defined in the run-
time library and the automatically generated code are used
to synchronize all buffers between GPUs that are read from
by the kernel. A virtual buffer is synchronized by iterating
over each partition’s memory accesses (determined using
polyhedral code generation as explained in Section 6), using
the memory tracker to identify the GPU that has most re-
cently written to each location, and copying the data to the
local GPU.
The second loop launches a partitioned kernel: a new

grid configuration is calculated, then all kernel arguments
referring to GPU buffers are replaced with a pointer the
partition’s local instance, and finally the kernel is launched
asynchronously;

The third loop updates the memory trackers of the virtual
buffers to reflect the write accesses each partition. This hap-
pens concurrently to the asynchronous kernels and relies on
multi-GPU primitives from the runtime library.

6 Polyhedral Code Generation
This section describes the code generation that enables effi-
cient memory transfers to synchronize buffers contents be-
tween kernel launches. Generally speaking, polyhedral maps

Alexander Matz, Johannes Doerfert, and Holger Fröning

1 params = [arg in args | arg is parameter]
2 for gpu in GPUs:
3 partition = model.kernel.partitioning(grid, gpu,

params)
4 reads = [arg in args | arg is array and arg is

read]
5 for array in reads:
6 pattern = pattern_for(model.kernel, array)
7 buffer_synchronize(array, pattern, partition,

params)
8 all_devs_synchronize()
9

10 for gpu in GPUs:
11 partition = model.kernel.partitioning(grid, gpu,

params)
12 newGrid = partition.max - partition.min
13 newArgs = []
14 for arg in args:
15 if arg is array:
16 newArgs += [instance_for_gpu(arg, gpu)]
17 else:
18 newArgs += [arg]
19 partitioned_kernel<<<newGrid, blocks>>>(newArgs,

partition)
20
21 for gpu in GPUs:
22 partition = model.kernel.partitioning(grid, gpu,

params)
23 writes = [arg in args | arg is array and arg is

write]
24 for array in writes:
25 pattern = pattern_for(model.kernel, array)
26 buffer_update(array, pattern, partition, params)

Figure 4. Pseudo code of the kernel launch replacement that
is inserted by the source-to-source rewriter.

are translated into executable code to extract two pieces of
information:

1. the elements in the image of an access map, and
2. the dimension sizes of all arrays in global memory.

The elements in the image of an access map can be rep-
resented in multiple ways. Directly generating a function
f : Z6 → Zd , as described in our model in section 4, would
require iterating over all thread blocks of a partition to get
its read or write set. This can be optimized into a function
of the form f : P → A, P ∈ (Z6,Z6,Z3),A = {x |x ∈ Zd }
that returns all elements A that are in the image of the ac-
cess map applied to a partition P . The partition P is de-
scribed as a 6-dimensional box spanned between two tuples
of blockOff .{z, y, x} and blockId.{z, y, x} (the thread block
dimension need to be provided as well). By constraining the
domain of the map to the inside of this 6-dimensional box,
the image contains only the elements accessed by a specific
thread grid partition. This is exactly the information required
from the access maps in order to allow automatic buffer syn-
chronization between GPUs.

6.1 Code Generation
The isl library provides highly optimized code generation
facilities that allow to easily embed this information into the

application as native IR functions. It provides an API that
generates Abstract Syntax Trees (ASTs) from polyhedral sets
and expressions, which can then be translated into LLVM
IR. The ASTs generated by isl can be directly expressed in a
structural programming language, such as C. All nodes in
an AST are either control flow or (closed-form) expressions.

Control flow in isl is limited to for-loops and conditional
branches. Both are basic control flow primitives and can be
directly translated into fixed sets of LLVM IR basic blocks
and branches.
Polyhedral expressions are also generated as ASTs. Each

node in the expression’s AST is either a constant value, a
variable reference, or an operator with one or more expres-
sions as operands. Since operands can themselves be the re-
sult of an operation, complex expressions can be built from
simpler ones. Polyhedral expressions are closed-form expres-
sions, meaning they never contain control flow and can be
computed in constant time. Virtually every operator in the
AST has a direct counterpart in LLVM IR, allowing very easy
generation of the appropriate IR for a given expression.

