
Software Execution Analysis

Philipp Schäfer
Chair of Computer Architecture

Institute of Computer Engineering (ZITI)
University of Heidelberg

Email: philipp.schaefer@ziti.uni-heidelberg.de

Andreas Kugel
Chair of Computer Science V

Institute of Computer Engineering (ZITI)
University of Heidelberg

Email: andreas.kugel@ziti.uni-heidelberg.de

Abstract—In modern times, most of our daily used appliances
include embedded devices. They range from small, portable
devices like MP3-Players, to stationary installations like traffic
lights, and largely complex systems like a cars board computer.
More complex systems use large numbers of software components
that share resources and interact in complex ways. Despite this
complexity, they have to address strict timing constraints and
software faults are, with few exceptions, unacceptable. To provide
these timing constraints, many embedded devices are driven by
Real Time Operating Systems (RTOS). Developing embedded
systems is a challenge. The use of hardware resources has to
be maximized and performance bottleneck and errors have to
be detected as early as possible. To achieve these goals it is
necessary to get insight into the components interactions. This
paper explores how system tracing tools can provide such insights.
A short overview on currently used profiling and trace tools is
given and the limitations of both debugging methods are pointed
out.

I. INTRODUCTION

To explain the importance of system trace tools, we first
have to talk about the different domains of problem diagnosis
as described in [1]. It is easy to track down logical errors
via usual software profilers or debuggers but they will fail
in several scenarios like the diagnosis of synchronization
problems of multiple processes or multiple threads on multiple
CPUs, or the maintenance of consistency and coherence. In
general, most systems share resources with several software
components that interact in such a complex way that it is
impossible to track down issues with usual software debuggers.
Problem diagnosis can be divided as follows:

• Sporadic domain: This domain includes most of the
system faults. The problem source is not known and
you have no information about the type of the prob-
lem. It occurs in an asynchronous and random manner.

• Temporal domain: The problems scope is narrowed,
but it is not reproducible.

• Logical domain: The error can be reproduced on
demand, because the exact sequence of conditions or
events that trigger the error was found. At this stage,
usual software profiling or debug tools can be used to
track down the error.

The main goal is to reach the logical domain as fast as
possible. System trace tools helps you to cope with the first
two domains.
In general, system tracing addresses a large variety of tools.
For example, via printf() a programmer can track a program’s

progress. System information tools like Unix top can monitor
task creation and track resources. Code coverage and appli-
cation profiling can be enabled by compiler-driven instrumen-
tation techniques. To diagnose memory leaks and excessive
memory fragmentation, a program’s history of memory usage
can be analyzed by memory tracing tools. At least, to get
accurate timing traces to display complex interactions between
multiple processes and threads, kernel-level instrumentation
techniques are necessary. These techniques reveal events at an
operating-system level. In this paper, the latter techniques are
defined as system-tracing techniques. With all other listed tools
and techniques it is very hard and, most of the time, impossible
to bridge sporadic and temporal domain to the logical domain
of problem diagnosis.
The most important part of a system tracing tool is that it
does not have a significant impact on the systems behavior.
It has to track events with fine granular timestamps which
enables further diagnosis of unwanted system behavior. This is
where software profiling tools like debuggers, printf(), memory
profilers and code coverage tools retire. A program which is
filled with debug code runs much slower and it is not possible
to reproduce it is normal timing and behavior. It is getting
even worse when these techniques are used in asynchronous
or parallel software. Furthermore, a profile only contains a
set of performance events and timings for the execution. The
chronological order of these events is completely ignored. A
trace records timestamps for every event and is extensive in
time. When observing a programs behavior as a part of a whole
system, the usage of system tracing tools as defined above is
indispensable.
The rest of the paper is organized as follows. In section II, a
more detailed view on software profiling and common used
profiling tools is given. Section III defines the constraints
of system tracing. Tools for different operating systems and
improved graphical trace representation are presented. At last,
a full custom example RTOS system is introduced. A more
detailed view is given on its hardware trace module, the tracing
implementation and the custom trace viewer. The paper is
summarized in section IV. February 3, 2014

II. SOFTWARE PROFILING

As mentioned before, software profiling tools are well
discovered. However, they only can help to track down issues
when problem diagnosis has already reached the logical do-
main. This section lists two of the most common free software
profiling tools: the GNU profiler [2] which is part of most
Linux distributions and the Google performance tools which
are used at Google and are available as free download on the



Fig. 1. GNU profiler flat profile

Fig. 2. GNU profiler call graph

projects homepage [3].

