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Abstract—This paper presents and analyzes the compiler
framework LLVM which aims to enable optimization throughout
the whole lifecycle of a program without introducing excessive
software overhead. Its key technique is the utilization of a
platform independent low level presentation of the source code
that is enriched with high level information to allow extensive
optimization using as much high level information as possible.
Despite this low level representation using the instruction set
architecure of a virtual machine it is never supposed to be
interpreted by an actual implementation of this virtual machine,
but to be translated to native machine code at runtime with a
Just-In-Time compiler. This allows aggressive optimizations to
be performed during compile and link time and enables profile-
driven optimizations at runtime with potentially no additional
effort. This paper focuses on the implementation of the LLVM
on x86 architectures running GNU/Linux as this is the most
common system configuration for high performance computing
where aggressive optimization is crucial to efficiently use the
available computing power and reduce energy consumption.

Keywords—LLVM, Dynamic Compilation, Optimization, Just-
In-Time compiler, Profile-guided optimization, Low Level Interme-
diate Representation

I. INTRODUCTION

With the current trend of computer architectures becom-
ing more and more sophisticated and computing platforms
becoming heterogeneous systems containing various types of
processors, platform dependent optimization by hand becomes
less feasable. In the past applications automatically benefited
from increasing clock frequencies of CPUs but this is not
longer the case as the need for energy efficient systems and
physical limiations lead to more cores per CPU instead of a
faster single core CPU. Additionally, with power becoming
more expensive, optimization is a critical aspect of every
application as executing poorly optimized programs simply
becomes too expensive. This leads to higher expectations on
the compilers used to develop future application. The traits
expected of an ideal compiler include, but are not limited to,
the following:

• Fast compilation Computing power is a rare resource
everywhere, including the systems used to develop ap-
plications. Fast compilation not only allows to use the
available power more efficient but also speeds up the
development of applications as results are produced
faster and therefore can be tested and improved faster.

• Platform The trend towards more complex and het-
erogeneous computing platforms leads to the desire to
not having to develop for one specific architecture.
Besides the ability to use the same application on
different platforms without additional development
effort this also removes the need to optimize for a
platform and helps to reduce the time to market of
applications.

• Low startup latency The startup latency especially
impacts programs that are to be executed often but
do not run for a long time and also results in wasted
computing power and energy.

• Low runtime overhead Even the most optimized
application can be slowed down by a heavy runtime
environment featuring a rich abstraction layer but
competing for CPU cycles with the application itself.
This negative impact of excessive abstraction becomes
more visible at applications running for a long time
and should be reduced to a minimum.

• Aggressive optimization at compile time As men-
tioned before optimization greatly helps to reduce
overall energy consumption but is increasingly diffi-
cult to do by hand. This should therefore be one of
the most important aspects of any compiler.

• Profile-guided runtime optimization Huge optimiza-
tion potential lies in analyzing code paths executed
often and spending additional effort on optimizing
these paths as much as possible. With this optimization
taking place at runtime applications can adapt to
changes of patterns of use almost instantly.

The great majority of compilers fall into two categories
which both do not have all these traits. Both categories are
and they drawbacks are illustrated with the following two
examples.

Statically compiled and linked languages like C and C++
produce platform dependent machine code without any high
level information about the program left. These programs do
not benefit of new CPU instructions without recompiling the
application. With statically compiled languages the chances
for optimizations are mainly limited to the compile time
and identifying bottlenecks at runtime to focus optimization
on these regions adds significant development effort. They
follow a "compile-link-execute" build process, which is widely
regarded as a good approach because it allows to rebuild parts
of an application without the need to recompile source files
that did not change.

More modern languages based on virtual machines (VM)
produce so called "bytecode" which is a platform indepen-
dent intermediate representation (IR) of the program with
high level information about the source code. To execute
these applications on a machine they are either interpreted
by an implementation of their virtual machine or compiled
to native code at runtime. This allows adaption to newer
CPU architectures without the need to recompile the whole
program from source and allows adaption to patterns of usage
at runtime. They usually provide a runtime environment that
puts an abstraction layer between the application and the
CPU architecture and operating system. This results in the
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applications being platform independent but comes at the cost
of increased software overhead at runtime due to the big
abstraction layer and complex high level representation of the
code.

The LLVM aims to fill the gap between these two ap-
proaches by keeping a platform independent representation
of the source code at all times and generating machine code
only Just-In-Time but at the same time not introducing ex-
cessive software overhead through abstraction. This promises
optimization over the whole lifecycle of an application [1].