partition read set write set

(a) Partition

partition read set write set

(b) Read Set

partition read set write set

(c)Write Set

Figure 5. Scanning the memory accesses of a 5-point stencil
code

Enumerating every single element in the image of an
access map (i.e. every accessed array element) is, while
straight-forward, prohibitively expensive. Instead, we lever-
age the fact that CUDA uses row-major order to store multi-
dimensional arrays and enumerate only the first and last el-
ement of each row in the image. The first and last set are
computed by fixing all but the last dimension of the image
to the position of the given row and computing the lexico-
graphical minimum and maximum of the resulting polyhe-
dral set. The result can either be a convex set, in which case
this optimization produces exact results, or a union of con-
vex sets, resulting in an over-approximation of the enumer-
ated sets. For a union of sets, the over-approximation can be
eliminated by applying this approach to each convex set of
the union instead of the union set itself.

6.2 Enumerator Interface
The generated code needs to be available to the static run-
time library and therefore requires a well-defined interface.
Each generated function for a read or write map is given the
same name as the kernel, followed by a suffix containing
the position of the argument in the kernel arguments and a
"read" or "write" parameter.

Automated Partitioning of Data-Parallel Kernels using Polyhedral Compilation

Input to the functions are the partition of interest and the
values of scalar arguments, both are passed using arrays of
64-bit integers to avoid variable numbers of arguments. The
partitioning information is a 6-tuple describing the partition
as pairs of half-open intervals of thread blocks, one for each
of the three thread grid dimensions. The scalar arguments
are simply copied into an array from the kernel launch they
belong to.

Output of the function is a list of element ranges in the set.
Since the number of these are unknown, a callback function
is used to avoid dynamic memory allocations. The callback
is invoked once for each element range.

Using this approach, the static runtime can easily and effi-
ciently use the information collected during kernel analysis.

7 Kernel Partitioning
Transformed kernels should behave as if acting on only a sub-
set of their original thread grid. In this section we describe
the transformations required for this. A thread grid parti-
tion is a 3-tuple of integer pairs: ((minz ,maxz), (miny ,maxy),
(minx ,maxx)). Each pair describes the start (inclusive) and
end (exclusive) of the partition in one of the three thread
grid dimensions. In contrast to the generated code in section
6, block dimensions do not need to be included in the par-
tition because the regular block dimensions from CUDA’s
special registers are still valid.

blockIdx .w → partition.minw + blockIdx .w (8)
дridDim.w → partition.maxw (9)
gridConf .w = partition.maxw − partition.minw (10)

w ∈ {z,y,x}

The first step is cloning the kernel code and appending the
arguments for the kernel partition. In this state, the kernel
behaves exactly like the original one and would just ignore
the additional argument. Next, the two substitution rules
from equations (8) and (9) are applied. Rule (8) adds an offset
to the block ID so that from the kernel’s perspective the
thread blocks now start at the start of the partition instead
of at zero. Rule (9) replaces the kernel’s grid dimension with
the end of the partition. Combining both rules results in the
kernel executing code only for thread blocks in the half-open
interval [minw ,maxw),w ∈ {z,y,x}. The correctness of this
transformation relies on the grid configuration at kernel
launch to be updated according to equation (10).

8 Runtime Library
The runtime library contains high-level, static functions that
are common to all partitioned applications. These functions
do not need to be customized to individual applications and
can be implemented and compiled in advance. This allows
using a high-level implementation language, such as C++.
The library is split into two parts: virtual buffer management
and CUDA wrapper functions.

8.1 Buffer Management
When kernel partitions distributed over multiple devices,
each device needs a copy of its data in a device-local buffer.
The coherence protocol between these device-local buffers
is similar to cache coherence protocols of GPUs, albeit much
simpler due to all synchronization points being known in
advance (i.e. memcopies and kernel launches).
Instead of allocating a single buffer on a single GPU, the

partitioned application allocates one device buffer per device,
creates a tracker component, and bundles them into a "virtual
buffer".