A. GNU Profiler

The GNU profiler (gprof) is a commonly used tool to
determine which parts of a program are taking the most of
execution time. Supported languages are C/C++, Pascal and
Fortran. The basic output is divided into two parts: a flattened
profile contains all function calls of the program and its
execution time, number of calls, time per call etc., a sample
output is shown in figure 1.

The second part of the gprof output is the call graph which
is a more verbose version of the flat profile. The call graph
shows how much time was spent in each function and its
children. With this information, you can find functions that,
while they themselves may not have used much time, called
other functions that did use unusual amounts of time. A sample
output is depicted in figure 2.

With this sample output of gprof it is pretty easy to see
that a significant amount of time is spent in ftuTransfor-
mation::xForm(...) const. But the call graph reveals that the
function itself is not that time consuming however it is called
way too often. Since gprof comes with nearly every Linux
distribution, it is a good way to get an overlook of a program,
but it is limited to CPU profiling and it does not provide any
graphical representation.

B. Google Performance Tools

A less basic software profiler is provided by Google. Their
profiling tools, called Google performance tools (gperf), in-
clude a heap profiler, a heap checker, a CPU profiler including
a graphical representation (see figure 3) and a malloc/free
implementation called thread-caching malloc (TCMalloc). TC-
Malloc is 6 times faster than the multi-thread malloc version
of the GNU C library (glibc), called ptmalloc2, and reduces
lock contention for multi-threaded programs [4]. Since it is no
profiling tool, it is not further specified in this paper. It is still
worth mentioning because heap checker and heap profiler are

Fig. 3. Google Performance Tool (graphical view)

part of TCMalloc and there is no way to use the both tools
separate from TCMalloc.

1) Heap Checker: The heap checker is used to detect
memory leaks. In general, the heap checker dumps a memory
usage profile on program start. Another one is dumped after
the program exits. Both profiles can now be compared to locate
leaks. There are two modes of heap leak checking:
Whole-program checking is the recommended way to use
the heap checker. Since it records the stack trace for each
allocation while it is active, it causes a significant increase
of memory usage. Furthermore, the program is slowed down
a bit. To tweak the whole-program checking, the user can
decide between 4 modes. The minimal mode starts as late
as possible in an initialization. Stricter modes are suggested
because memory leaks during initialization may be ignored.
The normal mode is made for everyday heap-checking use.
The strict mode is like the normal mode but includes some
extra checks. For example, if a pointer is set to NULL without
freeing it, a leak message is only thrown in strict mode, not
in normal. The last mode is called draconian and is the most
precise mode. It will throw a leak message unless all memory
is freed on program exit.
Partial-program checking can be used if only a specific
part of the program has to be analyzed, users can create a
HeapLeapChecker object at the beginning of the interesting
code fragment. At the end of the fragment, NoLeaks() has to
be called. This will result in similar memory dumps as on
whole-program checking, but only for a specified part of the
code.
The output of the heap checker can be analyzed by using the
Heap Profiler (pprof).

2) Heap Profiler: The heap profiler can be used to locate
memory leaks, locate parts of the code which do a lot of
allocation or generally get an overview of what is in a programs
heap at any given time. The user can control the behavior of
the profiler via environment variables. It can be defined when a
heap profile is dumped. For example, when a specified number
of bytes has been allocated by the program or when a high-
water memory usage mark increases by a specified number of



bytes. In addition, the heap profiler provides the possibility of
a graphical representation of the programs heap.

3) CPU Profiler: The CPU profiler is similar to the GNU
profiler but provides a graphical representation of the data. In
fact, the gperf CPU profiler is used for all software profiling
at Google. Running Linux 2.6+ it profiles all running threads,
with Linux 2.4 only the main thread is profiled.

