
NoSQL Databases
(Paper for Advanced Seminar ”Computer Engineering”)

Matthias Hauck∗
∗ Email: matthias.hauck@stud.uni-heidelberg.de

Abstract—This paper will give a short overview about NoSQL
databases. Therefor a short overview about the traditional ap-
proach as well as the new requirements for NoSQL database will
be given. Furthermore the different types of NoSQL databases
and basic technologies they use will be presented. Finally some
critic on NoSQL will be mentioned.

I. INTRODUCTION

In the last decade new classes of applications arise for
example web applications or applications for mobile devices.
These applications have new requirements for there backend
storage that are different from the requirements of previous
generations.
Mobile devices have in many cases not a guaranteed perma-
nent connection to a central server. Therefore these applica-
tions have often a local replication of the data that have to
be synchronized with the central storage. Another problem
applications on simple mobile devices has to struggle are there
limited resources. Java ME for example has therefor a simple
record store as persistent storage.
Web applications and other BigData applications have prob-
lems on a completely other scale. Web applications need
databases that scale. Applications like a web search or a
service for short messages like twitter can have data of an
enormous size that still grows. In addition the database have
to be very fast to handle requests from millions of users. This
requirements can typically only be fulfilled by a cluster.
The availability of a web applications has to be very high. If
an application is not available users can probability go to a
competitor. Web applications need to evolve in order not to
lose user, too. But even in the case of necessary changes on
the database schema, a downtime is not acceptable.
In some cases the availability of an application is even more
important than consistency. If a recommendation service of a
web shop has not the latest updates of the actions of a user,
it does not matter. In general the value of consistency be very
differently depending on the application.
For web application another important requirement is that
there costs are low, because they are often financed by ads.
Because of this many companies try to avoid expensive high
end hardware and use standard hardware in a cluster. To
achieve high reliability replication is used. They also use
often open source software to avoid expensive license fees. To
eliminate administration costs many administration tasks, like
to integrate a new computer in a cluster, has to be automated.
The main source of the following paper is the paper NoSQL
Databases[1] by Walter Kriha(Stuttgart Media University).

II. SQL RDBMS

To understand NoSQL it is first important to
understand SQL databases. Traditional SQL databases
are RDBMS(Relational Database Managements Systems)
and support therefor the relational data model. In this model
data is organized in tuples that are grouped in a relation. In
the databases these relations are realized as tables. Different
tupels can be combined by a join. The fix relation schema
behind the relations is typically normalized in such a way
that it is redundancy free.
The roots of RDBMS are in the 1970th. At this time
IBM created the very exemplary database “System R”
that introduced the query language SEQUEL that address
relational Databases. SEQUEL is the direct ancestor of SQL.
Today RDBMS are very mature.
For a very long time computer were very expensive, but
administrators were relatively cheap. Therefore the RDBMS
databases have not to scale across a huge number of computers
and in addition there was no real need to reduce administration
costs. Relational databases have a good performance, because
of the strict schema they use. Often they are row oriented,
because this simplifies the very common append operations.
RDBMS are typically focused on the use as a part of business
applications or applications that are used by public authorities.
These applications are for example financial services like
the transfer of money or the storage of water well status
data. Very often these applications need online transaction
processing(OLTP)1.
What all of these applications have in common, is that there
data is very valuable. These data have to be well protected
and the databases have to be robust. This is achieved through
the ACID(Atomicity, Consistency, Isolation, and Durability)
consistency model.

III. NOSQL DATABASES

NoSQL databases try to address different problems of
classic RDBMS databases. There are very different types of
NoSQL databases with a lot of different feature sets that solve
different problems. But there are things that many NoSQL
databases have in common or that is at least very similar:
NoSQL database omit a strict relational data model. This is
typically what makes a NoSQL database to a NoSQL database.
They try to group data that are used together instead. In

1Another important class of applications need online analytic process-
ing(OLAP). These applications need typically special databases.



addition the schemes are flexible.
As a query interface NoSQL databases have an interface that is
not SQL based. Some of these databases have a query language
that is similar to SQL, because this should make the use of this
interface easier. For complex queries many NoSQL databases
have an internal support for MapReduce or an interface to an
external MapReduce suit like Hadoop.
The query interface is often very simple. Expensive operation
like transactions across multiple entries and joins are often not
possible. Many NoSQL databases are distributed. They have
to handle the data replication and distribution. Some databases
even do not hide details of this.
Another thing that many NoSQL databases have in common
is that they have been developed by a company that run large
web applications. Many of these companies have published
them as Open Source.