The tracker contains a sorted list of non-overlapping seg-
ments, each containing a reference to the buffer instance
that holds the most recently updated copy of that segment.
The tracker is updated by all operations that write to the
virtual buffer, namely kernel launches (described in 5) and
memcopies (as described in 8.3). This allows the accurate
tracking of the distribution of the most up-to-date data con-
tained in a virtual buffer. The segment list is based on a B-
Tree map using the start of each segment as the key and the
"owner" of the most recent version as the value.
In GPU kernels with regular memory access patterns, lo-

cality of thread IDs often directly translates to data locality
in the buffers used in the location. This is a result of the exe-
cution model encouraging to calculate one output element
per thread and to equate the thread ID to the output ele-
ment index. As a consequence, large contiguous partitions
in the thread grid cause large contiguous arrays in memory
to be read and written, further limiting fragmentation. The
extreme case are GPU kernels with a 1:1 correspondence be-
tween the thread ID and the output element index. Kernels
with such a write pattern produce a single segment per par-
tition in the tracker of the buffers they are writing to.

8.2 Memcopies for Multiple Devices
Memcopies in a single GPU application always have exactly
one source buffer and exactly one target buffer. In partitioned
multi-GPU applications, however, CUDA memcopies can
have multiple source or destination buffer instances. This
requires some adaptions to the corresponding memcpy oper-
ations. Since the CUDA Runtime API requires its memcopies
to specify the direction of the data movement, they can be
translated based on the specified direction.

Host-to-Device memcopies turn into a 1:n data move-
ments. The single source buffer is distributed among multi-
ple GPUs. Static analysis can not reliably prove the read pat-
tern applied to the buffer in the presence of unpredictable
control flow or kernel configurations. Consequently, data is
distributed in a predefined pattern, hoping that this pattern
matches the read pattern of the following kernels. Currently,
this pattern is a linear distribution among all GPUs. Any mis-
matches between this pattern and the actual read pattern of

Alexander Matz, Johannes Doerfert, and Holger Fröning

the kernels need to be corrected before the kernel launch as
described in subsection 8.3.

Device-to-Host memcopies are a n:1 data movement in
the translated application. Since all data is gathered into a
single host buffer and the tracker has a record of the data
distribution of the device buffer, this memcpy is easily trans-
lated: 1) The tracker is queried for all contiguous segments
and the GPU that segment is located on and 2) the segment
is copied from the given GPU to the host buffer.

Device-to-Device copies turn into n:n data movements.
This can be implemented as a combination of the Host-to-
Device and Device-to-Host strategies. Single-GPU applica-
tions typically avoid device-to-device copies since it results
in duplicated data data on a single GPU. For this reason,
Device-to-device memcopies are currently not supported.

Host-to-Host data movements are left unmodified.

8.3 Synchronization of Virtual Buffers
Enforcing coherence between buffer instances with respect
to kernel launches requires the generated code described in
section 6. Both synchronizing a virtual buffer and updating
its tracker are operations that are specific to a particular
partition and therefore need to be repeated for each partition.
Currently, each partition corresponds to exactly one GPU.
In order to synchronize a virtual buffer for a given GPU,

the read set of that GPU’s partition is iterated over using the
generated code for that array (as described in 6). For each
interval in the read set, the tracker is queried and returns
one or more segments pointing to the buffer instance that
contains the most recent version of the data in that segment.
If the data is already present on the current GPU, nothing
is done. Otherwise, an asynchronous memcpy is issued to
copy the data from its most recently written to GPU. The
tracker of a virtual buffer does not support shared copies,
resulting in redundant transfers for applications with large
amounts of shared data.

Updating the tracker requires iterating over thewrite set of
a GPUs partition. For each interval in the write set of a given
GPU, the tracker is updated so that the interval points to
the buffer of that GPU as owning the most recently updated
version of the data.

8.4 CUDA Runtime Replacement
The CUDA replacement functions have identical proto-
types to their CUDA API counterparts to ease code trans-
formation and provide a stable interface. The memory re-
lated CUDA API (cuda{Malloc / Free / Memcpy /

MemcpyAsync}) is replaced by functions dispatching to their
virtual buffer implementation. cudaGetDeviceCount is re-
placed by a function that always returns 1 and cudaDevice
Synchronize is replaced by a function that synchronizes
all available devices. New CUDA replacements are imple-
mented as required.

Benchmark Small Medium Large Iterations

Hotspot 8,192 16,384 36,864 1,500
N-Body 65,536 131,072 327,680 96
Matmul 8,192 16,384 30,656 N/A

Table 1. Configurations of the benchmark applications.

