
Introduction Software Profiling System Tracing Summary

Software Execution Analysis

Philipp Schäfer

February 5, 2014

February 5, 2014 Seminar - Software Execution Analysis Philipp Schäfer 1 / 42

Introduction Software Profiling System Tracing Summary

Outline

1 Introduction

2 Software Profiling

3 System Tracing

4 Summary

February 5, 2014 Seminar - Software Execution Analysis Philipp Schäfer 2 / 42

Introduction Software Profiling System Tracing Summary

Outline

1 Introduction

2 Software Profiling
GNU Profiler
Google Performance Tools

3 System Tracing
Linux Trace Toolkit Next Generation
Percepio Tracealyzer
Android Systrace
RTOS Tracing

4 Summary

February 5, 2014 Seminar - Software Execution Analysis Philipp Schäfer 3 / 42

Introduction Software Profiling System Tracing Summary

February 5, 2014 Seminar - Software Execution Analysis Philipp Schäfer 4 / 42

Introduction Software Profiling System Tracing Summary

Domains of Problem Diagnosis

Sporadic domain
problem source not known
occurs in an asynchronous and random manner
system faults

Temporal domain
problem scope narrowed but not reproducible

Logical domain
error reproducible
exact sequence of conditions or events that triggers the
error was found

February 5, 2014 Seminar - Software Execution Analysis Philipp Schäfer 5 / 42

Introduction Software Profiling System Tracing Summary

Definition:
In software engineering, profiling is a form of dynamic program
analysis that measures, for example, the space (memory) or
time complexity of a program, the usage of particular
instructions, or frequency and duration of function calls.

Flat profilers compute the average call times, from the
calls, and do not break down the call times based on the
callee or the context.
Call graph profilers show the call times, and frequencies of
the functions, and also the call-chains involved based on
the callee.
Input-sensitive profilers generate charts that characterize
how an application’s performance scales as a function of
its input.

February 5, 2014 Seminar - Software Execution Analysis Philipp Schäfer 6 / 42

Introduction Software Profiling System Tracing Summary

Definition:
In software engineering, tracing is a specialized use of logging
to record information about a program’s execution.

printf() tracks a program’s progress
Unix top can monitor task creation and track resources
code coverage and application profiling by compiler-driven
instrumentation techniques
kernel-level instrumentation techniques for accurate timing
and process/thread interaction traces

February 5, 2014 Seminar - Software Execution Analysis Philipp Schäfer 7 / 42

Introduction Software Profiling System Tracing Summary

Use Cases

Software Profiling Event Tracing Full Tracing

logical domain
error is
definitely
caused by
application
get insights
on application
timings and
performance

all domains
(mainly
sporadic/tem-
poral)
only specific
events are
logged
(threads,
functions,
IRQs etc)

all domains
(mainly
sporadic)
additional
hardware
required
records/logs
nearly
everything

February 5, 2014 Seminar - Software Execution Analysis Philipp Schäfer 8 / 42

Introduction Software Profiling System Tracing Summary

Profiling Characteristics Tracing Constraints

well discovered
and easy to use
no additional
hardware needed
contain sets of
performance
events and timing
for execution
in general, no
chronological
order

no significant impact on
system behavior
exact chronological order of
events with fine granular
timestamps
handle and log an enormous
amount of data (challenging
on systems with little
memory)
scalable for multi threaded
tracing

February 5, 2014 Seminar - Software Execution Analysis Philipp Schäfer 9 / 42

Introduction Software Profiling System Tracing Summary

Outline

1 Introduction

2 Software Profiling
GNU Profiler
Google Performance Tools

3 System Tracing
Linux Trace Toolkit Next Generation
Percepio Tracealyzer
Android Systrace
RTOS Tracing

4 Summary

February 5, 2014 Seminar - Software Execution Analysis Philipp Schäfer 10 / 42

Introduction Software Profiling System Tracing Summary

GNU Profiler

ships with most Linux distributions
determine which parts of a program are taking the most of
execution time
compile with -pg
link with -pg
execute program ⇒ should generate gmon.out
generate profile via gprof options [executable-file
[profile-data-files...]] [> outfile]

February 5, 2014 Seminar - Software Execution Analysis Philipp Schäfer 11 / 42

Introduction Software Profiling System Tracing Summary

GNU Profiler

Each sample counts as 0.01 seconds.
% cumulative self self total

time seconds seconds calls ms/call ms/call name
37.50 0.06 0.06 ftuTransformation::xForm(...) const
12.50 0.08 0.02 1050226 0.00 0.00 QPointF::QPointF()
6.25 0.09 0.01 1062192 0.00 0.00 operator new(unsigned long, void*)
6.25 0.10 0.01 410920 0.00 0.00 bool qMapLessThanKey<QChar>(...)
6.25 0.12 0.01 16080 0.00 0.00 QBitArray::setBit(int,bool)
6.25 0.13 0.01 520 0.02 0.02 bubblePlottable::drawQuartileBox(...) const
6.25 0.14 0.01 1 10.00 10.00 ftuGui::qt_static_metacall(...)
3.13 0.15 0.01 137994 0.00 0.00 QBasicAtomicInt::operator!=(int) const