III. SYSTEM TRACING

Software profilers are easy to use and can help a lot when
application code has to be debugged and the logical domain
of problem diagnosis has been already reached. But as the
complexity of newer computer systems increases, applications
often depend on a combination of several factors including
scheduling, memory management, I/O subsystems, interrupts,
lock contention among multiple CPUs and device drivers. As
a result, bugs are often located in the sporadic and temporal
domain on more complex systems. To bridge the gap between
sporadic/temporal and logical domain, a tool is needed which
collects information produced by instrumenting the whole
system while not having a significant impact on the systems
behavior and performance [5].
Summed up, tracing can be defined as a technique used to
understand what is going on in a system in order to debug
or monitor it. It is similar to logging since it mainly consists
of recording system events. However, compared to logging, it
usually records much lower-level events that occur much more
frequently. Since traces typically generate thousands of events
per second, tracing tools have to be optimized to handle a
lot of data while having only a small impact on the system.
Typically, traces can contain millions of events which results in
many megabytes or gigabytes of data. However, trace analyzers
and viewers are available to produce graphs, and statistics from
this enormous amount of data. These tools makes it easy to get
an overview on the system and spot bugs, performance issues
and misbehaviors.
In this chapter, the most common tracing softwares and some
of its compatible viewers are presented.

A. Linux Trace Toolkit Next Generation

The Linux Trace Toolkit (LTT) [6] can be considered as
the most known and widespread tracing software. Since it is
mostly superseded by its successor Linux Trace Toolkit Next
Generation (LTTng) [7], this paper will concentrate on LTTng.
The main differences between LTT and LTTng is the improved
extensibility and a more precise time base. LTT suffers on
its monolithic implementation of both the LTT tracer and its
viewer. In short, the goals of LTTng can be described as having
low system disturbance and architecture independence while
being fully reentrant, scalable, precise, extensible, modular and
easy to use [5].
LTTng user-land is divided into three main parts: lttctl which
is a command-line application which runs in user space, the
daemon lttd which also runs in user space, waits for trace data
and writes it to disk; and a kernel part that controls kernel
tracing. Figure 4 shows the general control architecture of
LTTng.

Fig. 4. LTTng control architecture [5]

Fig. 5. LTTng data flow [5]

The main module of LTTng is called ltt-core. It controls
sub-modules like ltt-heartbeat (detect cycle counter overflows),
ltt-facilities (lists event types loaded at trace start time), ltt-
statedump (generates events to describe kernel state) and ltt-
base (kernel object containing symbols and data structures
required by builtin instrumentation) and is responsible for a
number of LTT control events. For writing data from kernel to
user-space, LTTng uses RelayFS. RelayFS is a bunch of per-
CPU kernel buffers that can be efficiently written into from



Fig. 6. LTTng tracing [5]

kernel code. These buffers are represented as files which can
be mmap’ed and directly read from in user space. The purpose
of this setup is to provide the simplest possible mechanism
allowing potentially large amounts of data to be logged in
the kernel and ’relayed’ to user space. An important feature
of RelayFS is the ability to write data to the CPU buffers
without requiring any locks. This is achieved by an atomic
compare and store on the current buffer index. Depending on
the return value of compare and store, the process can write
to the buffer or has to wait [8]. This enables a high scalability
without much performance impact. As depicted in figure 5,
data is written through ltt-base into RelayFS circular buffers.
The user daemon lttd polls on RelayFS channels and writes
data to disk having exclusive access to this sub-buffer. User
application tracing is handled in 2 different ways. Applications
with low data throughput can use a costly system call at each
event call site. This requires no linking of the code against
any library. Furthermore, it does not have any thread start-up
performance impact. This tracing path is illustrated in figure 6.
Applications with high data throughput can use the side path
libltt-usertrace-fast which consists in a per thread companion
process which writes the buffers directly to disk.

In theory, the tracing output would last out for system
debugging but to oversee the enormous data, a graphical
representation is needed. Some noteworthy viewers for LTTng
traces are the Babeltrace viewer [9], the Eclipse viewer [10],
Linux Trace Toolkit Viewer (LTTV) [11] and the Percepio
Tracealyzer [12]. Where Babeltrace and Eclipse viewer are

Cycle # 1 2 3 4 5 6 7 8

trap entry

handle fault entry

handle fault exit

trap exit

IRQ 0

IRQ 1

IRQ 2

Fig. 7. Example of a waveform like trace representation

plugins, LTTV is a standalone viewer for LTT. Percepios
Tracealyzer is a trace visualizer worth to go into more detail.

