
Organic Computing

Oleksandr Pavlichenko

Computer Engineering Group

ZITI, University of Heidelberg

Heidelberg, Germany

pavlichenko(at)stud.uni-heidelberg.de

Prof. Dr. Holger Fröning

Computer Engineering Group

ZITI, University of Heidelberg

Heidelberg, Germany

holger.froening(at)ziti.uni-heidelberg.de

Abstract—The paper presents a short overview of the state of

the art in the field of organic computing, explaining its most vital

components and techniques, as well as providing some examples

to applications of organic computing systems.

Keywords—organic computing; self-x; machine learning;

genetic optimization; autonomous systems

I. INTRODUCTION

A. Motivation

Nowadays we are faced with rapidly increasing require-
ments to computer systems. Most of the systems have to
function in complex and dynamically changing environments.
We have reached the point when hardware improvements are
mostly quantitative, e.g. putting more cores on a single die or
increasing cache size. The situation is a cause to the fact that
new systems are more complex, incorporate more components
and/or modules.

Conventional computer or software system reactions are
limited to what developers have foreseen and implemented,
i.e. have a number of static reactions which will not change
over time. It would have been much more efficient to develop
a system that can adapt itself to a environment or, in case of
pure software solution, to a context, where it works, to
enhance performance, resource usage and stability. One of the
most advanced requirements to a system is the best possible
human interaction, which is hard to achieve using predefined
settings.

B. What is Organic Computing?

OC is a new and rapidly developing research field in
computer science, operating on the edge between life sciences,
hardware engineering, software development and potentially
even more research areas. Organic computing (OC) systems
are not related to so called bio-computers, and operate using
conventional silicon chips, not organic chips, as one may
think. The name is chosen because of inspiration that OC takes
from the live sciences (especially biology).

OC system consists of many intelligent subsystems, which
communicate with each other, ensuring good collaboration
between components and overall better system functionality.

C. Goals

Main goal of OC is to develop a robust and flexible system
which can adapt itself to different situations even if system
reaction was not directly implemented beforehand. This can be
achieved with addition of life-like properties to the system,
which is exactly a more specified goal of organic computing.
Other aim is to create a goal-driven system, which means we
don't have to define explicit simple tasks, but a more abstract
goal to achieve, which greatly improves the human interaction
possibilities of a system.

As an extension of the main goal we defined, there are
more options which improve the system functionality, but are
not obligatory to include in the system. Such additions are for
example learning techniques for intelligent systems, and
evolutionary algorithms, which in conjunction with learning
may drastically improve system stability and performance.

D. EXTOLL Flow Control

An automatic network traffic flow control system (such as
used in EXTOLL project) is a simple example of OC inspired
system, despite the paper doesn't mention anything about OC.
The system is designed to optimize the usage of available
hardware resources, and relies only on its internal data (no
outside control), so we may say that the system is self-
optimizing itself for a given workload.

II. SELF-X PROPERTIES

In previous chapter we outlined that the main goal of OC is
to add life-like properties to an intelligent system (IS). This
properties aim to replicate the behavior of life organisms or
colonies of organisms. The set of properties is called self-x
properties, with "x" naming behaviors, e.g. organization,
optimization, healing, protection, configuration etc. "Self-"
means that the system or given subsystem incorporates the
feature in itself and no external control is used to ensure the
correct functionality of a property. Thus, the system which has
self-x properties can be considered autonomous and flexible to
some extent, with current development searching for ways to
push the limit further.

A. Self-organization

Most important self-x feature is self-organization. It incor-
porates all other self-x in itself, because we can derive any
other life-like property from organization, e.g. self-
optimization is equal to "self-(re)organize for better
performance".

Uncontrolled self-organization may be dangerous since we
cannot predict the behavior of the system. That is the reason
why OC uses controlled self-organization. As an architecture
of choice comes Observer/Controller architecture, adapted to
needs of certain application. A simple example for the
architecture is shown in fig. II-1. Observer/Controller is a part
of the system, so for the external observer system will be self-
organized.

Figure II-1. Simple Observer/Controller architecture[1]

There are three main approaches to the implementation of
Observer/Controller loop (control module or CM). First
possibility is a central control, which corresponds to fig. II-1.
This type includes only one CM that watches over the whole
system. This type doesn't make the system very flexible, and is
simplest way to go with. A more complex and flexible
alternative is a decentralized control schema. This approach
incorporates CM inside of every module, which is shown on
the left side of following figure:

Figure II-2. Observer/Controller implementations[1]

Last variant is a multilevel approach, which is most
complex and rewarding. It's a mixture of first two possibilities
with addition of (multiple) control levels. The basic schema
for the approach is shown on the right side of fig. II-2. The
choice of exact implementation to use depends on many
factors such as system scale, timing requirements, available
hardware resources, task to be performed etc.

