

Future Memory Technologies

Seminar WS2012/13 Benjamin Klenk

2013/02/08

Supervisor: Prof. Dr. Holger Fröning Department of Computer Engineering University of Heidelberg

1 byte of memory and 1 byte per second of I/O are required **for each instruction per second** supported by a computer.

Gene Myron Amdahl

#	System	Performance	Memory	B/FLOPs
1	Titan Cray XK7 (Oak Ridge, USA)	17,590 TFLOP/s	710 TB	4.0 %
2	Sequoia BlueGene/Q (Livermore, USA)	16,325 TFLOP/s	1,572 TB	9.6 %
3	K computer (Kobe, Japan)	10,510 TFLOP/s	1,410 TB	13.4 %
4	Mira BlueGene/Q (Argonne, USA)	8,162 TFLOP/s	768 TB	9.4 %
5	JUQUEEN BlueGene/Q (Juelich, GER)	4,141 TFLOP/s	393 TB	9.4 %

- Motivation
- State of the art
 - RAM
 - FLASH
- Alternative technologies
 - PCM
 - HMC
 - Racetrack
 - STTRAM
- Conclusion

Motivation

Why do we need other technologies?

The memory system

Memory Wall

Power Wall

Server Power Breakdown

[Intel Whitepaper: Power Management in Intel Architecture Servers, April 2009]

Memory bandwidth is limited

- The demand of working sets increases by the number of cores
- Bandwidth and capacity must scale linearly
- 1 GB/s memory bandwidth per thread [1]

→ Adding more cores doesn't make sense unless there is enough memory bandwidth!

Normalized performance

DIMM count per channel is limited

- Channel capacity does not increase
- Higher data rates result in less DIMMs per channel (to maintain signal integrity)
- High capacity DIMMs are pretty expensive

What are the problems?

- Memory Wall
- Power Wall
- DIMM count per channel decreases
- Capacity per DIMM grows pretty slow
- What do we need?
 - High memory bandwidth
 - High bank count (concurrent execution of several threads)
 - High capacity (less page faults and less swapping)
 - Low latency (less stalls and less time waiting for data)
 - And at long last: Low power consumption

State of the art

What are current memory technologies?

SRAM

- Fast access and no need of frequent refreshes
- Consists of six transistors
- Low density results in bigger chips with less capacity than DRAM
- \rightarrow Caches

DRAM

- Consists merely of one transistor and a capacitor (high density)
- Needs to be refreshed frequently (leak current)
- Slower access than SRAM
- Higher power consumption

→ Main Memory

- Organized like an array (example 4x4)
- Horizontal Line: Word Line
- Vertical Line: Bit Line
- Refresh every 64ms
- Refresh logic is integrated in DRAM controller

DDR SDRAM is state of the art for main memory
There are several versions of DDR SDRAM:

Version	Clock [MHz]	Transfer Rate [MT/s]	Voltage [V]	DIMM pins
DDR1	100-200	200-400	2.5/2.6	184
DDR2	200-533	400-1066	1.8	240
DDR3	400-1066	800-2133	1.5	240
DDR4	1066-2133	2133–4266	1.2	284

Power consumption and the impact of refreshes

- Refresh takes 7.8µs (<85°C) / 3.9µs (<95°C)
- Refresh every 64ms
- Multiple banks enable concurrent refreshes
- Commands flood command bus

RAIDR: Retention-Aware Intelligent DRAM Refresh, Jamie Liu et al.

	1990	Today
Bits/row	4096	8192
Capacity	Tens of MB	Tens of GB
Refreshes	10 per ms	10.000 per ms

- FLASH memory cells are based on floating gate transistors
- MOSFET with two gates: Control (CG) & Floating Gate (FG)
- FG is electrically isolated and electrons are trapped there (only capacitive connected)
- Programming by hot-electron injection
- Erasing by quantum tunneling

http://en.wikipedia.org/wiki/Floating-gate_transistor

DRAM

- Limited DIMM count \rightarrow limits capacity for main memory
- Unnecessary power consumption of refreshes
- Low bandwidth

FLASH

- Slow access time
- Limited write cycles
- Pretty low bandwidth

Alternative technologies

Which technologies show promise for the future?