This paper is structured as follows: Section II gives an
introduction to the overall system archictecture of the LLVM
infrastructure and the important design decisions. Section III
briefly introduces the intermediate representation which is used
as the basis for all optimizations. After the introduction to
the internal code representation the Just-In-Time compiler in
use and its features and limitations are explained in section
IV. This is followed by an analysis of the profile guided
optimization currently possible with LLVM in section V. The
section VI presents some projects with high performance
requirements which use the LLVM infrastructure. A final
conclusion concerning the potential and current status of the
LLVM project is drawn in section VII.

II. SYSTEM ARCHITECTURE OVERVIEW

The general design of the LLVM compiler framework
is that of a modular library whose modules can be used
independently of each other or in the form of a compiler
toolchain similar to that of the GNU C compiler. The whole
system revolves around the low level intermediate represen-
tation (LLVM IR) with the first step being the translation of
arbitrary high level programming languages into the LLVM
IR and the last step being the translation of the intermediate
representation into native machine code at runtime [2]. This
approach substantially differs from that of static compilers
where the internal code representation is translated into native
code after the compilation step but before linking the appli-
cation. High level type information is lost at this point and
makes the corresponding optimizations difficult but in return
enables very low startup latencies of executables as all native
code is already generated. It also differs from the approach
of common virtual machine based compilation frameworks, as
their intermediate representation is usally on a higher level
than the LLVM. These VM based languages allow aggressive
optimization throughout the whole lifecycle of a program at
the cost of higher startup latencies. The higher startup latencies
stem from the code generation being more complex from a
high level intermediate representation than from a low level
IR.

Figure 1. LLVM system architecture, taken from [3]

A common use case of the LLVM is its use as a compilation
toolchain for languages like C, C++ and Objective-C. In this

case the build process follows the well known compile-link-
execute model which can be seen in figure 1:

• Compile A frontend like Clang translates all source
files from their high level language to the LLVM IR
and performs several optimizations. The optimization
scope of this step is limited to one translation unit
(source file). The results are one "object file" per input
file containing a compressed form of the LLVM IR
(LLVM bitcode).

• Link The resulting object files are now linked into
a program still containing LLVM bitcode. Further
optimizations are performed with the scope being the
whole program this time, which significantly enhances
the accuracy of some optimizations (for example dead-
code elimination).

• Execution When the program starts, the LLVM run-
time environment uses a Just-In-Time compiler (jit
compiler) to generate native machine code for the
target architecture. The native code generator applies
platform specific optimizations not possible on the
platform independent LLVM IR.
With the (modifiable) LLVM IR still being present at
this point, instrumented programs can collect informa-
tion on the typical patterns of usage. This information
can be used to adapt the program to its usage in the
field during runtime and idle time.

Almost all optimizations are performed on this intermediate
representation, which is therefore to be kept at all times to
utilize its full potential. The low level nature of the IR and
the fact that it is already very optimized allow cheap machine
code generation without the need to reapply all standard
optimizations at this point [3].

The differences to statically linked applications are the
preservation of the intermediate representation throughout the
whole lifecycle of the application and more extensive opti-
mization crossing several translation units.

Although the differences to VM based languages are not
directly visible in the system architecture diagram, they are
not any less important. One difference is the intention to never
interpret the intermediate representation on a virtual machine
but to always generate native machine code before execution.
This is easily possible because the intermediate representation
used is deliberately kept on a low level which has the benefit
of cheap code generation. The structure and reasoning of this
code representation is introduced in the next section [3].

III. THE LLVM INTERMEDIATE REPRESENTATION

The design goal of the LLVM intermediate representation
is to provide a representation low level enough to allow cheap
machine code generation and at the same time providing high
level information enough to allow aggressive optimization. It
is a language in static single assignment form using a virtual
instruction set architecture for a virtual machine with unlimited
registers. It aims to support only the key operations of typical
processors without introducing high level or machine specific
features. This acts as a common ground and can implement
arbitrary high level constructs without the need to have direct
built-in support for them [3].
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The static single assignment (SSA) form is a criteria for
languages requiring that each variable is only allowed to be
assigned once. This greatly simplifies data flow analysis as
the determination of the origin of each value is trivial [4]. In
the case of the LLVM IR variables are an unlimited number
of registers which later have to be reduced to the physically
available registers for machine code generation.