Listing 1: GNU profiler flat profile

February 5, 2014 Seminar - Software Execution Analysis Philipp Schäfer 12 / 42

Introduction Software Profiling System Tracing Summary

GNU Profiler

granularity: each sample hit covers 2 byte(s) for 6.25% of 0.16 seconds

index % time self children called name
<spontaneous>

[1] 37.5 0.06 0.00 ftuTransformation::xForm(...) const [1]
0.00 0.00 1839900/1839900 QVector<QwtInterval>::size() const [353]

<spontaneous>

[2] 20.1 0.00 0.03 ftuCommunicate::qt_static_metacall(...) [2]
0.00 0.03 1/1 ftuCommunicate::stopReadOut() [3]
0.00 0.00 390/390 ftuCommunicate::socketReadyReadout() [186]
0.00 0.00 40/40 ftuCommunicate::addCurve(QChar) [219]
0.00 0.00 1/1 ftuCommunicate::startReadOut() [346]
0.00 0.00 432/431610 qt_noop() [355]

0.00 0.03 1/1 ftuCommunicate::qt_static_metacall(...) [2]

[3] 20.0 0.00 0.03 1 ftuCommunicate::stopReadOut() [3]
0.00 0.03 1/1 ftuCommunicate::addDataToPlot(QByteArray*) [4]
0.00 0.00 40/40 ftuPlotCurve::appendPoint(double, double) [70]
0.00 0.00 1/1 statisticalPlot::updatePlot() [206]
0.00 0.00 1/1 bubblePlot::updatePlot() [225]
0.00 0.00 40/118 QVector<double>::last() [240]
0.00 0.00 1/44 ftuLog::log(QString const&) [266]
0.00 0.00 80/80 ftuPlotCurve::getYData() const [916]

Listing 2: GNU profiler call graph

February 5, 2014 Seminar - Software Execution Analysis Philipp Schäfer 13 / 42

Introduction Software Profiling System Tracing Summary

Google Performance Tools

include heap profiler, heap checker, CPU profiler and
malloc/free implementation (TCMalloc)
heap checker: detect memory leaks, multiple modes of
heap leak checking
heap profiler: locate memory leaks, locate unnecessary
memory allocations
CPU profiler: like gprof but is able to generate a graphical
representation of the data

February 5, 2014 Seminar - Software Execution Analysis Philipp Schäfer 14 / 42

Introduction Software Profiling System Tracing Summary

Google Performance Tools

Heap Checker

dumps a memory usage profile on program start and
another one on program exit
compare profiles to locate leaks
whole-program checking

recommended way
significant increase of memory usage
can be tweaked with 4 different modes (minimal, normal,
strict and draconian)

partial-program checking
analyze only specific parts of program
bracket code fragment with creation of HeapLeapChecker
object and NoLeaks() method call

February 5, 2014 Seminar - Software Execution Analysis Philipp Schäfer 15 / 42

Introduction Software Profiling System Tracing Summary

Google Performance Tools

Figure : Google Performance Tool (CPU profiler graphical view)

February 5, 2014 Seminar - Software Execution Analysis Philipp Schäfer 16 / 42

Introduction Software Profiling System Tracing Summary

Outline

1 Introduction

2 Software Profiling
GNU Profiler
Google Performance Tools

3 System Tracing
Linux Trace Toolkit Next Generation
Percepio Tracealyzer
Android Systrace
RTOS Tracing

4 Summary

February 5, 2014 Seminar - Software Execution Analysis Philipp Schäfer 17 / 42

Introduction Software Profiling System Tracing Summary

Once Again - System Tracing Constraints

no significant impact on system behavior
exact chronological order of events with fine granular
timestamps
handle and log an enormous amount of data (challenging
on systems with little memory)
scalable for multi threaded tracing

February 5, 2014 Seminar - Software Execution Analysis Philipp Schäfer 18 / 42

Introduction Software Profiling System Tracing Summary

Linux Trace Toolkit Next Generation

Figure : LTTng control architecture

2 user land parts:
lttctl - command line
application which runs in
user space
lttd - user land daemon,
waits for trace data and
writes it to disk

ltt-core - main module,
controls all sub-modules
RelayFS - provides
lockless writing into
per-CPU kernel buffers.
Can be mmap’ed and read
from user space.