B. Percepio Tracealyzer

Tracealyzer is a trace viewer which supports several traces
of different operating systems. This project was started as
ABB developed a control system for industrial robots, called
IRC 5 [13]. The used OS was VxWorks on an Intel-based
Industry PC. The OS itself has some tracing features, i.e.
registering callbacks on task-switch, task-creation and task
deletion. Since recording inter-process communication events
was considered as important, some code was added to the OS
isolation layer. Events are stored in a single ring buffer with a
fixed event size of 6 bytes (most significant two bytes are used
for event code + relative time-stamp). In modes where task-
switch is slower, for example on system startup, an additional
extended time-stamp event is stored since the relative time-
stamp does not fit in 14 bit. It uses 32 bit for the time-
stamp and overrides the time-stamp field of following events.
Tracealyzer is still in use by ABB Robotics for troubleshooting
and performance measurement. It was extended to support
more operating systems. On most systems, an own tracing
library is needed to do the tracing but Tracealyzer can also
display tracing output from third-party tools (like LTTng). It
visualizes the VxWorks built-in tracing, Linux LTTng traces
and supports RTOSes like FreeRTOS/OpenRTOS, SafeRTOS,
rt-kernel and Micrium µC/OS-III [14].
Most tracing viewers have limited graphical representations.
The most common way is similar to a waveform plot. All
processes, threads and tasks are listed vertically and their cor-
responding events are drawn on a horizontal time-line. Figure
7 gives an example of a waveform visualization. Tracealyzer
provides over 20 graphical views including a vertical time-line
where events are shown using text labels (see figure 8). The
vertical time-line is smoothly scrollable and the colored event
boxes are neatly arranged. This way, a very clear graphical
representation of the trace data is achieved. Another useful
visualization is the communication flow graph. It shows de-
pendencies with respect to communication and synchronization
between tasks, interrupt handlers and kernel objects such as
semaphores and message queues. This provides the big picture
of the executed code and simplifies detection of unexpected
behavior. Of course, multiple views with horizontal time-line
are provided too. All of them can be shown in a common
window with synchronized scrolling. These horizontal time-



Fig. 8. Percepios Tracealyzer Mainview [12]

line views include

• a CPU load graph which shows the amount of CPU
time used by each task and interrupt handler

• a plot which visualizes the utilization of buffered
kernel objects

• a user event signal plot which allows to plot any data
logged as user events

Since Tracealyzer is a proprietary and non-free tool, the
documentation is limited thus this paper does not describe it
in more detail. Nevertheless, it is worth mentioning because of
its varied graphical representations and its multi-OS support.

C. Android Systrace

Android is an OS optimized and developed to run on mo-
bile devices. Since it is the leading product of mobile operating
systems, it is worth mentioning its provided profile and trace
tools. When writing applications (apps) for Android, the most
common way to debug the app is the Android provided log
tool logcat [15]. It is a system wide logging daemon which can
be read via the Android Debug Bridge (adb) or via apps like
catlog. The latter needs a rooted phone. Debugging with logcat
is similar to printf() debugging but with the extension that
segmentation faults like null pointer dereferences are logged by
the system too. Logcat covers debugging of incorrect program
and system behavior and segmentation faults thus most of the
time, debugging with logcat suffices. If an app runs slow or
uses a lot of background CPU, a simple logcat output is not
enough and developers have to dive deeper. To debug apps in
a more detailed way, Android ships the Dalvik Debug Mon-
itor Server (ddms) [16]. It provides port-forwarding services,
screen capture on the device, thread and heap information on
the device, method profiling, logcat, process, and radio state
information, incoming call and SMS spoofing, location data
spoofing, and more. In general, it includes all features for
useful software profiling plus tracing functionality.
To collect and review code execution data for an application

and the Android system, Android provides the Systrace tool
[17]. It works on all Android versions above 4.1 (Jellybean)
and helps to analyze how the execution of an app fits into the
larger Android environment. It tracks system and application
process execution and plots it on a common timeline as

Fig. 9. Android Systrace example

shown in figure 9. Furthermore, Systrace collects data from the
kernel, for example from the CPU scheduler, disk activity and
threads and generates a HTML report. Systrace only works
if the running kernel has tracing enabled. Since not every
manufacturer enables this feature for the stock kernels of
their phones, sometimes the installation of a custom kernel
is necessary. Unfortunately, this is not possible on all phones
because some of them ship with a locked bootloader. Since
Android 4.3, developers can add custom events to the trace by
calling the static class methods Trace.beginSection(name) and
Trace.endSection().

