Profiling of Data-Parallel Processors

Daniel Kruck

09/02/2014

09/02/2014 Profiling Daniel Kruck 1/41

0 Motivation

© Background - GPUs

e Profiler

@ NVIDIA Tools
@ Lynx

e Optimizations

e Conclusion

09/02/2014 Profiling Daniel Kruck 2/41

0 Motivation

09/02/2014 Profiling

3/41

Motivation

2.5 2.35
2.0 —
E 15 —
3
o
5 1.0 =
0.5 0.41
0.5 1T —
3 T 1
Intel Core i7 MPC8641D ATIRV770

Figure : Energy efficiency comparision: CPU vs GPU [1]

@ high energy efficiency
@ consume a huge part of the power-budget in HPC

09/02/2014 Profiling Daniel Kruck 4/41

Motivation

Grid 1
Block 1

Pd
Figure : Idea of data-parallel Figure : Worker thread executes
processors [2] operation on its own element [3]

09/02/2014 Profiling Daniel Kruck 5/41

120 |- -| | —e— 1st version
== —=—2nd version
—e— 3rd version
100 - | | —— 4th version
Bl —— 5th version
£ g0l | |- 6th version
=
m
60 - :
40 - :

Il Il Il Il
128 256 512 1,020
threads per block

Figure : Device memory bandwidth with respect to threads per block. [4]

@ collect runtime information
@ optimize objective oriented

09/02/2014 Profiling Daniel Kruck 6/41

Background - GPUs

© Background - GPUs

09/02/2014 Profiling Daniel Kruck 7/41

Background - GPUs

ig | \l"‘
o Y l-\r

1
;j ;
i | Bt
j 3
1

Figure : Which die is the CPU, which one the GPU? [3]

09/02/2014 Profiling Daniel Kruck 8/41

Background - GPUs

Core count

Frequency

Peak Compute Performance

Use model

Latency treatment
Programming
Memory bandwidth
Memory capacity
Die size

Transistor count

Technology

09/02/2014

Profiling

13 SMs
64/832 (DP), 192/2,496 (SP)

0.7GHz

1,165 GFLOPS (DP)
3,494 GFLOPS (SP)

throughput-oriented

10

2 4GHz
96 GFLOPS (DP)

latency-oriented

toleration minimization
1000s-10,000s of threads 10s of threads
250 GBytes/sec 34 GByte/s (per P)
<=8GB up to 2TB
550mm? 684 mm?
7.1 billion 2.3 billion
28nm 32nm
Figure : GPU vs CPU [3]
Daniel Kruck 9/41

Background - GPUs

09/02/2014

Block (0,0) ' Block (1,0) Block (2, 0)

Block (0, 1) Block (1, 1) " Block (2, 1)

Programming model

@ Thread hierarchy: grid,
block, warp (usually 32
threads), thread

@ Shared memory as
scratch-pad memory

@ Barrier Synchronization

Block (1, 1)

Figure : Programming model

Profiling Daniel Kruck 10/ 41

1
<
-

Memory Controller Memory Controller

3
£
£
B
d
5
g

7]
]
o
(O]
°
=
=
<]
=
=)
x
(3]
@
o

Figure : Kepler full chip block [5]

Profiling

Memory Controller Memory Controller Memory Controller

09/02/2014

Background - GPUs

i
I

Figure : Kepler warp scheduler [5]

time

09/02/2014 Profiling Daniel Kruck

Background - GPUs

09/02/2014

Compute
Core(s)

ISystem Request Queue

@ in this talk: the red

North DDR3 Host
Bridge memory blocks GPU and
E GPU memory are
Syste Interface 35GB/s

of interest

I/0 @ transport of data to

GPU memory is

PCI-Express G3 x16 expensive
R Rt " ey lat
memory features
250GB/s hlgh bandwidth

Figure : GPU-Host interface

Profiling Daniel Kruck 13/ 41

Background - GPUs

@ The cachesize of a GPU is much smaller than of a CPU. Caches
are used differently.

@ The core-count of GPUs is much higher.

@ The communication model between GPU-threads is more relaxed
than between CPU-threads. Therefore, there are some
differences in the programming model.

@ Maximal GPU performance usually decreases the power-budget
dramatically. Therefore, GPU applications should be optimized.

@ Since there are a lot of mysterious concurrent things going on,
runtime information can help to demystify the GPU.