February 5, 2014 Seminar - Software Execution Analysis Philipp Schäfer 19 / 42

Introduction Software Profiling System Tracing Summary

Linux Trace Toolkit Next Generation

Figure : LTTng tracing

user-kernel communication
via system call
ltt-base gets information
from submodules and
writes trace to RelayFS
buffers
ltt-heatbeat - detect cycle
counter overflows
ltt-facilities - lists event
types loaded at trace start
time
ltt-statedump - generates
events to describe kernel
state

February 5, 2014 Seminar - Software Execution Analysis Philipp Schäfer 20 / 42

Introduction Software Profiling System Tracing Summary

Linux Trace Toolkit Next Generation

Figure : LTTng data flow

data is written through
ltt-base to RelayFS circular
buffers
lttd polls on RelayFS
channels and writes data
to disk
with libltt-usertrace-fast,
applications with high data
throughput can write
traces directly to disk
(without system call)

February 5, 2014 Seminar - Software Execution Analysis Philipp Schäfer 21 / 42

Introduction Software Profiling System Tracing Summary

Linux Trace Toolkit Next Generation

Deploying LTTng on Exotic Embedded Architectures

LTTng supports: X86 32/64, MIPS, PowerPC 32/64, ARM,
S390, Sparc 32/64 and SH64
porting LTTng to a new architecture:

expand instrumentation to include some
architecture-specific events
kernel thread create, syscall trace, ipc call, trap entry,
trap exit, page fault entry, page fault exit
provide an accurate timestamp. Whenever a cycles counter
register is available, it should be used.

February 5, 2014 Seminar - Software Execution Analysis Philipp Schäfer 22 / 42

Introduction Software Profiling System Tracing Summary

Linux Trace Toolkit Next Generation

LTTng Trace Viewers

To oversee the enormous data produced by the tracer, a
graphical representation is needed. Some noteworthy viewers:

Eclipse viewer - plugin
Linux Trace Toolkit Viewer (LTTV) - standalone
Percepio Tracealyzer - core support

February 5, 2014 Seminar - Software Execution Analysis Philipp Schäfer 23 / 42

Introduction Software Profiling System Tracing Summary

Linux Trace Toolkit Next Generation

Cycle # 1 2 3 4 5 6 7 8

trap entry

handle fault entry

handle fault exit

trap exit

IRQ 0

IRQ 1

IRQ 2

Figure : Example of a waveform like trace representation

February 5, 2014 Seminar - Software Execution Analysis Philipp Schäfer 24 / 42

Introduction Software Profiling System Tracing Summary

Percepio Tracealyzer

started as ABB developed a control system for industrial
robots (IRC 5)
Trace viewer which supports several traces of different
OSes like VxWorks built-in tracing, LTTng traces,
FreeRTOS/OpenRTOS, SafeRTOS, rt-kernel and
µC/OS-III.
If no third-party trace, a provided library can be linked (no
documentation about functionality)
worth mentioning because of its several graphical
representations

February 5, 2014 Seminar - Software Execution Analysis Philipp Schäfer 25 / 42

Introduction Software Profiling System Tracing Summary

Percepio Tracealyzer

Figure : Percepio Tracealyzer main view

February 5, 2014 Seminar - Software Execution Analysis Philipp Schäfer 26 / 42

Introduction Software Profiling System Tracing Summary

Percepio Tracealyzer

Figure : Percepio Tracealyzer multiple views with synchronized
scrolling

February 5, 2014 Seminar - Software Execution Analysis Philipp Schäfer 27 / 42

Introduction Software Profiling System Tracing Summary

Android Systrace

host/target communication via Android Debug Bridge (adb)
debugging Android in printf() like is done via logcat
what if application runs slow or has high CPU usage?
Android Dalvik Debug Monitor Server (ddms) is used for
more detailed debugging it supports

port-forwarding services
thread and heap information
method profiling
incoming call, SMS and location data spoofing
...and more

what about kernel events?

February 5, 2014 Seminar - Software Execution Analysis Philipp Schäfer 28 / 42

Introduction Software Profiling System Tracing Summary

Android Systrace

Android Systrace tool works with Android 4.1+
needs a kernel with tracing enabled
in general, it is a python wrapper for atrace tracing tool
wich is the android extension of ftrace
tracing categories like graphics, input, audio, video,
hardware modules, scheduling, activity manager and more
full trace report is generated on target and read out by host
via adb
Systrace generates a HTML file from atrace output
Note: LTTng works too on Android