D. RTOS Tracing

As mentioned before, in RTOS systems it is indispensable
to provide a functional tracing facility to detect performance
bottlenecks, spot errors as early as possible and satisfy the hard
timing constraints. For example, the FreeRTOS kernel which
is one of the most known and used real time kernels, provides
trace hook macros for embedded application data collection
[18]. These macros can be used to satisfy most of the tracing
features. For example, setting a digital output or an analogue
output voltage to indicate which task is executing allowing
logic analyzers or oscilloscopes to be used to view and record
the task execution sequence and timing, or logging RTOS
kernel events, task execution and timing for offline analysis.
An full custom example RTOS system is currently developed
at the chair of Computer Science V at the Institute of Com-
puter Engineering (ZITI) Heidelberg. The developed tracer
is designed for an embedded RTOS system running on a
Digilent AtlysTMSpartan-6 FPGA Development Board and has
the following requirements:

• High resolution timestamps: A statistical evaluation
is not precise enough to match the hard timing con-
straints of real-time systems.

• Low overhead: Tracing should have no significant
impact on program execution.

• Low memory consumption: Embedded systems lack
on memory thus it is not possible to buffer all values
for post-mortem analysis. Tracing should produce as
little data as possible which enables a real-time data
transfer from embedded system to host system.



Tracing module

merge

m
er

ge

MUX

haddr[31:0]

hdata[31:0]

hwrite

htrans[1:0]

hsel

sel

&

FIFO

counter

dout[7:0]

Fig. 10. Example tracing hardware module design

Fig. 11. Bit coding for function entry/exit event

To match these requirements, additional tracing hardware is
needed. The most important parts of the tracing module are
plotted in figure 10. A timer clocked with CPU frequency is
used to provide accurate timestamps. Events are divided into 4
different types: function entry, function exit, RTOS trace and
system trace, thus 2 bit suffice to address them all. On write
access, a 32 bit value is pushed to a FIFO consisting of the
current timer value (30 bit) and 2 bit for the current event
type. The FIFO can be read out completely asynchronously
via JTAG interface to the host system. Within our hardware
module, all trace informations consist of only one access on
one of the 4 different event addresses.
Finally, one tracing event is coded in two 32 bit words: event
type plus timestamp and the appropriate data. An example
for function entry/exit events is depicted in figure 11. The
function entry/exit events are generated with gcc. When option
-finstrument-functions is enabled, the compiler will emit calls
to cyg profile func enter() and cyg profile func exit() at
the top and bottom of every function. In our system, these
functions are defined to push an appropriate event to the tracing
module. Developers can exclude specific functions by adding

attribute ((no instrument function)).
The presented tracing method is a very efficient way of logging
events but it generates no human readable trace output. To
survey the traces, a graphical trace viewer is in development
too. It provides 3 different graphical representations. A wave-
form view lists all events like in figure 7 and provides the
common way of event trace representation. A statistical plot
concentrates on the timing of events. The time of a function is
defined as the time between function entry and function exit.
The plot visualizes the minimum and maximum time versus
the average time of a function as shown in figure 12. At last,
a bubble plot is provided which plots the number of function
calls versus their total execution time. The project is still in
development but the first tests look promising.

Fig. 12. FTU gui statistical plot

IV. CONCLUSION

This paper gave a short introduction on state-of-the art tools
for both software profiling and system tracing. In addition, a
full custom RTOS system tracer including its trace viewer tool
was introduced. It pointed out which tool satisfies which use
case and described the general usage and idea of tools for both
debugging methods.
Furthermore, the main differences between software profiling
and system tracing were explained. While software profiling
is very helpful when problem diagnosis already reached the
logical domain, it fails on both sporadic and temporal domain.
Another disadvantage is that the chronological order of profiled
events is ignored completely. Tracing tools are used to analyze
how a program fits into a larger environment like the OS or a
complete embedded system. They provide a strict chronolog-
ical order of events by adding accurate timestamps to every
event type. Tracing tools are optimized on providing a precise
log (trace) of every important system event with respect to have
as little impact on the systems behavior as possible. However,
to accomplish these requirements, additional hardware support
is needed. On systems with hard timing constraints, i.e. RTOS,
providing an efficient and fully functional tracing facility is
indispensable.