B. Degree of Self-organization

From three implementations of Observer/Controller
architecture that we discussed in previous subsection, we can
derive a quantitative measure of system self-organization
called degree of organization. The degree depends on the
relation between number of CM's within the system to number
of agents (subsystems). If we assume that number of CM's is
equal to n, and number of agents m, we can define three
degrees of self-organization:

 n = 1, the system is weakly self-organized, as we
have only one central control unit.

 n > 1, the system is self-organized, as some
elements of the system organize itself, and we
possibly have a global CM in addition to local
ones.

 n > m, the system is strongly organized, as we can
assume that most (or each of) elements organize
itself and we have a multilevel regional and/or
global CM.

The degrees of organization can be used to classify a
system as self-organized OC system.

C. Summary and Overview of other Properties

We already mentioned that all self-x properties may be
derived from self-organization property. This does not mean
that every self-organized system automatically possess all of
self-x features, it is just opens a possibility to add such feature
as a part of self-organization. On the other hand, if we know
that system possesses any of self-x properties, we can assume
that it is self-organizing. One additional feature, which doesn't
meet the self-x format is context-awareness. This means that
system tries and is able to get the environment information
and reacts accordingly to data it becomes.

III. EVOLUTION

We know that every OC system consists of many
subsystems that communicate and work together to achieve
some goal. If we assume that each subsystem is a chromosome,
we can build our complete system as a combination of the
chromosomes, the same way it's done in nature. The idea of
evolutionary optimization is than next generation will be better
than predecessor and after some number of generations we
become a system that is fit for our purpose.

As a preparation to evolutionary optimization we must
develop a set of basic tasks and construct agents that can fulfill
the task. The whole process takes many iteration, each iteration
consisting of the following steps. Firstly we randomly generate
many systems from subsystems (number of subsystems may
vary, so as a repeatability of a single subsystem within a

system). Then we test if generated systems satisfy our
requirements. Fittest systems are then exchange their properties
by copying or replacing some subsystems and thus the next
generation is created. This process continues until some system
satisfy all of the requirements. An addition of mutations can
speed-up the process drastically, but determination of "good"
mutations may be very hard and apply to big of an overhead.
The drawbacks of the method are that it could potentially never
or take a very long time to converge because of its randomness.

Another possibility to utilize genetic concept is a organic
model where a system evolves to a new generation with added
or altered functionality, based on information it accumulated
during current generation. This technique is closely coupled
with learning.

IV. LEARNING

(Machine) Learning is a capability of a system or an
algorithm to achieve better results over time as a result of an
accumulation and analysis of data. This feature is very
important to every system that must operate in autonomous
mode at times.

Learning process consists of many phases, such as:

 data acquisition, when we collect the data;

 data preprocessing when we filter and sometimes
reduce the working set to improve performance of
the learning algorithm;

 actual learning or prediction based on the data we
have;

 storage to a knowledge base or output of the
results, depending on previous operation.

OC systems should be able to operate efficiently in
dynamic environments, which makes learning a perfect
addition to the set of features. Learning allows for much better
self-optimization, because leaning feature mean that system has
memory (not in terms of hardware) and can "recall" or
"predict" (to a some degree) the outcome of given operation, if
this operation was already performed by the system.

The optimization and configuration potential are evident.
For example running many tests with slightly different
parameters and in different environments will allow a self-
optimizing system with learning capabilities to "remember"
good configurations for each environment and use it as the
basis for further optimization.

There is a huge number of learning algorithms and
techniques, each with its advantages and drawbacks. Most
interesting for the self-organizing systems is so called online-
learning. This means that a system learns and extends its
knowledge, at the same time actively processing the main task.
Online learning algorithms must be lightweight and efficient,
with minimum possible overhead.

As we have many subsystems, each of can potentially learn
independent from other components, a collaborative learning
approach is very interesting technique to use. This approach
uses the knowledge exchange function, to distribute new data
between the components. If done correctly, this can parallelize

the learning process. Very important during knowledge
exchange is the "weight" of information, which can be
determined using following properties:

 uniqueness

 importance

 representativity

V. APPLICATIONS OF ORGANIC COMPUTING

OC systems can be used in wide variety of areas, ranging
from traffic control systems to a system on a chip (SoC)
solutions. In the following we discuss some of current and past
projects that use OC systems as their basis

A. Organic Traffic Control[6]

The project aims to optimize the regulation of traffic flow
in modern cities using OC-based system. The static system
will not operate well in such environment, as the dynamic
changes to the traffic patterns are impossible to foresee at
design time. This forces that optimization and coordination
decisions are made by the system at the runtime.

