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Motivation

Why Data-Parallel Processors?

Figure : Energy efficiency comparision: CPU vs GPU [1]

high energy efficiency
consume a huge part of the power-budget in HPC
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Motivation

Idea of Data-Parallel Processors

Figure : Idea of data-parallel
processors [2]

Figure : Worker thread executes
operation on its own element [3]

Figure : Motivation and idea of data-parallel processors

high energy efficiency
consume a huge part of the power-budget in HPC
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Motivation

Why Profiling?
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Figure : Device memory bandwidth with respect to threads per block. [4]

collect runtime information
optimize objective oriented
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Background - GPUs

x86-CPU and GPU Quiz

Figure : Which die is the CPU, which one the GPU? [3]
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Background - GPUs

GPU vs CPU

Figure : GPU vs CPU [3]
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Background - GPUs

Programming Model

Figure : Programming model

Programming model
Thread hierarchy: grid,
block, warp (usually 32
threads), thread
Shared memory as
scratch-pad memory
Barrier Synchronization
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Background - GPUs

GPU - Kepler Architecture

Figure : Kepler full chip block [5]
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Background - GPUs

GPU - Kepler Warp Scheduler

Figure : Kepler warp scheduler [5]
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Background - GPUs

GPU-Host Interface

Figure : GPU-Host interface

in this talk: the red
blocks GPU and
GPU memory are
of interest
transport of data to
GPU memory is
expensive
GPU-GDDR5
memory features
high bandwidth
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Background - GPUs

Summary

The cachesize of a GPU is much smaller than of a CPU. Caches
are used differently.
The core-count of GPUs is much higher.
The communication model between GPU-threads is more relaxed
than between CPU-threads. Therefore, there are some
differences in the programming model.
Maximal GPU performance usually decreases the power-budget
dramatically. Therefore, GPU applications should be optimized.
Since there are a lot of mysterious concurrent things going on,
runtime information can help to demystify the GPU.
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Profiler

Definitions (1)

Definition
“Application performance data is basically of two types: profile data
and trace data.” [6]

Definition
“Profile data provide summary statistics for various metrics and may
consist of event counts or timing results, either for the entire execution
of a program or for specific routines or program regions.” [6]

Definition
“In contrast, trace data provide a record of time- stamped events that
may include message-passing events and events that identify entrance
into and exit from program regions, or more complex events such as
cache and memory access events.” [6]
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Profiler

Definitions (2)

Definition
“An event is a countable activity, action, or occurrence on a device. It
corresponds to a single hardware counter value which is collected
during kernel execution.” [7]

Definition
“A metric is a characteristic of an application that is calculated from
one or more event values.” [7]
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Profiler NVIDIA Tools

NVIDIA Profiling Tools

NVIDIA profiling tools

nvprof : a command line profiler
Visual Profiler : a tool to visualize performance and trace data
generated by the nvprof
NSight : a development platform that integrates nvprof and Visual
Profiler

are based on NVIDIA APIs
CUPTI (CUDA Performance Tools Interface): a collection of four
APIs, that “enables the creation of profiling and tracing tools” [8].
Through this API metric and event data can be queried, the nvprof
can be controlled and a lot of other features are exposed.
NVML (NVIDIA Management Library): through this library, thermal
or power data can be queried.

are designed to work with NVIDIA GPUs and are easy accessible
in a NVIDIA environment
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Profiler NVIDIA Tools

nvprof - Getting Started

help

nvpro f −−help

query predefined events

nvpro f −−query−events

query predefined metrics

nvpro f −−query−metr ics
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Profiler NVIDIA Tools

nvprof

example query

nvpro f −−events elapsed_cycles_sm
−−p r o f i l e −from−s t a r t −o f f . / my_appl ica t ion

Figure : Example output the stated nvprof-command
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Profiler NVIDIA Tools

NSight - Profiling View at a First Glance: Timeline

Figure : Nsight profiling view: timeline
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Profiler NVIDIA Tools

NSight - Detection of Obvious Mistakes - Occupancy

Definition
Occupancy is the ratio between active warps and the maximum
amount of active warps.