9 Experimental Results
In this section, we evaluate the performance of the prototype
implementation using three proxy applications.
The system used for the tests is a Supermicro X10DRG

equipped with two Intel Xeon E5-2667 Processors, eight
NVIDIA K80 GPUs, and 256GiB of DDR4 RAM running
at 2133MHz. Single-GPU results are from the reference bi-
nary produced by NVIDIA’s NVCC compiler version V8.0.61.
Multi-GPU applications have been compiled using our toolchain
as an external module to the development version of LLVM/-
Clang from Jan 8, 2018. NVIDIA driver initialization and host
buffer initialization were measured separately and removed
from the total runtime.

9.1 Workload Evaluation
The selection of workloads the approach can be tested on
is limited to those that exhibit memory access patterns that
can be accurately predicted using our polyhedral model. The
three chosen benchmarks are taken from the computational
dwarfs identified by Berkeley in [20], and configurations are
summarized in table 1.
Hotspot is a 5-point stencil operating on a quadratic grid.

The problem size describes the side lengths of this grid and
the number of iterations has been fixed to 1500 for the graphs
shown. The amount of computation per thread is constant
and comparatively low, as are the data requirements per
thread. As a result, this benchmark is susceptible to over-
heads in the distribution process and expected to exhibit
only limited scalability. Figure 6 shows that the maximum
speedup of about 7.1x is reached with 14 GPUs.
The N-Body benchmark is a direct gravitational N-Body

simulation, with the problem size describing the number of
simulated bodies. Clustering optimizations have not been
applied, since the dynamic clusters would result in irregu-
lar memory accesses. In this benchmark, computation per
thread grows cubic with the problem size, while the data re-
quirements per thread grow only linearly, resulting in excel-
lent scaling behavior. The maximum speedup of about 12.4x
is reached using 16 GPUs, as seen in Figure 6.

Matmul computes the product of two dense, quadratic ma-
trices, with the problem size being the side length of the ma-
trices. The version used here is a basic tiled implementation.
In a square matrix multiply, the total work per thread also
grows cubic with the side length of the matrix while the read

Automated Partitioning of Data-Parallel Kernels using Polyhedral Compilation

1

2

3

4

5

6

7

1 2 4 6 8 10 12 14 16

GPUs

S
pe

ed
up

Hotspot

1

3

5

7

9

11

1 2 4 6 8 10 12 14 16

GPUs

N−Body

1

2

3

4

5

6

1 2 4 6 8 10 12 14 16

GPUs

Problem

Small

Medium

Large

Matmul

Figure 6. Speedup of the benchmarks for up to 16 GPUs.

Hotspot Matmul N−Body

 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16
0.00

0.25

0.50

0.75

1.00

Number of GPUs

R
el

at
iv

e
T

im
e

Task Application Transfers Patterns

Figure 7. Breakdown of the execution time of transformed
applications.

●

●

●

●

●

0%

2%

4%

6%

1 2 4 6 8 10 12 14 16

GPUs

F
ra

ct
io

n
of

 R
un

tim
e

Figure 8. Overhead of the runtime system.

set grows quadratic with it. The second matrix of the prod-
uct is read column-wise by each thread but distributed lin-
early over all devices (the default distribution pattern). This
mismatched data distribution is corrected by the runtime be-
fore the kernel starts. The resulting initial overhead together
with the lack of iterative execution limits scalability. Figure
6 shows a maximum speedup of about 6.3x for 14 GPUs.

9.2 Overhead Analysis
Parallelizing a CUDA application is not only limited by the
kernels themselves, but also by the sequential overhead that
orchestrates the parallel kernels. The lower bound of these
overheads can be measure by executing the partitioned appli-
cation on a single GPU: across all single-GPU experiments,
the slow-down has a median of 2.1 %, with a 25th and 75th
percentile of 0.13 % and 3.1 %, respectively.
The next step is a further dive into the different types of

overhead introduced by the partitioning of the application.