09/02/2014 Profiling Daniel Kruck 14/ 41

G’ Profiler

@ NVIDIA Tools
@ Lynx

09/02/2014 Profiling Daniel Kruck 15/41

Definition
“Application performance data is basically of two types: profile data
and trace data.” [6]

Definition

“Profile data provide summary statistics for various metrics and may
consist of event counts or timing results, either for the entire execution
of a program or for specific routines or program regions.” [6]

Definition

“In contrast, trace data provide a record of time- stamped events that
may include message-passing events and events that identify entrance
into and exit from program regions, or more complex events such as
cache and memory access events.” [6]

09/02/2014 Profiling Daniel Kruck 16/ 41

Definition

“An event is a countable activity, action, or occurrence on a device. It
corresponds to a single hardware counter value which is collected
during kernel execution.” [7]

Definition
“A metric is a characteristic of an application that is calculated from
one or more event values.” [7]

09/02/2014 Profiling Daniel Kruck 17/41

Profiler NVIDIA Tools

NVIDIA profiling tools
@ nvprof: a command line profiler

@ Visual Profiler: a tool to visualize performance and trace data
generated by the nvprof

@ NSight: a development platform that integrates nvprof and Visual
Profiler

@ are based on NVIDIA APIs
o CUPTI (CUDA Performance Tools Interface): a collection of four
APIs, that “enables the creation of profiling and tracing tools” [8].
Through this API metric and event data can be queried, the nvprof
can be controlled and a lot of other features are exposed.
o NVML (NVIDIA Management Library): through this library, thermal
or power data can be queried.
@ are designed to work with NVIDIA GPUs and are easy accessible
in a NVIDIA environment

09/02/2014 Profiling Daniel Kruck 18/41

v

Profiler NVIDIA Tools

help

nvprof —help

query predefined events

nvprof —query—events

query predefined metrics

nvprof —query—metrics

09/02/2014 Profiling Daniel Kruck 19/41

Profiler NVIDIA Tools

example query

nvprof —events elapsed_cycles_sm
—profile —-from—start—off ./ my_application

Event MName Min

nt*, int const *, un
sm

Figure : Example output the stated nvprof-command

09/02/2014 Profiling Daniel Kruck 20/ 41

s 0255 05s 0755 1s 125%
=l Process 23349
= Thread 1373886240

Runtime API []
Driver APl
Profiling Overhead
5 [o] Tesla K20¢ C e mes T ToTmotzotozezoezeaoes ey .
=l Context 1 (CUDA)
T MemCpy (HtoD) -
T MemCpy (DtoH)
= Compute
T 68.2% void Reduction?_kemel<int=32> (it
¥ 6.5% Reduction5_kemnel(int, int const ¥, un
T 5.1% Reductions_kernel(int*, int const *, un
7 5.1% Reductionl_kernelint*, int const ¥, un.
7 4.8% Reduction2_kemel(int*, int const ¥, un
7 1.8% void reduceSinglePass<unsigned int=
T 1.4% void Reduction3_kernel<unsigned int
7 1.4% void reduceSinglePass<unsigned int=
T 1.2% void reducesinglefass <unsigned int=
' 1.2% void Reduction3_kernel<unsigned int
T 1.1% void reduceSinglePass<unsigned int=
I 1.1% void Reduction3_kernel<unsigned int.
¥ 1.0% void Reduction3_kerne|<unsigned int
 0.0% memset (0)
= Streams
Default [}

Figure : Nsight profiling view: timeline

Profiler NVIDIA

Definition

Occupancy is the ratio between active warps and the maximum
amount of active warps.

= Compute

. Global Load Efficiency 100%
7 19.3% Reduction Global store Efficiency ® 12.5%
7 29.3% Reduction i Warp Execution Efficiency 5 68.2%

T 21.3% Reduction
7 10.3% Reduction
T 10.0% Reduction

Non-Predicated Warp Execution E; & 67.1%
= Occupancy

Achieved b 24.4%
LA | G Theoretical 25%
QW00 Yvoid Radice < Limiter Block size

>] D
sblems| 1 Tasks | & Console (7 Analysis £3 . ™ Details =
= Reset Al | [l analyze | Results

Lctionoa_kernel(ints, ints, unsigs | GPU Utilization s Limited By Block size

The kernel has a block size of 32 threads. This block size is likely preventing the kernel from fully utilizing the GPU. Device “Tesla K20c” can
nel Perfo...ance Limiter iy

simultaneously execute up to 16 blocks on each SM. Because each block uses 1 warp to execute the block's 32 threads, the kemel is

using only 16 warps on each SM. Chart *Varying Block Size* below shows how changing the block size wil change the number of warps that
1| | canexecute on each sM,

Optimization: Increase the number of threads in each block to increase the number of warps that can execute on each SM.
‘mel Compute @ | | |variable Achieved

Occupancy Per M

More.
Theoretical | Device Limit [Grid Size: [1048576,1,1] (1048576 blocks) Block Size: [32,1,11 (3]

‘nel Memory iy
Active Blocks 16 16 012 34506 7 8 5 10111213 14 15 16
mory Access Pattern [y [Retive warps 15.64 16 64)
0 71 14 2 3 a2 49 % o
ergent Execution iy Active Threads 512 2048 ! — TR T 00 20
ication Occupancy 24.4% 25% 100% I 2
ta Movem...oncurrency @ . -