REFERENCES

[1] T. Fletcher. Using System Tracing Tools to Optimize
Software Quality and Behavior. Tech. rep.

[2] J. Fenlason and R. Stallman. GNU gprof - The GNU
Profiler. 1994. URL: http://www.cs.utah.edu/dept/old/te
xinfo/as/gprof toc.html.

[3] Google. GooglePerformanceTools. 2013. URL: http://co
de.google.com/p/gperftools/wiki/GooglePerformanceTo
ols.

http://www.cs.utah.edu/dept/old/texinfo/as/gprof_toc.html
http://www.cs.utah.edu/dept/old/texinfo/as/gprof_toc.html
http://code.google.com/p/gperftools/wiki/GooglePerformanceTools
http://code.google.com/p/gperftools/wiki/GooglePerformanceTools
http://code.google.com/p/gperftools/wiki/GooglePerformanceTools


[4] Google. TCMalloc : Thread-Caching Malloc. 2007.
URL: http:/ /google- perftools.googlecode.com/svn/tru
nk/doc/tcmalloc.html.

[5] M. Desnoyers and M.R. Dagenais. “The LTTng tracer:
A low impact performance and behavior monitor for
GNU/Linux”. In: Ottawa Linux Symposium, 2006.

[6] Opersys inc. Linux Trace Toolkit Documentation. 2013.
URL: http://www.opersys.com/ltt/documentation.html.

[7] LTTng Project. Linux Trace Toolkit - next generation.
2013. URL: http://lttng.org/.

[8] T. Zanussi et al. “relayfs: An Efficient Unified Approach
for Transmitting Data from Kernel to User Space”. In:
Ottawa Linux Symposium, 2003.

[9] EfficiOS Inc. EfficiOS Operating System Efficiency Ser-
vices and Consulting - Babeltrace. 2013. URL: http://w
ww.efficios.com/babeltrace.

[10] The Eclipse Foundation. Eclipse - Linux Tools Project
- LTTng Integration. 2014. URL: http://www.eclipse.or
g/linuxtools/projectPages/lttng/.

[11] LTTng Project. Linux Trace Toolkit - next generation -
LTTV. 2013. URL: http://lttng.org/lttv.

[12] Percepio AB. Tracealyzer - Understand Troubleshoot
Optimize. 2013. URL: http://percepio.com/tz/.

[13] A. Wall J. Kraft and H. Kienle. Trace Recording for Em-
bedded Systems: Lessons Learned from Five Industrial
Projects. Tech. rep.

[14] Percepio AB. Percepio Tracealyzer Datasheet. Tech.
rep.

[15] Google. logcat. 2013. URL: http://developer.android.co
m/tools/help/logcat.html.

[16] Google. Using DDMS. 2013. URL: http://developer.and
roid.com/tools/debugging/ddms.html.

[17] Google. Systrace. 2013. URL: http://developer.android
.com/tools/help/systrace.html.

[18] Real Time Engineers Ltd. Free RTOS - Trace Hook
Macros. 2014. URL: http: / /www.freertos.org/rtos- tra
ce-macros.html.

http://google-perftools.googlecode.com/svn/trunk/doc/tcmalloc.html
http://google-perftools.googlecode.com/svn/trunk/doc/tcmalloc.html
http://www.opersys.com/ltt/documentation.html
http://lttng.org/
http://www.efficios.com/babeltrace
http://www.efficios.com/babeltrace
http://www.eclipse.org/linuxtools/projectPages/lttng/
http://www.eclipse.org/linuxtools/projectPages/lttng/
http://lttng.org/lttv
http://percepio.com/tz/
http://developer.android.com/tools/help/logcat.html
http://developer.android.com/tools/help/logcat.html
http://developer.android.com/tools/debugging/ddms.html
http://developer.android.com/tools/debugging/ddms.html
http://developer.android.com/tools/help/systrace.html
http://developer.android.com/tools/help/systrace.html
http://www.freertos.org/rtos-trace-macros.html
http://www.freertos.org/rtos-trace-macros.html

	Introduction
	Software Profiling
	GNU Profiler
	Google Performance Tools
	Heap Checker
	Heap Profiler
	CPU Profiler


	System Tracing
	Linux Trace Toolkit Next Generation
	Percepio Tracealyzer
	Android Systrace
	RTOS Tracing

	Conclusion