We compute overheads based on direct measurements of the
executed applications to avoid instrumentation and paral-
lelism issues. The execution time of each benchmark is mea-
sured in three configurations:

• α : regular execution of the multi-GPU application
• β : execution with disabled transfers, but dependency
resolution and tracker updates are performed

• γ : execution with disabled dependency resolution and
tracker updates, which automatically also disables
transfers

Using these measurements, the following relative times can
be computed:

• time spent only in application logic:TApplication = γ/α
• time spent in transfers: TT ransf ers = (α − β)/α
• time spent in non-transfer overheads:TPatterns = (β −
γ)/α

Figure 7 shows an overview of how these parts of the
execution time have been measured for the "medium" sized
problems for all three benchmarks. As expected, the relative
time spent with overhead increases with larger numbers of
GPUs. However, the majority of the overhead is caused by
transfers for buffer synchronization that are essential to the
partitioning. Non-transfer overheads (mostly caused by the
resolution of data dependencies) make up a maximum of
6.8% over all measurements.
Figure 8 gives a more accurate view of the non-transfer

overheads over all benchmarks and problem sizes as a box
plot. Over all measurements, the 25th percentile of the over-
head is at 0.001 %, the 75th percentile at 3.5 % and the median
at 0.51 %. The overheads computed in this section already
account for highly iterative benchmarks that are sensitive
to sequential overheads, such as the Hotspot. Thus, we con-
sider the overhead to be within the acceptable range for an
automated solution.

10 Related Work
Several forms of automated partitioning techniques have
been proposed in the past. Even though all aim to achieve a
similar goal, they differ substantially in their concepts and
details.

Alexander Matz, Johannes Doerfert, and Holger Fröning

Related work on runtime systems focusses on shared vir-
tual memory and memory optimizations. Li et al. explore
the use of page migration for virtual shared memory in [21].
Tao et al. utilize page migration techniques to optimize data
distribution in NUMA systems [22]. As opposed to our work,
these concepts rely on page migration and perform all tasks
at execution time. Instead, we exploit knowledge generated
at compile-time to optimize data movements at execution
time. However, we see page migration as a possible solution
for workloads with dynamic, data-driven memory access
patterns like graph computation, sparse linear algebra and
similar.
Lee et al. use kernel partitioning techniques to enable a

collaborative execution of a single kernel across heteroge-
neous processors like CPUs and GPUs (SKMD) [23], and in-
troduce an automatic system for mapping multiple kernels
across multiple computing devices, using out-of-order sched-
uling and mapping of multiple kernels on multiple hetero-
geneous processors (MKMD) [24]. However, they focus on
scheduling optimizations rather than automatic partitioning.
Similar applies to various other works, including [25].

In [26], Lee et al. implement software-based virtual mem-
ory management for OpenCL kernels to circumvent GPU
memory size limitation. Instead of using static analysis for
memory pattern analysis, they create a minimal clone of
each kernel that marks accessed memory in a page table,
yielding accurate results at the expense of significant run-
time overhead.

Related work onmemory access patterns has a rich history.
Recent work that focuses on GPUs includes Fang et al., who
analyze memory access patterns to predict the performance
of OpenCL kernels [27]. Ben-Nun et al. are representative of
various work that extends code with library calls to optimize
execution on multiple GPUs by decisions based on the user-
specified access pattern [28].
Bondhugula et al. take a similar approach in their work

[29] by modeling the memory access patterns of loop nests
and distributing the work and data across a distributed mem-
ory system. While influential, their work focuses on solely
CPU based systems with no CPU-GPU interplay and relies
exclusively on polyhedral compilation, instead of using a dy-
namic tracker at runtime to allow for the arbitrary distribu-
tion of data.
Moll et al. in [19], similar to us, leverage the polyhedral

model to reason about memory access patterns and split the
input space of data-parallel languages. Since they only model
and split a single thread block at a time, it is orthogonal our
work. However, we observe that a complete understanding
of memory access patterns might require a combination of
multiple analysis techniques.

The APOLLO project is an automatic loop-parallelizer for
CPU applications that also uses a polyhedral model to par-
tition the code for execution on multiple cores [30]. As op-
posed to the whole-kernel analysis used in our work, they

use instrumented code to profile different partitioning strate-
gies on a small subset of the workload and find the best per-
forming one.

Both SnuCL [31] and rCUDA [32] address the complexity
of scaling out GPU applications to multiple nodes by project-
ing GPUs on remote nodes into the local system, essentially
providing GPU virtualization. Although related to our work,
GPU kernels and buffers are treated as atomic, liberating
both projects from the need to manage coherence within in-
dividual device buffers. While extensions [33] optimize scal-
ability by replicating host program execution and data, the
task of mapping control and data to these devices is left to
the programmer.