A. Types of NoSQL Databases

There are different types of NoSQL-databases. A common
method to classify them is by there data model. A very often
they are classified as: key/value store, document store, graph
store and column oriented store.
Key/Value stores are the most simple types of NoSQL
databases. These databases store a value that can be access
only by the key of the value. These databases are often
optimized for high performance and scalability in a cluster. In
the context of web applications they store objects of variable
size like pictures or serialized objects(e.g. session data). The
use of a key/value store and serialization eliminate the need of
an expensive object relation mapper which are used to store
objects in RDBMS.
Document stores use a more complex data model called
document. Their model is not strict and allow a few (dynamic
defined) properties per entry. The idea behind this approach
is that with a non-strict schema there is no long downtime in
the case of necessary schema changes.
In addition values of entries might be complex and often
nested documents are supported. Together with the non-strict
schema, data that can be used together can be grouped
together. There is no need for joins and the data can easily
get partitioned.
A graph store stores data as nodes and labeled edges.
Therefore it is well suited for task were data appears in such a
way like in social networks. Typically they need less space and
have a higher performance then RDMS that handles graphs as
relations. In addition these databases have special algorithms
like for tree traversal to handle graphs.
One drawback of these databases is that they can not scale very
well. The problem is that graphs are hard to partition, because
the graph has to be divided. Relations and nodes that reside
on different nodes, but are important for one operation, would
cause a lot of network traffic. The later mentioned technique
of sharding is because of this often not supported. For more
informations about graph databases [2] is a good start.

Column-oriented stores2 are a type of database that is
influenced by Google’s BigTable. In the paper [3] by Google
BigTable is described as “A Bigtable is a sparse, distributed,
persistent multidimensional sorted map.” They are suitable for
a broad rage of applications3.
Column-oriented stores use a table to store data. Typically the
row ranges of the table are often partitioned for distribution.
Each row has a variable number of columns.
The columns of a row are each member of a column-family.
Many similar columns of the same row may be member of the
same column-family. This allows to optimize the access on the
columns, because for an operation on one type of column it
is not necessary to load the complete rows. In addition it is
often possible to have different version of an entry.

IV. TECHNOLOGIES

To achieve the specific goals like high scalability and high
performance NoSQL databases have to solve different prob-
lems. This section will give an overview of some important
techniques that solve these problems and help to achieve the
goals.

A. CAP-Theorem and BASE

A fundamental property of many NoSQL databases is that
they can be used in a cluster. A developer that use such a
distributed database desires three different guaranties:
Consistency, which means that the data in the cluster look like
a single copy; Availability, which means that the database
response to requests even if some nodes have an outage;
(network) Partition-tolerance
The bad news is that these three guarantees can not be given all
at once. Only two of them can be guaranteed at any time. This
finding is known as CAP-Theorem. The CAP-Theorem was
formalized 2000 by Eric Brewer and later formal proofed[4]
by Seth Gilbert and Nancy Lynch.
Classic distributed RDBMS use ACID and therefor chose
consistency and partition-tolerance. As mentioned in the in-
troduction for many applications’ availability is much more
important than consistency. For such an application a database
that choose Partition-tolerance and Availability would be much
more useful. Many NoSQL databases have chosen such an
approach. They omit a strict consistency model and the relaxed
consistency model BASE.
BASE stands for Basically available, Soft-state, Eventual
consistency. Basically available means in this context that the
database has to run all the time. Soft-state means that the data
over all nodes in a cluster have not to be in a strict consistent
state all the time. Different variants of the data are possible in
the cluster.
Eventual consistency means that the application does not have
to be intermediately in a consistent state, but after a finite
time. There are different types of eventual consistency. These

2The name of this type of database is a bit misleading, because it seems
to be identical to a relational column store.

3Google use BigTable for example for the Websearch, Google Earth or
Google Analytics. For more information see [3].



different types are differed, which updates an application could
read. The problem of eventual consistency is that applications
must tolerant possible inconsistency.
In his blog Eric Brewer remark 2012[5] that the CAP-Theorem
is only relevant in the case of an error, so that there is more
than one Partition. Therefor he suggests only to handle these
errors explicit. Possible actions are for example either to limit
some operations or to store some extra data to recover after
the partition. Today not many databases do this.

B. Sharding

One important aspect to ensure scalability is the data
partitioning. NoSQL workloads can get so huge that they
can easily exceed any single computer, so they have to be
distributed across the nodes of a cluster. Such a horizontal
distribution is call sharding.
Classical RDBMS can not do sharding or not very well. The
problem is that there data is often divided in different tables
according to the relational data model. These tables get on
the other hand often connected for a query by a join. If the
data is on different nodes joins are not possible or would
require a lot network traffic. RDBMS systems that allow
sharding require often the participation of an administrator.
To reduce administration costs many NoSQL databases allow
an automatically sharding of the data. The automatically
sharding includes that the database maintains some kind of
mechanism to find the data in the cluster. Popular methods
to do this are hashing or a lookup server. If there are new
computers for the cluster they have also to be integrated
automatic, too. The database has therefore to do some kind
of membership management.
Another important feature that some sharding mechanisms
of NoSQL databases support is automatic load balancing.
It monitors the data usage and try to avoid usage hotspots
by distributing often used data across the nodes. That load
balancing is important shows Twitter[6].
They have used for the sharding of the tweets a static
approach based on the time stamp of the tweets, so that
tweets with a similar date are stored on the same machine.
The problem of this approach is that only the server with the
newest tweets have to struggle with the full load, because
nobody is interested in old tweets.

