

Cooling of chips and the principle of Heat Pipes

Seminar WS2012/13

Felix Zahn

Supervisor: Prof. Dr. Ulrich Brüning

- Motivation
- Theoretical Principle of Heat Pipes
- Performance/Experiment
- Conclusion

Motivation

Why new cooling techniques are necessary?

Motivation

- Atoms are a fundamental lower bound for increasing CPU performance.
 > parallelism
- One of the main cost and performance drivers for HPC is the node-to-node interconnect.
 - => denser systems
 - => cooling?

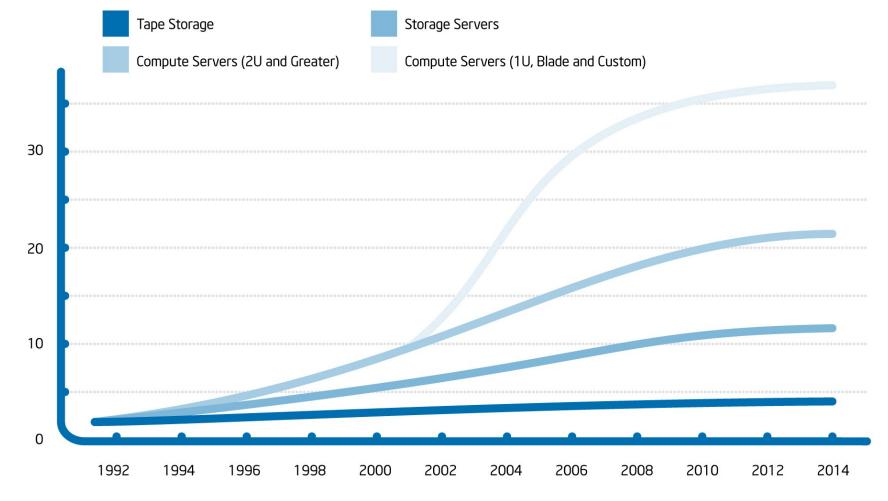
Top500 List - November 2012

R_{max} and R_{peak} values are in TFlops. For more details about other fields, check the TOP500 description.

	Rank	Site	System	Cores	Rmax (TFlop/s)	Rpeak (TFlop/s)	Power (kW)
	0	DOE/SC/Oak Ridge National Laboratory United States	Titan - Cray XK7, Opteron 6274 16C 2.200GHz, Cray Gemini interconnect, NVIDIA K20x Cray Inc.	560640 1 560	17590.0)640	27112.5	8209 1 8209
	2	DOE/NNSA/LLNL United States	Sequoia - BlueGene/Q, Power BQC 16C 1.60 GHz, Custom IBM	1572864	16324.8	20132.7	7890
	3	RIKEN Advanced Institute for Computational Science (AICS) Japan	K computer, SPARC64 VIIIfx 2.0GHz, Tofu interconnect Fujitsu	705024	10510.0	11280.4	12660
	4	DOE/SC/Argonne National Laboratory United States	Mira - BlueGene/Q, Power BQC 16C 1.60GHz, Custom IBM	786432	8162.4	10066.3	3945
	5	Forschungszentrum Juelich (FZJ) Germany	JUQUEEN - BlueGene/Q, Power BQC 16C 1.600GHz, Custom Interconnect IBM	393216	4141.2	5033.2	1970
	6	Leibniz Rechenzentrum Germany	SuperMUC - iDataPlex DX360M4, Xeon E5-2680 8C 2.70GHz, Infiniband FDR IBM	147456	2897.0	3185.1	3423

© top500.org

"Intel believes that high-density data centers are the most efficient and that the major cost of any cooling system is the central plant – for both capital and expense costs."



© Intel Corporation – The State of Data Center Cooling: NMSC, hosted by Intel in Rio Rancho, NM

Heat Load in kW Per Rack

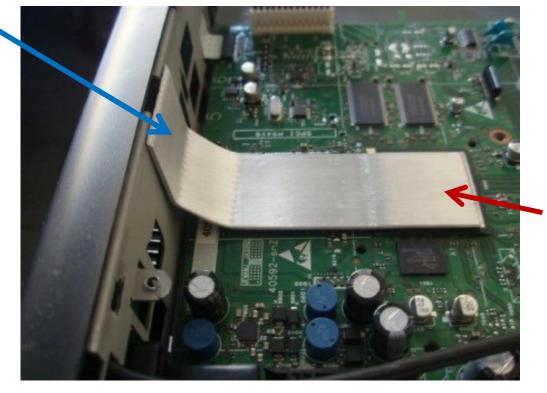
Motivation

© Intel Corporation – The State of Data Center Cooling

Heat transfer is classified into various mechanisms:

- 1. Thermal radiation
- 2. Convective heat transfer
- 3. Thermal conduction

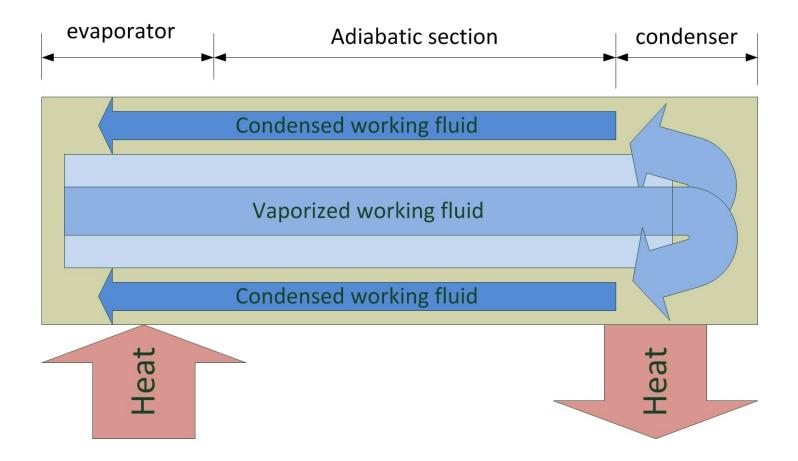
- Today: racks of 30 kW can be air-cooled
- Design of a data center set a practical upper bound on the air cooling
- Bad thermal attributes of air
 - High heat resistancy
 - Low heat capacity
- Additional power supply for fans
 - More power
 - Mechanical elements


- High heat capacity and lower heat resistance
- Lower noise levels
- Pumps necessary
- Elements difficult to change
- Leaked water can damage any electronic components

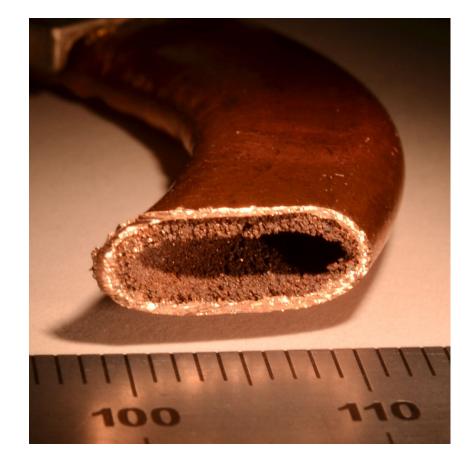
Heat Pipes

Cooling plate

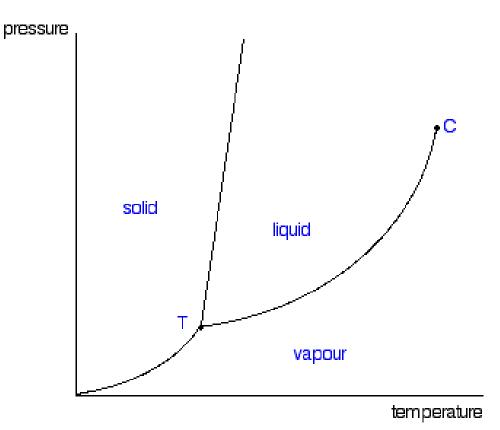
Heat source



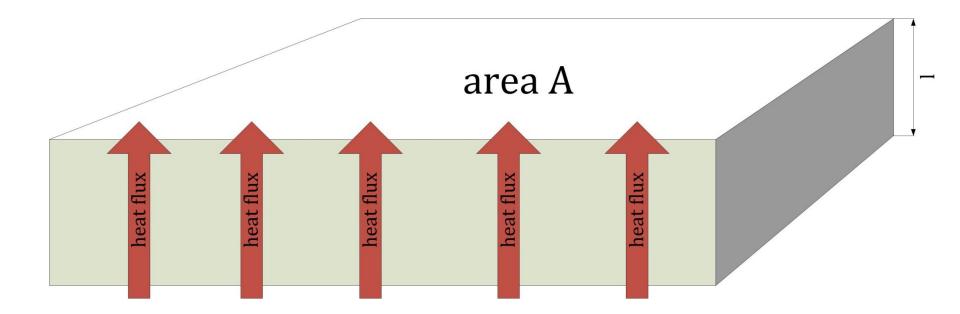
Theoretical Principle of Heat Pipes


How does a heat pipe work?