11 Conclusion
In this work, we presented an LLVM-based toolchain that
automatically compiles single-GPU code to multi-GPU ap-
plications. Polyhedral compilation is used for the analysis
of memory access patterns and communication code gen-
eration, and standard code transformation techniques are
used to partition host and device code. We introduce the
tool stack and the methodology behind it, providing details
on the different steps performed at compile time and run
time. Three different workloads are used for experiments
on a system with 16 GPUs, resulting in speedups of up to
12.4x. A detailed analysis of the runtime overhead, i.e. the
non-transfer overhead, has shown it to be very low with a
median of 0.51 % of the total application runtime.
These results suggest that automatic partitioning using

polyhedral compilation is feasible for GPU programs, and
the runtime overhead of the resulting multi-GPU binaries
is very low. The primary limitation of this approach is that
it requires an accurate model of the kernel’s write accesses
to global memory. This limitation can be remedied by us-
ing instrumentation to collect write patterns, shared virtual
memory for result distribution, or annotation of the source
code with write patterns by the programmer. Of course, any
combination of these and other approaches are also possible,
and recent GPU features seem to support such approaches.

References
[1] L. G. Valiant, “A bridging model for parallel computation,” Commun.

ACM, vol. 33, no. 8, 1990.
[2] A. Arunkumar, E. Bolotin, B. Cho, U. Milic, E. Ebrahimi, O. Villa,

A. Jaleel, C.-J. Wu, and D. Nellans, “Mcm-gpu: Multi-chip-module gpus
for continued performance scalability,” SIGARCH Comput. Archit. News,
vol. 45, June 2017.

[3] J. Wu, A. Belevich, E. Bendersky, M. Heffernan, C. Leary, J. Pienaar,
B. Roune, R. Springer, X. Weng, and R. Hundt, “Gpucc - an open-source
gpgpu compiler,” in Proceedings of the 2016 International Symposium
on Code Generation and Optimization, CGO ’16, (New York, NY), 2016.

[4] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, 2008.

[5] J. G. Shanahan and L. Dai, “Large scale distributed data science using
apache spark,” in Proceedings of the 21th ACM SIGKDD International

Automated Partitioning of Data-Parallel Kernels using Polyhedral Compilation

Conference on Knowledge Discovery and Data Mining, KDD ’15, (New
York, NY, USA), ACM, 2015.

[6] B. Catanzaro, M. Garland, and K. Keutzer, “Copperhead: compiling
an embedded data parallel language,” ACM SIGPLAN Notices, vol. 46,
no. 8, 2011.

[7] C. Lattner and V. Adve, “LLVM: a compilation framework for lifelong
program analysis transformation,” in International Symposium on Code
Generation and Optimization, CGO ’04, Mar. 2004.

[8] M. Griebl and J.-F. Collard, “Generation of synchronous code for auto-
matic parallelization of while loops,” in European Conference on Paral-
lel Processing, Springer, 1995.

[9] P. Feautrier, “Parametric integer programming,” RAIRO Recherche
Opérationnelle, vol. 22, no. 3, 1988.

[10] W. Kelly, V. Maslov, W. Pugh, E. Rosser, T. Shpeisman, and D. Wonna-
cott, “The omega library interface guide,” 1995.

[11] S. Verdoolaege, “isl: An integer set library for the polyhedral model,”
in International Congress on Mathematical Software, vol. 6327, Springer,
2010.

[12] S. Verdoolaege and T. Grosser, “Polyhedral extraction tool,” in Second
International Workshop on Polyhedral Compilation Techniques, IMPACT
’12, 2012.

[13] S. Verdoolaege, J. Carlos Juega, A. Cohen, J. Ignacio Gomez, C. Tenllado,
and F. Catthoor, “Polyhedral parallel code generation for cuda,” ACM
Transactions on Architecture and Code Optimization (TACO), vol. 9,
no. 4, 2013.

[14] T. Grosser, H. Zheng, R. Aloor, A. Simbürger, A. Größlinger, and L.-N.
Pouchet, “Polly - polyhedral optimization in LLVM,” in Proceedings of
the First International Workshop on Polyhedral Compilation Techniques,
vol. 2011 of IMPACT ’11, 2011.

[15] R. Ierusalimschy, L. H. De Figueiredo, and W. Celes, “Lua 5.1 reference
manual,” 2006.