The distinctiveness of the LLVM IR is its strong type
system. Every register and operation has a primitive type
associated with it and operations are only allowed to use
registers with the same type. These primitive types are in-
tegral, floating point and pointer values. All operations are
polymorphic and need the type they operate on to be specified.
Additionally the most basic high level constructs like arrays,
structs and functions are also provided as well as functions to
access their members. They do not, however, represent classes
of object oriented programming languages. Classes and their
properties have to be mapped to the available simple data
types. This approach of enforcing the use of types ensures that
all optimizations performed on the LLVM IR are completely
aware of types in use and do not break the code although the
intermediate representation is on a low level [1].

# inc lude < s t d i o . h>

i n t main ( i n t argc , char∗∗ argv )
{

p r i n t f ( " He l lo World ! \ n " ) ;
r e t u r n 0 ;

}

Figure 2. C source code of a hello world application

@. s t r = p r i v a t e unnamed_addr constant [14 x i 8 ] c " He l lo ←↩
World ! \ 0A\00 " , a l i g n 1

de f ine i32 @main( i32 %argc , i 8∗∗ %argv ) nounwind uwtable {
%1 = a l l o c a i32 , a l i g n 4
%2 = a l l o c a i32 , a l i g n 4
%3 = a l l o c a i 8 ∗∗ , a l i g n 8
s to re i32 0 , i32∗ %1
sto re i32 %argc , i32∗ %2, a l i g n 4
s to re i 8∗∗ %argv , i 8∗∗∗ %3, a l i g n 8
%4 = c a l l i32 ( i 8 ∗ , . . . ) ∗ @pr in t f ( i 8∗ gete lementp t r ←↩

inbounds ( [14 x i 8 ]∗ @. s t r , i32 0 , i32 0) )
r e t i32 0

}

Figure 3. Resulting program in LLVM IR (using LLVM 3.0)

As a byproduct of keeping the LLVM IR as long as possible
and generating code being the last step or performed at runtime
the resulting programs are, within limits, platform independent.
To support a platform, only a code generator for that system
and the libraries used in the programs have to be present on the
target system. A hello world program shown in figures 2 and
3 is used to clarify this. The code in figure 2 shows a minimal
c application that just executes a printf command. The
resulting code in LLVM IR shown in figure 3 shows how the
arguments to this call are prepared, the call performed and the
exit code returned. No actually platform dependent command
is present in the code fragment, the only prerequesit necessary
to run this program on any platform without recompiling the
bitcode is, that it is linked against a library containing a printf
function with the same prototype. But this does not replace
the abstraction layer providing access to operating system
functions of programming languages designed to be platform

independent. These features are deliberately not provided by
the LLVM runtime to avoid overhead.

The instruction set architecture of the LLVM IR uses a
memory layout which fits the overwhelming majority of CPU
architectures. The memory is divided into a heap and a stack,
with the stack being mostly used to keep track of the call
stack and passing arguments to functions whereas the heap is
used for all complex data structures and data not bound to the
lifetime of a function. Memory traffic is exclusively possible
through load and store operations. Memory on the heap has to
be allocated with malloc and freed with free while memory
on the stack is allocated with alloca and automatically freed
on returning from the corresponding function.

Although the LLVM does not directly implement any
specific form of exception handling, it does provide a mecha-
nism to implement arbitrary exception handling models. This
mechanism are two seperate operations to call functions. call
calls a function without the possibility to throw exceptions
while invoke takes two arguments, one being the function
to call and one being a label to jump to in the case of an
exception. One consequence of this approach is that there are
no additional instructions executed in the case of no exception
being thrown [1].

The final step from generating LLVM bitcode to executing
a program is generating the native machine code and is
explained in following chapter.

IV. LLVM JUST-IN-TIME COMPILER

A critical part of the LLVM system architecture is a Just-In-
Time compiler that generates native machine code out of the
LLVM IR because despite the acronym LLVM standing for
Low Level Virtual Machine, the intermediate representation is
acutally not supposed to be executed in a virtual machine. It
differs from common VM based programming languages using
interpreters where jit compilation is just used as a means of
optimization. The virtual machines of these languages usually
use a much higher level intermediate representation specifically
tailored for the interpreter in use. As mentioned before, the
intermediate runtime is only used to provide common ground
for optimization algorithms which therefore not need to be
customized to any source language or target instruction set
[2].