Theoretical Principle of Heat Pipes



• phase transitions depend on pressure and temperture

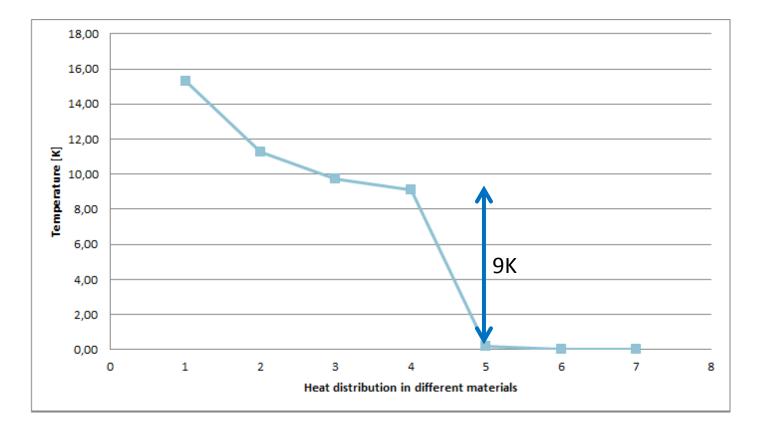

Thermal conduction is similar to electric circuits:

Current I	Heat flux \dot{Q}	
Voltage U	Temperature difference ΔT	
Resistance R	Heat-resistance R	

Serial resistances: $R_{col} = R_1 + R_2 + \cdots$ Parallel resistances: $\frac{1}{R_{col}} = \frac{1}{R_1} + \frac{1}{R_2} + \cdots$

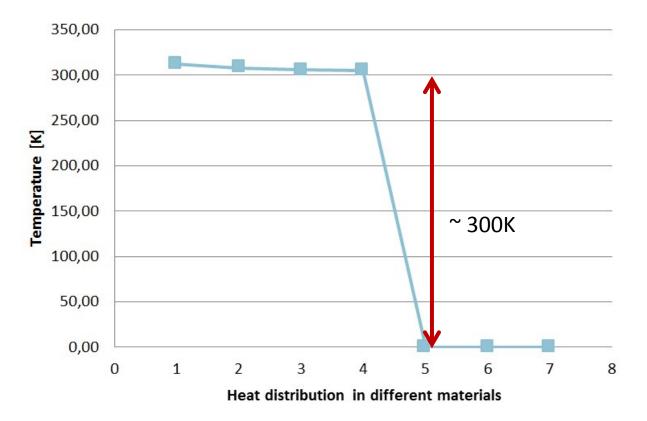
• Heat flux:
$$\dot{Q} = \frac{R}{\Delta T}$$

• Heat resistance $R = \frac{l}{\lambda \cdot A}$, λ : Thermal conductivity


Basics

Theoretical setup

Heat reduction over all parts of the heat-transport-chain (heat pipe)

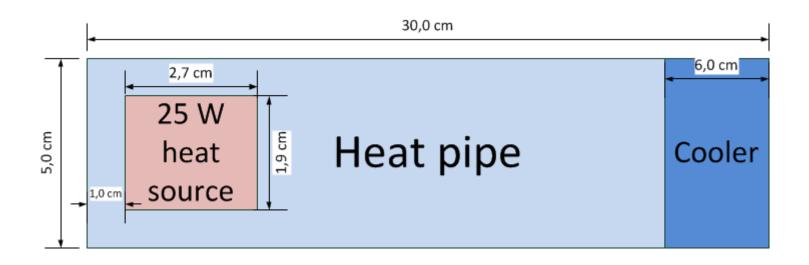


1) Chip; 2, 4, 6) Heat-conductive paste; 3, 7) Copper; 5) Heat pipe

Basics

Heat reduction over all parts of the heat-transport-chain (Copper)