[16] J. Doerfert and S. Hack, “Polyhedral value & memory analysis,” 2017.
2017 US LLVM Developers’ Meeting.

[17] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan, “A
practical automatic polyhedral parallelizer and locality optimizer,” in
Proceedings of the ACM SIGPLAN 2008 Conference on Programming
Language Design and Implementation, Tucson, AZ, USA, June 7-13, 2008.

[18] J. Doerfert, T. Grosser, and S. Hack, “Optimistic loop optimization,” in
Proceedings of the 2017 International Symposium on Code Generation
and Optimization, CGO 2017, Austin, TX, USA, February 4-8, 2017, 2017.

[19] S. Moll, J. Doerfert, and S. Hack, “Input space splitting for OpenCL,”
in Proceedings of the 25th International Conference on Compiler Con-
struction, CC 2016, Barcelona, Spain, March 12-18, 2016, 2016.

[20] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands,
K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. W.Williams, et al.,
“The landscape of parallel computing research: A view from berkeley,”
tech. rep., Technical Report UCB/EECS-2006-183, EECS Department,
University of California, Berkeley, 2006.

[21] K. Li and P. Hudak, “Memory coherence in shared virtual memory
systems,” ACM Transactions on Computer Systems (TOCS), vol. 7, no. 4,
1989.

[22] J. Tao, M. Schulz, and W. Karl, “Ars: an adaptive runtime system for
locality optimization,” Future Generation Computer Systems, vol. 19,
no. 5, 2003.

[23] J. Lee, M. Samadi, and S. Mahlke, “Orchestrating multiple data-parallel
kernels on multiple devices,” in International Conference on Parallel
Architectures and Compilation Techniques, vol. 24 of PACT ’15, 2015.

[24] J. Lee, M. Samadi, Y. Park, and S. Mahlke, “Skmd: Single kernel on mul-
tiple devices for transparent cpu-gpu collaboration,” ACM Transactions
on Computer Systems, vol. 33, no. 3, 2015.

[25] P. Pandit and R. Govindarajan, “Fluidic kernels: Cooperative execution
of opencl programs on multiple heterogeneous devices,” in Proceedings
of Annual IEEE/ACM International Symposium on Code Generation and
Optimization, CGO ’14, ACM, 2014.

[26] J. Lee, M. Samadi, and S. Mahlke, “Vast: The illusion of a large memory
space for gpus,” in Proceedings of the 23rd International Conference on
Parallel Architectures and Compilation, PACT ’14, (New York, NY, USA),
ACM, 2014.

[27] J. Fang, H. Sips, and A. Varbanescu, “Aristotle: a performance impact
indicator for the opencl kernels using local memory,” Scientific Pro-
gramming, vol. 22, Jan. 2014.

[28] T. Ben-Nun, E. Levy, A. Barak, and E. Rubin, “Memory access patterns:
The missing piece of the multi-gpu puzzle,” in Proceedings of the In-
ternational Conference for High Performance Computing, Networking,
Storage and Analysis, SC ’15, ACM, 2015.

[29] U. Bondhugula, “Compiling affine loop nests for distributed-memory
parallel architectures,” in Proceedings of the International Conference on
High Performance Computing, Networking, Storage and Analysis, ACM,
2013.

[30] A. Sukumaran-Rajam, L. E. Campostrini, J. M. M. Caamano, and
P. Clauss, “Speculative runtime parallelization of loop nests: Towards
greater scope and efficiency,” HIPS+ LSPP, vol. 176, 2015.

[31] J. Kim, S. Seo, J. Lee, J. Nah, G. Jo, and J. Lee, “Snucl: An opencl frame-
work for heterogeneous cpu/gpu clusters,” in Proceedings of the 26th
ACM International Conference on Supercomputing, ICS ’12, (New York,
NY, USA), ACM, 2012.

[32] J. Duato, A. J. Pena, F. Silla, R. Mayo, and E. S. Quintana-Ortí, “rcuda:
Reducing the number of gpu-based accelerators in high performance
clusters,” in Proceedings of the 2010 International Conference on High
Performance Computing and Simulation, HPCS ’10, IEEE, 2010.

[33] J. Kim, G. Jo, J. Jung, J. Kim, and J. Lee, “A distributed opencl framework
using redundant computation and data replication,” in Proceedings of
the 37th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’16, (New York, NY, USA), ACM, 2016.