C. Performance optimization

NoSQL databases have often to answer a great amount of
queries. Therefore they have to be fast.
Often the performance optimization is done by the remove
of overhead. Like mentioned in [7] the main sources of
overhead in a database are the communication of the client
and the database, logging, locking, latching4 and the buffer
management. The elimination of such a overhead source can
dramatic improve the performance. This mean in many cases
that a feature has to be removed, but sometimes this is not

4Locking of a shared data structure in order to modify it.

important.
The communication between client and database can be re-
duced by pushing server code to the client library. Some
NoSQL databases are integrated in a MapReduce framework
stack like BigTable in Google’s MapReduce or Hbase in
Hadoop. This allow often to exploit the locality. Some NoSQL
databases have something similar to the stored procedures of
RDBMS.
Logging can in many cases simply be omitted, when data is
not valuable. In some cases replication across several nodes
has a sufficient level of reliability, so there is no need for
logging. Locking is not necessary, if there are no transactions
over more than one entry. Databases that are completely in
the main memory need no buffer management. In addition
this type of database benefits from the fact that access to the
main memory is much faster than any disk.
In addition there are some other performance optimizations
like compression to virtual increase bandwidths and memory
space. Some times the optimization is not in the database but
rather in the application. An object deserilisation of a binary
storage format is often cheaper than an object relation mapper.

V. CRITIQUE

There are a few critique points on NoSQL. In this section
an overview about some of them will be given. One critic
point is that NoSQL is nothing new. There are databases that
do similar things as NoSQL database long before the phrase
NoSQL established. These are for example Lotus Notes or
classical object databases. In addition it is often mentioned that
some enterprise databases support different features that are
often associated as NoSQL features. Typically these databases
are very expensive.
Another point is that NoSQL is not standardized. Many
NoSQL databases orient themselves for there query language
on SQL to reduce this problem. In addition many applications
do not use SQL directly. Instead they use persistence frame
works like hibernate. If such a framework supports a database,
it is not important which query language the database use. SQL
RDBMS are in some cases not standardized, too. Many SQL
databases support stored procedures. The language of these
procedures is not standardized.
A critique point often by business company’s is that there is no
commercial support. This point is not right. In the case that the
original developer is a web company, it is often right that there
is no support through him. But like many other open-source
software there is support through other company. Software
companies like Oracle(BerkeleyDB) that have developed a
NoSQL database offer typically commercial support.
The last point that will be mentioned here is that some
concepts like BASE make it hard for programmer to develop
software[8]. This is quite and one of the reasons for the
development of the next generation of database. Databases like
Google F1 use NoSQL features to be very scalable, but use
also use a strict consistency model and SQL to support the
demands of classical business application. In addition they are
a lot easier to program.



VI. CONCLUSION

With NoSQL databases there is a solution for problems that
have to scale. They are optimized for an application area and
do there job in this area well. It could be supposed that they
get in the next years more mature and further evolve.
But as previous mentioned there will be in the near future
a new generation of databases. These New SQL databases
will use NoSQL to scale and strong consistency and SQL
to support a broader range of applications and to be easy to
use. NoSQL databases will not die, because they are relatively
simple and can in this way optimized for special applications.

REFERENCES

[1] W. Kriha, “Nosql databases,” in Selected Topics on Software-Technology
Ultra-Large Scale Sites.

[2] T. Schürmann, “Fünf graphdatenbanken im vergleich,” 2012. [Online].
Available: http://www.linux-magazin.de/Ausgaben/2012/04/Graphdaten-
banken/%28language%29/ger-DE

[3] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Bur-
rows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A distributed
storage system for structured data,” 2006.

[4] S. Gilbert and N. Lynch, “Brewer’s conjecture and the feasibility of
consistent, available, partition-tolerant web services,” 2002.

[5] E. Brewer. (2012) Cap twelve years later: How the “rules” have
changed. [Online]. Available: http://www.infoq.com/articles/cap-twelve-
years-later-how-the-rules-have-changed

[6] highscalability.com. (2011) How twitter stores 250
million tweets a day using mysql. [Online].
Available: http://highscalability.com/blog/2011/12/19/how-twitter-stores-
250-million-tweets-a-day-using-mysql.html

[7] M. Stonebraker. (2009) The ”nosql” discussion has nothing to do with
sql. [Online]. Available: http://cacm.acm.org/blogs/blog-cacm/50678-the-
nosql-discussion-has-nothing-to-do-with-sql/fulltext

[8] J. Shute, M. Oancea, S. Ellner, B. Handy, E. Rollins, B. Samwel,
R. Vingralek, C. Whipkey, X. Chen, B. Jegerlehner, K. Littlefield, and
P. Tong, “F1 - the fault-tolerant distributed rdbms supporting google’s ad
business,” Google, Tech. Rep., 2012.