A core of the system is an Observer/Controller architecture
that allows for adaptive learning. The system uses two-level
learning and optimization mechanism. The whole algorithm
operates on-line, i.e. optimizations and learning are done
during the workload. First level of the mechanism selects
suitable signal patterns to use from the knowledge base, while
the second level mechanism optimizes those if necessary.

Additionally, an optimization in form of self-organized
coordination was used. During the tests, there was confirmed
that completely decentralized control is inferior to hierarchical
which should be the next step in the development.

B. Organic Computing in Off-Highway Machines[8]

This projects aims to enhance the control system of off-
highway vehicles such as tractors with the concepts of OC,
which should greatly improve reliability and robustness of
such vehicles.

The project uses generic Observer/Controller architecture
as a basis, then focusing on improving the Observer side of the
CM. The system uses machine learning techniques to extract
usual patterns for a vehicle and optimizes the control
accordingly. As in most cases the online learning algorithm
was used, allowing for on-the-fly optimizations of the
behavior.

C. Organic Self-organized Bus-Based Communication

Systems[7]

This project tries to overcome a drawbacks of usual off-line
design of CAN protocol with the aim to improve the
communication scheduling model.

In the work, authors present three types of streams that are
used in the CAN protocol and try to optimize it introducing
organic communication stream. To ensure fairness and the fact
that all hard deadlines will be met (concerning real-time
streams), the project uses dynamic offset adaptation algorithm.

On the other hand, high bandwidth streams also receive a fair
control using the enhanced priority based medium access game
algorithm. To learn the communication patterns, the penalty
learning algorithm is used.

The experimental results showed the feasibility of a
dynamic approach to a CAN protocol control, but many
optimizations are still to be done.

VI. SUMMARY AND OUTLOOK

Organic Computing is a promising field of research with
vast possibilities. The basis for OC are self-x properties which
are inspired by the biological systems. The properties allow to
design more safe and robust systems, which show better human
interaction behavior. Features such as genetic optimization and
machine learning are important aspects of OC, and add even
more flexibility and performance of applications.

OC can be used in almost every field of computer science,
has projects in automotive area and is always expanding. There
is still loads of research and optimization room left in the field.
Many projects start every year, with new ideas and solutions.

REFERENCES

[1] C. Müller-Schloer et al. (eds.), Organic Computing – A Paradigm Shift

for Complex Systems, 5-37, Autonomic Systems, DOI 10.1007/978-3-
0348-0130-0_1 Springer Basel AG 2011

[2] C. Müller-Schloer et al. (eds.), Organic Computing – A Paradigm Shift
for Complex Systems, 95-109, Autonomic Systems, DOI 10.1007/978-
3-0348-0130-0_1 Springer Basel AG 2011

[3] C. Müller-Schloer et al. (eds.), Organic Computing – A Paradigm Shift
for Complex Systems, 111-125, Autonomic Systems, DOI 10.1007/978-
3-0348-0130-0_1 Springer Basel AG 2011

[4] C. Müller-Schloer et al. (eds.), Organic Computing – A Paradigm Shift
for Complex Systems, 237-251, Autonomic Systems, DOI 10.1007/978-
3-0348-0130-0_1 Springer Basel AG 2011

[5] C. Müller-Schloer et al. (eds.), Organic Computing – A Paradigm Shift
for Complex Systems, 253-265, Autonomic Systems, DOI 10.1007/978-
3-0348-0130-0_1 Springer Basel AG 2011

[6] C. Müller-Schloer et al. (eds.), Organic Computing – A Paradigm Shift
for Complex Systems, 431-446, Autonomic Systems, DOI 10.1007/978-
3-0348-0130-0_1 Springer Basel AG 2011

[7] C. Müller-Schloer et al. (eds.), Organic Computing – A Paradigm Shift
for Complex Systems, 489-501, Autonomic Systems, DOI 10.1007/978-
3-0348-0130-0_1 Springer Basel AG 2011

[8] M. Wünsche, S. Mostaghim, H. Schmeck, T. Kautzmann, M. Geimer,
Organic Computing in Off-Highway Machines

[9] C. Müller-Schloer et al. (eds.), Organic Computing – A Paradigm Shift
for Complex Systems, 267-280, Autonomic Systems, DOI 10.1007/978-
3-0348-0130-0_1 Springer Basel AG 2011

[10] http://en.wikipedia.org/wiki/Machine_learning, as of 27.01.2013

[11] C. Müller-Schloer et al. (eds.), Organic Computing – A Paradigm Shift
for Complex Systems, 615-627, Autonomic Systems, DOI 10.1007/978-
3-0348-0130-0_1 Springer Basel AG 2011.