Figure : Occupancy example: kernel block size to small

09/02/2014 Profiling el Kri

22/ 41

Profiler NVIDIA Tools

Definition

Branch divergency on a GPU refers to divergent control-flow for
threads within a warp. [9]
source of branch divergence
if (tid %2 ==20)
sPartials[tid] += sPartials[tid];

i [2] [@ Reset Al | [l Analyze al| Results

" - N & Lo Wi E: tion Effici
Reduction0a_kernel(int*, int*, uns ow \Warp Exacution Efficiency

Warp execution efficiency is the average percentage of active threads in each executed warp. Increasing warp execution efficiency will
increase utilization of the GPU's compute resources. The kemel's warp execution efficiency of 67% is less than 100% due to divergent
branches and predicated instructions. 1% of the inefficiency is due to predicated instructions and the remainder is due to divergent
Kernel Latency) branches.

Optimization: Reduce the amount of intra-warp divergence and predication in the kernel,

Kernel Perf...nce Limiter ||

More

Figure : Example: branch divergence

09/02/2014 Profiling Daniel Kruck 23/ 41

Profiler NVIDIA Tools

Definition
Coalesce access refers to to the aligned consecutive memory access
pattern of an active warp.

source of inefficient access pattern

if (tid ==)
out[blockldx.x] = sPartials[0];

= Efficiency
Global Load Efficiency . 100%
Global Store Efficiency u 12.5%

Figure : Example: global store inefficiency

09/02/2014 Profiling Daniel Kruck 24 /41

Profiler PAPI & TAU

@ PAPI (Performance Application Programing Interface)
+ has a broad userbase
+ gives access to common hardware counters through a consistent
interface
+ portable code
- is based on PAPI CUDA component
- requires CUPTI-enabled driver

@ TAU (Tuning and Analysis Utilities)

+ well-known to HPC developers consistent interface
+ portable code
- TAU relies on CUDA library wrapping just like PAPI

09/02/2014 Profiling Daniel Kruck 25/ 41

Profiler Lynx

@ NVCC separates
PTX from HOST
code

@ PTX code is later
on translated to
device code

@ the compilation of
PTX Code PTX code can be
ahead-of-time

PTX to (AOT) O-r

Target just-in-time (JIT)
Compiler @ PTX code provides
an opportunity for a
custom
instrumentation

CUDA Program

Virtual

Physical

09/02/2014 Profiling Daniel Kruck 26/ 41

+ dynamic instrumentation
+ transparent, selective

€ Instrumentation
Specification

P Instrumentation APIs
cl|T A |
U X N C-on-Demand JIT Compiler || N
D A S
PTX
AllP L -to-] T
B 5 a | | Module v _ C-ta-PTX Translator 3
w o R[|R S u
g ; ulls | PTX-PTX Transformation M
U a
3 N||E PTX Kernel IR | 5 [pTX Meta-Data (DFG, Dom) Pass Manager £
< TR (CFG) N
T — C-to-PTX T
M PTX Transformations K- e o
E Pass R
PTX Translater/Code Generator
NVIDIA GPU Multicore CPU AMD GPU Emulator
Device Device Device Device

Figure : Lynx software architecture [10]

el K

Profiling

Profiler Lynx

Kernel Runtimes and Thread Block-SM Mapping
unsigned long start, stop;

insert instrumentation at th

ON_KERNEL_ENTRY: «— '
- - i beginning of every kernel

start = clockCounter();
syncThreads();
}

insert instrumentation at the

ON_KERNEL_EXIT; end of every kernel
{

syncThreads();

stop = clockCounter();

if(threadindexX() =0)

{ . . -
globalMem[blockld() * 2] = stop - start; + fme gram proflllng
} globalMem[blockld() * 2 + 1] = smld(); + selective
) + transparent

Figure : Lynx instrumentation specifications [10

Daniel Kruck

09/02/2014 Profiling

Profiler Lynx

+ online profiling

Features | CUPTI Lynx
Transparency (No Source Code Modifica- | Yes Yes
tions)

Support for Selective Online Profiling No Yes
Customization (User-Defined Profiling) No Yes
Ability to Attach/Detach No Yes
Support for Comprehensive Online Profiling No Yes
Support for Simultaneous Profiling of Multiple No Yes
Metrics

Native Device Execution Yes Yes

Figure : Distinctive features of lynx [10]

09/02/2014 Profiling Daniel Kruck 29/ 41

Profiler Lynx

@ NVIDIA tools:

+ easy accessible in NVIDIA environment
+ common errors can be automatically detected with the automated
analysis engine
- no fine-grain profiling
- not as selective and customizable as LYNX
o PAPI & TAU:

+ familiar to PAPI or TAU users
- are basically wrapper libraries on NVIDIA APls and therefore have
the same strengths and weaknesses
@ Lynx
+ transparent and highly selective instrumentation
+ not restricted to NVIDIA GPUs through the Ocelot-Cross-Compiler
+ online profiling possible
- not pre-installed in NVIDIA environments ;)

09/02/2014 Profiling Daniel Kruck 30/ 41

Optimizations

e Optimizations

09/02/2014 Profiling

31/41

Optimizations

T I I I I I

mem math full mem math full
mem math full mem math full

Balanced Memory and latency bound
Memory-bound Math-bound

Good mem-math Poor mem-math overlap:
Good mem-math Good mem-math) i
overlap: latency not a overlap: latency not a ove;llap. latency not a latency is a problem
problem problem problem)
(assuming memory (assuming instruction (assuming memory/instr
throughput is not low throughput is not low throughput is not low
compared to HW theory) compared to HW theory) compared to HW theory)

@ Profile the global memory transactions for the memory-only
kernel.
@ Profile the register-count for the math-only kernel.

D 32/41

niel Ki

09/02/2014 Profiling

Optimizations

@ NVIDIA Tools : try to isolate a block.
@ Lynx : just use fine-grained profiling.

nvprof latency profiling example

nvprof —aggregate—mode off
—events elapsed_cycles_sm
—profile —-from—start—off ./reduction

09/02/2014 Profiling Daniel Kruck 33/41

Optimizations

@ math-bound

o are there divergent branches?

o simplify indexing math?

e are there sequences of same operations? (pipeline stall)
@ memory-bound

o profile access pattern.

o look out for opportunities to improve occupancy.
@ latency-bound

@ is there a chance to optimize thread synchronization?
e is there a chance to increase independent instructions?

09/02/2014 Profiling Daniel Kruck 34 /41

Conclusion

e Conclusion

09/02/2014 Profiling

35/41

Conclusion

Data-Parallel Processors
+ high power efficiency
+ are commonly used in the field of HPC
+ fun to play with
- complex runtime behaviour
- complex programming model, differs from CPU model

Profiling
@ Native NVIDIA tools

+ easy accessible
+ fast detection of common mistakes

@ Alternatives like lynx showcase interesting new features like

e online profiling
o fine grain profiling

09/02/2014 Profiling Daniel Kruck 36 /41

Conclusion

@ the amount of devices in supercomputers increases
@ the energy-budget is becoming more and more the limiting factor

Future of Data-Parallel Profiling
Is there a shift towards energy profiling of entire systems? J

09/02/2014 Profiling Daniel Kruck 37/41

Conclusion

Figure : Source: “The Internet” ;) - Questions??

09/02/2014 Profiling Daniel Kruck 38/ 41

Appendix For Further Reading

[@ Scott Theiret Anne Mascarin.
Cpus and gpus vie for new signal and image processing roles.
http:
//www.cotsjournalonline.com/articles/view/101617,

2010.

[3 Guillermo Marcus.
Gpu computing, 2012.

[§ Holger Froening.
Gpu lecture, 2013.

[3 Nicholas Wilt.
The cuda handbook.
2013.

09/02/2014 Profiling Daniel Kruck 39/41

http://www.cotsjournalonline.com/articles/view/101617
http://www.cotsjournalonline.com/articles/view/101617

Appendix For Further Reading

[3 Nvidia.
Whitepaper: Nvidia’s next generation cuda compute architecture:
Kepler gk110.
2012.

[@ Shirley Moore, David Cronk, Felix Wolf, Avi Purkayastha, Patricia
Teller, Robert Araiza, Maria Gabriela Aguilera, and Jamie Nava.
Performance profiling and analysis of dod applications using papi
and tau.

In Users Group Conference, 2005, pages 394-399. IEEE, 2005.

[3 NVIDIA.
Profiling user’s guide.
http://docs.nvidia.com/cuda/profiler—-users—guide,

2013.

09/02/2014 Profiling Daniel Kruck 40 /41

http://docs.nvidia.com/cuda/profiler-users-guide

Appendix For Further Reading

B NVIDIA.
Cupti, 2013.

[§ Jennifer Hohn.
Optimizing application performance with cuda profiling tools, 2012.

[{ Naila Farooqui, Andrew Kerr, Greg Eisenhauer, Karsten Schwan,
and Sudhakar Yalamanchili.
Lynx: A dynamic instrumentation system for data-parallel
applications on gpgpu architectures.
In Performance Analysis of Systems and Software (ISPASS), 2012
IEEE International Symposium on, pages 58—67. |IEEE, 2012.

09/02/2014 Profiling Daniel Kruck 41/41

	Motivation
	Background - GPUs
	Profiler
	NVIDIA Tools
	Lynx

	Optimizations
	Conclusion