As the LLVM jit compiler translates the LLVM IR into
native machine code, it does not fit the common understanding
of a compiler translating a high level programming language
into an assembler language. It is therefore called a "code
generator" in the context of LLVM. The process of generating
native machine code at runtime is nonetheless still referred to
as "jit compilation" in this paper.

Besides translating the intermediate representation into
native machine code the code generator performs all optimiza-
tions that depend on the target architecture. An example for
platform dependent optimizations on modern x86 architectures
are vector operations like SSE and AVX which are supported
through auto vectorization [5]. As long as the bit code uses
vector operations, the most effective vector operations present
on the target machine are used. The possibilities to generate
machine code this optimized for the actual target machine is
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new for languages that are usually statically compiled like C
or C++.

The following analysis of the jit compilation with LLVM
is focused on x86 using GNU/Linux, as this is currently
the most common configuration used for scientific and high
performance computing in general. There are two common
approaches to Just-In-Time compilation: generating code the
first time it is called, and generating the machine code for
the whole program once at startup. LLVM currently uses the
latter approach. Although it is generally propagated that both
the LLVM IR and native code are present in an executable
produced with the LLVM infrastructure, this is currently not
the case and developers have the choice between the following
two options:

• Generating a native application If the Clang fron-
tend is used as a gcc drop-in replacement, the resulting
executable is a completely native application without
any LLVM IR bitcode present. The actual LLVM
infrastructure is only used in the compilation step
and produces regular object files. The object files are
then linked with the default linker of the system. This
completely eliminiates all Just-In-Time compilation,
as machine code is already generated and no LLVM
bitcode is available which could be used for this.
Starting from the original idea of keeping both rep-
resentations, this is a move in direction of statically
compiled languages.

• Generating LLVM bitcode The alternative is using
Clang exclusively as a frontend. In this case the LLVM
bitcode is emitted and the corresponding machine code
is generated once at startup of the executable. Startup
latency is increased in this case due to the need of
code generation but platform dependent optimizations
are more accurate.
As this also does not meet the original idea of the
LLVM, it is a move towards VM based languages.

Due to platform dependent optimizations the generation of
bitcode and using the jit compiler seems more beneficial. The
increase in startup latency can usually be tolerated as code
generation from the LLVM IR is fast due to its closeness to
common CPU ISAs.

Compiler frameworks using high level intermediate repre-
sentations can apply many low level optimizations (for exam-
ple global value numbering) only at the time of jit compilation
and have to reapply them every time they generate native code.
This is not the case with LLVM as all optimizations possible
on the LLVM IR have already been applied at this point so
the only optimizations left are platform dependent ones. This
further reduces the higher startup latency introduced with jit
compilation and makes this model an even more viable option.

V. PROFILE-GUIDED OPTIMIZATION

Profile-guided optimization is the sum of all optimizations
that are impossible to perform without knowledge of the pat-
terns of usage of the application in the field. This information
is generally reduced to the so called "hot path" of a programm
which is the portion of code the application spends the majority
of its execution time in [6]. A typical example for such hot

paths are inner loops in programs doing extensive calculations,
such as simulations.

The goal of profile-guided optimization is to spend extra
effort in optimizing an application for the case that the hotpath
is traversed without "wasting" time on optimizing code regions
that are barely used. On of these optimizations implemented
in LLVM is basic block placements which moves code blocks
so that caching effects are leveraged and jumps avoided. It is
usally desirable to perform these optimizations at runtime to
adapt the application as fast as possible to the patterns of usage
of its user.

Statically compiled and VM based languages follow two
different approaches to enable profile-guided optimization:

• Statically compiled They follow the classical
"compile-link-execute" build model. To enable profile-
guided optimization the application has to be instru-
mented to collect usage information during runtime.
This information can only be incorporated into the
program by recompiling and linking it again with the
applied optimizations. This changes the build model
to a "compile-link-profile-compile-link-execute" build
model which introduces significant additional effort.
As the goal of profile-guided optimization is to adapt
applications to their users, they should be the ones
profiling the application. This would be possible by
either providing them the source code and build envi-
ronment or collecting feedback from them, recompil-
ing the application and redistributing it. Both of these
approaches complicate the build process to a degree
where it usually is no longer feasable.
Additionally, using statically compiled and linked ap-
plications limits the possibilities of profile-guieded op-
timization to be performed during idle times between
runs, as the application does not have a jit compiler
to generate code at runtime.
As a result profile-guided optimization is skipped in
most cases.