Figure : Occupancy example: kernel block size to small
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Profiler NVIDIA Tools

NSight - Detection of Obvious Mistakes - Branch
Divergency

Definition
Branch divergency on a GPU refers to divergent control-flow for
threads within a warp. [9]

source of branch divergence

i f ( t i d % 2 == 0 )
s P a r t i a l s [ t i d ] += s P a r t i a l s [ t i d ] ;

Figure : Example: branch divergence
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Profiler NVIDIA Tools

NSight - Detection of Obvious Mistakes - Coalesce
Access

Definition
Coalesce access refers to to the aligned consecutive memory access
pattern of an active warp.

source of inefficient access pattern

i f ( t i d == 0 )
out [ b lock Idx . x ] = s P a r t i a l s [ 0 ] ;

Figure : Example: global store inefficiency

09/02/2014 Profiling Daniel Kruck 24 / 41



Profiler PAPI & TAU

PAPI & TAU

PAPI (Performance Application Programing Interface)
+ has a broad userbase
+ gives access to common hardware counters through a consistent

interface
+ portable code
- is based on PAPI CUDA component
- requires CUPTI-enabled driver

TAU (Tuning and Analysis Utilities)
+ well-known to HPC developers consistent interface
+ portable code
- TAU relies on CUDA library wrapping just like PAPI
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Profiler Lynx

Lynx Background : CUDA Compilation Process

Figure : Cuda compilation process

NVCC separates
PTX from HOST
code
PTX code is later
on translated to
device code
the compilation of
PTX code can be
ahead-of-time
(AOT) or
just-in-time (JIT)
PTX code provides
an opportunity for a
custom
instrumentation
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Profiler Lynx

Lynx - Software Architecture

+ dynamic instrumentation
+ transparent, selective

Figure : Lynx software architecture [10]
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Profiler Lynx

Lynx - Instrumentation Specifications

Figure : Lynx instrumentation specifications [10]

+ fine grain profiling
+ selective
+ transparent
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Profiler Lynx

Lynx - Features

+ online profiling

Features CUPTI Lynx

Transparency (No Source Code Modifica-
tions)

Yes Yes

Support for Selective Online Profiling No Yes
Customization (User-Defined Profiling) No Yes
Ability to Attach/Detach No Yes
Support for Comprehensive Online Profiling No Yes
Support for Simultaneous Profiling of Multiple
Metrics

No Yes

Native Device Execution Yes Yes

Figure : Distinctive features of lynx [10]
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Profiler Lynx

Summary NVIDIA Tools and Alternatives

NVIDIA tools:
+ easy accessible in NVIDIA environment
+ common errors can be automatically detected with the automated

analysis engine
- no fine-grain profiling
- not as selective and customizable as LYNX

PAPI & TAU:
+ familiar to PAPI or TAU users
- are basically wrapper libraries on NVIDIA APIs and therefore have

the same strengths and weaknesses
Lynx

+ transparent and highly selective instrumentation
+ not restricted to NVIDIA GPUs through the Ocelot-Cross-Compiler
+ online profiling possible
- not pre-installed in NVIDIA environments ;)
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Optimizations

Detect Bottleneck with math-only or memory-only
Kernels

Profile the global memory transactions for the memory-only
kernel.
Profile the register-count for the math-only kernel.
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Optimizations

Latency Profiling

NVIDIA Tools : try to isolate a block.
Lynx : just use fine-grained profiling.

nvprof latency profiling example

nvpro f −−aggregate−mode o f f
−−events elapsed_cycles_sm
−−p r o f i l e −from−s t a r t −o f f . / reduc t ion
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Optimizations

Bottleneck Detected! What to do Next?

math-bound
are there divergent branches?
simplify indexing math?
are there sequences of same operations? (pipeline stall)

memory-bound
profile access pattern.
look out for opportunities to improve occupancy.

latency-bound
is there a chance to optimize thread synchronization?
is there a chance to increase independent instructions?
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Conclusion

Conclusion

Data-Parallel Processors
+ high power efficiency
+ are commonly used in the field of HPC
+ fun to play with
- complex runtime behaviour
- complex programming model, differs from CPU model

Profiling
Native NVIDIA tools

+ easy accessible
+ fast detection of common mistakes

Alternatives like lynx showcase interesting new features like
online profiling
fine grain profiling
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Conclusion

Quo Vadis, Data-Parallel Profiling?

the amount of devices in supercomputers increases
the energy-budget is becoming more and more the limiting factor

Future of Data-Parallel Profiling

Is there a shift towards energy profiling of entire systems?
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Conclusion

Discussion

Figure : Source: “The Internet” ;) - Questions??
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