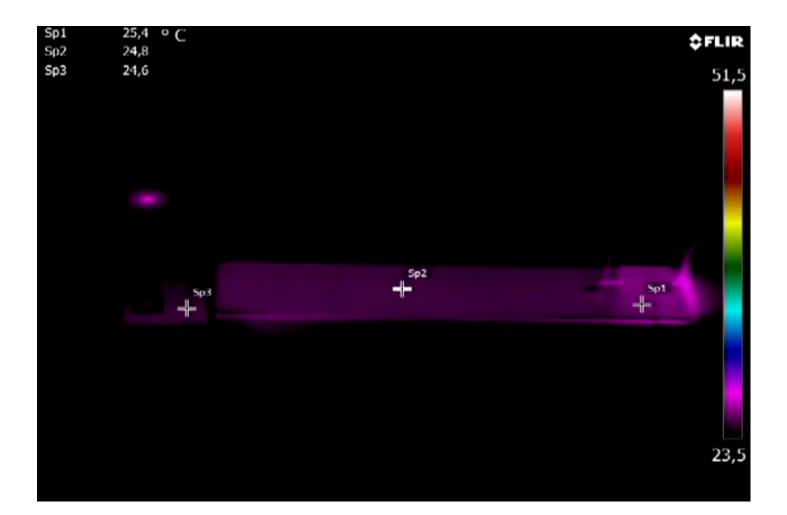
1) Chip; 2, 4, 6) Heat-conductive paste; 3, 5, 7) Copper



Do they keep what they promise?

Experimental settings

Material	Length [cm]	Heat resistance [K/W]
Heat-conductive paste 1	0.05	0.167
Heat pipe	29	0.2
Heat-conductive paste 2	0.05	0.033


- Heat resistance: $R_{col} = \sum_i R_i = 0,4003 \frac{\kappa}{W}$
- Relative temperature difference: $\Delta T = \dot{Q} \cdot R_{col} = 10,01 \, K$

• Amec Thermasol's Flat Cool Pipe

lte	em	Description	
Material of	^f Container	Aluminium 1050	
Workin	g Fluid	Acetone	
0	Horizontal	75.0 W (at 50°C)	
Q _{max}	Vertical	270.0 W (at 50°C)	
Typical Therm	nal Resistance	<0.2°C / W (Average)	
Operating Ir	nclination, Ø	0 ~ 90°	
Leak Tempera	ture Criterion	-40~100°C	

- Theoretical: $\Delta T = 10,01K$
- Experimental: $\Delta T \approx 15 K$
- Causes of difference:
 - Thicker heat-conductive paste
 - Inappropriate geometry of heat source

Conclucions

- High-density supercomputer are reasonable due to high cost of node-to-node interconnects.
- Heat pipes are qualified for thermal conduction in supercomputer.
- ~1000x higher heat flux than an equal sized copper block.
- Heat flows through pins into the PCBs.
 =>additional cooling is necessary

- P. Naphon, S. Wiriyasart Liquid cooling in the mini-rectangular fin heat sink with and without thermoelectric for CPU, International Communications in Heat and Mass Transfer Vol. 36, Issue 2, February 2009, Pages 166-171
- Faghri, A Heat Pipe Science and Technology, Taylor and Francis, 1995
- M. Groll, M. Schneider, V. Sartre, M.C. Zaghdoudi, M. Lallemand Thermal Control of Electronic Equipment by Heat Pipes, International Journal of Thermal Sciences Vol. 37, N 5, 1998, pp. 323-352
- G.P. Peterson, An introduction to heat pipes Modelling, testing and applications, John Wiley and Sons, New York, 1994
- VDI-Gesellschaft Verfahrenstechnik und Chemieingenieurwesen (GVC) VDI-Wrmeatlas. Ringbuch: Berechnungsunterlagen für Druckverlust, Wärme- und Stoffbergang, 10th Edition, Springer Berlin Heidelberg, 2006, ISBN-13: 978-3540255031
- ARCTIC COOLING AG Homepage [Online] http://www.arctic.ac/de/p/cooling/waermeleitpaste/82/arcticmx-2-4g-8g-30g-und-65g.html (January 23rd, 2013)
- Amec Thermasol Homepage [Online] http://www.amecthermasol.co.uk/AmecThermasolPDF/Flat%20Cool%20Pipes%20-%20MHP-2550A150A.pdf (January 23rd, 2013)
- L. Michalski et al Temperature Measurement, Second Edition, Wiley, 2001
- http://en.wikipedia.org/wiki/File:Laptop_CPU_Heat_Pipe_Cross_Section.jpg (February 4th, 2013)
- http://someni.blogspot.de/2011/01/phase-diagrams-of-pure-substances.html (February 4th, 2013)

Thank you for your attention!