• VM based languages using jit compilation In
this case profile-guided optimization can be applied
without additional development effort. The runtime
environment can instrument and profile the application
transparently and dynamically optimize and recompile
the hot paths during runtime. A well known example
for this is the Oracle Java runtime environment "Hot
Spot" [7].
One drawback is the large software overhead intro-
duced with the Java runtime environment and the
optimizer/jit compiler competing for CPU cycles with
the actual application [3].

LLVM aims to fill the gap between these two approaches by
keeping the "compile-link-execute" build model but allowing
transparent profile-guided optimization in the field (on the
target system) without additional development effort. This
is to be achieved by the keeping the LLVM IR and native
machine code at runtime together with mapping information
about how the machine code maps to the intermediate represe-
nation. The LLVM runtime environment can then instrument
the application and gather information about the hot paths
during execution. Once the hot paths are identified, cheap
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optimizations are applied at runtime while more costly and
potentially more effective optimizations are applied during idle
time between runs of the program (see figure 1). As mentioned
above, the cost of code generation is to be low due to the low
level character of the LLVM IR.

The implementation on x86 GNU/Linux currently suffers
from several limitations. The most important limitation is the
lack of optimization during runtime. As all machine code is
generated once at startup, it is not updated when the application
is still running. This only leaves offline optimization between
different runs of the program, although this is not critical
for programs invoked. The other important limitation is that
profile-guided optimization is not enabled automatically. It
can easily be enabled and automated but it nonetheless is
the not wished for zero-effort or transparent solution. The
optimizations benefitting from profile information are currently
limited to basic bock placement.

VI. PROJECTS USING LLVM

The approach of LLVM being designed as a library has lead
to widespread usage in other projects. Especially the extensive
optimizations available for the LLVM IR and the already
implemented native code generators make it a welcomed basis
for projects in need of a compiler. The following projects
show two different use cases for the LLVM where the projects
replace different components of the LLVM infrastructure.

• Ocelot/PLANG These two projects try to overcome
the challenge of the increasingly complex systems
with the upcoming of systems using General Purpose
GPUs. They allow the execution of NVIDIA CUDA
kernels on x86 architectures (Ocelot and PLANG) and
different GPUs (Ocelot) [8], [9]. Only the execution
on x86 architectures uses the LLVM infrastructure as
CUDA kernels are already designed to be executed on
GPUs. Their approach is to translate PTX programs,
which is the intermediate representation of CUDA ker-
nels, into the LLVM IR and modifying them to keep
the behaviour of the GPU programming paradigm,
bulk synchronous parallel programming. They then
use the LLVM optimizers and code generators to gen-
erate x86 machine code which can then be executed
on an arbitrary number of CPU cores [10].
This project can be seen as an additional LLVM
frontend as the focus of it is the translation from a
source language (PTX) to the LLVM IR.

• OpenCL to FPGA compiler This project translates
OpenCL kernels (similar to CUDA kernels) to a hard-
ware description language which can then be used to
program accelerators with excellent performance per
watt. Due to the closeness of OpenCL to C, it uses
the Clang frontend to compile OpenCL to the LLVM
IR and then translates the LLVM IR to the hardware
description language VHDL [11].
As the translation into LLVM IR is already covered
by clang and this project focuses on the translation
from LLVM IR to VHDL, it can be seen as a LLVM
backend.

Both these projects significantly benefit from the optimiza-
tions available for the LLVM and its front- and backends.

Despite them not fitting into the build process of typical
applications they still benefit from improvements on the LLVM
infrastructure without additional effort.

VII. CONCLUSION

LLVM follows an interesting approach and tries to fill
a gap between statically compiled and VM based languages
that allows new optimizations especially for languages written
in languages that are usually statically compiled (like C and
C++). Clang and LLVM as a drop-in replacement for the
gcc work well in most cases and generally result in smaller
executables with comparable performance and greatly reduced
compilation time. Projects making use of peculiarities of the
gcc cause problems but this is acceptable as they are, per
definition, not part of the official language standards. The
modular design as a library allows great synergy effects
between all projects using the LLVM and the LLVM project
itself and may lead to rapid development.

It already is a mature compiler framework featuring ex-
tensive optimization, although not all promised features are
implemented at this time. Especially the incomplete support of
profile-guided and runtime optimization, which are the most
promising advantages of using LLVM, do not give it the hoped-
for headstart. Despite this, the fast progress of the project and
the large user and developer base promise further progress and
the implementation of the still missing features.
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