Outline

- Phase Change Memory (PCM, PRAM, PCRAM)
- Hybrid Memory Cube (HMC)
- Racetrack Memory
- Spin-Torque Transfer RAM (STTRAM)

- Based on chalcogenide glasses (also used for CD-ROMs)
- PCM lost competition with FLASH and DRAM because of power issues
- PCM cells become smaller and smaller and hence the power consumption

decreases

Amorphous

Crystalline

Resistance changes with state (amorphous, crystalline)

 Transition can be forced by optical or electrical impulses

http://agigatech.com/blog/pcm-phase-change-memorybasics-and-technology-advances/

- PRAM still "slower" than DRAM
- Only PRAM would perform worse (access time 2-10x) slower)
- But: Density much better! (4-5F² compared to 6F² of DRAM)
- We need to find a tradeoff

- We still use DRAM as buffer / cache
- Technique to hide higher latency of PRAM

Assume: Density: 4x higher, Latency: 4x slower (inhouse simulator of IBM) Normalized to 8GB DRAM

[Scalable High Performance Main Memory System Using Phase-Change Memory Technology, Qureshi et al.]

- Promising memory technology
- Leading companies: Micron, Samsung, Intel
- •3D disposal of DRAM modules
- Enables high concurrency

Former

- CPU is directly connected to DRAM (Memory Controller)
- Complex scheduler (queues, reordering)
- DRAM timing parameter standardized across vendors
- Slow performance growth

НМС

- Abstracted high speed interface
- Only abstracted protocol, no timing constraints (packet based protocol)
- Innovation inside HMC
- HMC takes requests and delivers results in most advantageous order

- DRAM logic is stripped away
- Common logic on the Logic Die
- Vertical Connection through TSV
- High speed processor interface

[4]

High speed interface (packet based protocol)

- Conventional DRAM:
 - 8 devices and 8 banks/device results in 64 banks
- HMC gen1:
 - 4 DRAMs * 16 slices * 2 banks results in 128 banks
 - If 8 DRAMs are used: 256 banks
- Processor Interface:
 - 16 Transmit and 16 Receive lanes: 32 x 10Gbps per link
 - 40 GBps per Link
 - 8 links per cube: 320 GBps per cube (compared to about 25.6 GBps of recent memory channels)

Technology	VDD	IDD	BW GB/s	Power W	mW/GBps	pj/bit	Real pj/bit
SDRAM PC133 1GB	3.3	1.50	1.06	4.96	4664.97	583.12	762.0
DDR 333 1GB	2.5	2.19	2.66	5.48	2057.06	257.13	245.0
DDR 2 667 2GB	1.8	2.88	5.34	5.18	971.51	121.44	139.0
DDR 3 1333 2GB	1.5	3.68	10.66	5.52	517.63	64.70	52.0
DDR 4 2667 4 GB	1.2	5.50	21.34	6.60	309.34	38.67	39.0
HMCgen1	1.2	9.23	128.00	11.08	86.53	10.82	13.7

HMC is costly because of TSV and 3D stacking!

Further features of HMCgen1:

- 1GB 50nm DRAM Array
- 512 MB total DRAM cube
- 128 GB/s Bandwidth

[3]

Electron spin and polarized current

- Spin another property of particles (like mass, charge)
- Spin is either "up" or "down"
- Normal materials consist of equally populated spinup and down electrons
- Ferromagnetic materials consist of an unequally population

- Discovered in 1975 by M.Julliére
- Electrons become spin-polarized by the first magnetic electrode

- •Two phenomena:
 - Tunnel Magneto-Resistance
 - Spin Torque Transfer

- Magnetic moments parallel: Low resistance
- Otherwise: High resistance
- 1995: Resistance difference of 18% at room temperature
- Nowadays: 70% can be fabricated with reproducible characteristics

Low resistance

High resistance

current

- Thick and pinned layer $(PL) \rightarrow can not be$ changed
- Thin and free layer (FL) \rightarrow can be changed
- FL magnetic structure needs to be smaller than 100-200nm

http://researcher.watson.ibm.com/researcher/view_project_subpage.php?id=3811

- Ferromagnetic nanowire (racetrack)
- Plenty of magnetic domain walls (DW)
- DW are magnetized either "up" or "down"
- Racetrack operates like a shift register

- DW are shifted along the track by current pulses (~100m/s)
- Principle of spin-momentum transfer

[Scientific American 300 (2009), Data in the Fast Lanes of Racetrack Memory]

Read

 Resistance depends on magnetic momentum of magnetic domain (TMR effect)

Write

- Multiple possibilities:
 - Self field of current from metallic neighbor elements
 - Spin momentum transfer torque from magnetic Nano elements

Magnetic field of current

STTRAM

- Memory cell based on MTJ
- Resistance changed because of TMR
- Spin-polarized current instead of magnetic field to program cell

- High scalability because write current scales with cell size
 - 90nm: 150µA, 45nm: 40µA
- Write current about 100µA and therefore low power consumption
- Nearly unlimited endurance (>10¹⁶)
- Uses CMOS technology
 - less than 3% more costs
- TMR about 100%
- Dual MTJ
 - less write current density
 - higher TMR

Conclusion

What have we learned and what can we expect?

Characteristics

Technology	Cell size	State	Access Time (W/R)	Energy/Bit	Retention
DRAM	6 <i>F</i> ²	Product	10/10 ns	2pJ/bit	64 ms
PRAM	4-5 <i>F</i> ²	Prototype	100/20 ns	100 pJ/bit	years
Racetrack	$\frac{20F^2}{DWs} \simeq 5 \ F^2$	Research	20-30 ns	2 pJ/bit	years
STTRAM	$4F^{2}$	Prototype	2-10 ns	0.02 pJ/bit	years

[3,6,7,10,11]

- HMC improves the architecture but still rely on DRAM as memory technology
- Energy/Bit is unequal to power consumption! (Interface and control also need power)
- e.g. DRAM cells are very efficient but the interface is power hungry!
- Access time means access to the cell! Latency also depends on access and control logic

Glance into the crystal ball

Technology	Benefits	Biggest challenges	Prediction	
PRAM	High Capacity	Access TimePower	Only as hybrid approach or mass storage	
НМС	Huge bandwidthHigh capacity	Fabrication costs	Good chances in near future	
Racetrack	 High capacity 	FabricationAccess time depends on density	Still a lot of research necessary	
STTRAM	Fast accessHigh density	• Tradoff between Thermal stabiltiy and write current density	Needs also more research	

- Prediction is pretty hard
- DRAM will certainly remain as memory technology within this decade
- Every technology has its own challenges

[...] There is no holy grail of memory that encapsulates every desired attribute [...]

Dean Klein, VP of Micron's Memory System Development, 2012

[http://www.hpcwire.com/hpcwire/2012-07-10/hybrid_memory_cube_angles_for_exascale.html]

Thank you for your attention! Questions?

[1] Jacob, Bruce (2009): The Memory System: Morgan & Claypool Publishers[2] Minas, Lauri (2012): The Problem of Power Consumption in Servers: Intel Inc.

[3] Pawlowski, J.Thomas (2011) Hybrid Memory Cube (HMC): Micron Technology, Inc

[4] Jeddeloh, Joe and Keeth, Brent (2012): Hybrid Memory Cube: New DRAM Architecture Increases Density and Performance: IEEE Symposium on VLSI Technology Digest of Technical Papers

[5] Gao, Li (2009): Spin Polarized Current Phenomena In Magnetic Tunnel Junctions: Dissertation, Stanford University

[6] Qureshi, Moinuddin K. and Gurumurthi, Sudhanva and Rajendran, Bipin (2012): Phase Change Memory: Morgan & Claypool Publishers

[7] Krounbi, Mohamad T. (2010): Status and Challenges for Non-Volatile Spin-Transfer Torque RAM (STT-RAM): International Symposium on Advanced Gate Stack Techology, Albany, NY

[8] Bez, Roberto et al. (2003): Introduction to Flash Memory: Invited Paper, Proceedings of the IEEE Vol 91, No4

[9] Kogge, Peter et al. (2008): ExaScale Computing Study: Public Report

[10] Kryder, Mark and Chang Soo, Kim (2009): After Hard Drives – What comes next?: IEEE Transactions On Magnetics Vol 45, No 10

[11] Parkin, Stewart (2011): magnetic Domain-Wall Racetrack Memory: Scientific Magazine January 14, 2011