February 5, 2014 Seminar - Software Execution Analysis Philipp Schäfer 29 / 42

Introduction Software Profiling System Tracing Summary

Android Systrace

entries-in-buffer/entries-written: 6055/6055 #P:2
#
_-----=> irqs-off
/ _----=> need-resched
| / _---=> hardirq/softirq
|| / _--=> preempt-depth
||| / delay
TASK-PID CPU# |||| TIMESTAMP FUNCTION
| | | |||| | |

DispSync-297 [001] ...1 148716.517760: tracing_mark_write: C|207|VSYNC|0
DispSync-297 [001] ...1 148716.534472: tracing_mark_write: C|207|VSYNC|1
DispSync-297 [001] ...1 148716.551139: tracing_mark_write: C|207|VSYNC|0

ndroid.systemui-1268 [000] ...1 148716.551491: tracing_mark_write: B|1268|performTraversals
ndroid.systemui-1268 [000] ...1 148716.551553: tracing_mark_write: B|1268|draw
ndroid.systemui-1268 [000] ...1 148716.551645: tracing_mark_write: B|1268|eglBeginFrame
ndroid.systemui-1268 [000] ...1 148716.551660: tracing_mark_write: E
ndroid.systemui-1268 [000] ...1 148716.551691: tracing_mark_write: B|1268|getDisplayList
ndroid.systemui-1268 [000] ...1 148716.551930: tracing_mark_write: E
ndroid.systemui-1268 [000] ...1 148716.551975: tracing_mark_write: B|1268|prepareFrame
ndroid.systemui-1268 [000] ...1 148716.552010: tracing_mark_write: E
ndroid.systemui-1268 [000] ...1 148716.552041: tracing_mark_write: B|1268|drawDisplayList
ndroid.systemui-1268 [000] ...1 148716.552159: tracing_mark_write: B|1268|precacheText

Listing 3: Android atrace output

February 5, 2014 Seminar - Software Execution Analysis Philipp Schäfer 30 / 42

Introduction Software Profiling System Tracing Summary

Android Systrace

Figure : Android Systrace HTML output

February 5, 2014 Seminar - Software Execution Analysis Philipp Schäfer 31 / 42

Introduction Software Profiling System Tracing Summary

RTOS Tracing

full custom example RTOS system developed at ZITI
Heidelberg
Digilent AtlysTMSpartan-6 FPGA Development Board
tracing module requirements

high resolution timestamps
low overhead
low memory consumption

February 5, 2014 Seminar - Software Execution Analysis Philipp Schäfer 32 / 42

Introduction Software Profiling System Tracing Summary

RTOS Tracing

Tracing module

merge

m
er

ge

MUX

haddr[31:0]

hdata[31:0]

hwrite

htrans[1:0]

hsel

sel

&

FIFO

counter

dout[7:0]

Figure : Example tracing hardware module design

February 5, 2014 Seminar - Software Execution Analysis Philipp Schäfer 33 / 42

Introduction Software Profiling System Tracing Summary

RTOS Tracing

Figure : Bit coding for function entry/exit event

low memory consumption
is achieved by coding
every event with only 64 bit
2 address bit for 4 event
types (function entry/exit,
rtos event, misc)
30 bit for timestamp
32 bit for data depending
on event type

entry/exit events generated
with gcc and
-finstrument-functions
emit calls to

cyg profile func enter()
and

cyg profile func exit()
defined to push an event to
tracing module

February 5, 2014 Seminar - Software Execution Analysis Philipp Schäfer 34 / 42

Introduction Software Profiling System Tracing Summary

RTOS Tracing

Figure : FTU gui statistical plot

custom trace view in
development called FPGA
Trace Utility GUI (FTU gui)
communication via UDP
sockets
provides 3 different
graphical representations

waveform
minimum/maximum time
vs average time in
statistical plot
number of function calls
vs total execution time in
bubble blot

February 5, 2014 Seminar - Software Execution Analysis Philipp Schäfer 35 / 42

Introduction Software Profiling System Tracing Summary

RTOS Tracing

Figure : FTU gui bubble plot Figure : FTU gui wave plot

February 5, 2014 Seminar - Software Execution Analysis Philipp Schäfer 36 / 42

Introduction Software Profiling System Tracing Summary

Outline

1 Introduction

2 Software Profiling
GNU Profiler
Google Performance Tools

3 System Tracing
Linux Trace Toolkit Next Generation
Percepio Tracealyzer
Android Systrace
RTOS Tracing

4 Summary

February 5, 2014 Seminar - Software Execution Analysis Philipp Schäfer 37 / 42

Introduction Software Profiling System Tracing Summary

Software Profiling
tools are well discovered and easy to use
tools like gperf or gprof provide a clean overview on your
application
provide sets of performance events and timings for
execution with no chronological order
no additional hardware is needed

System Tracing
fine granular timestamps for every event
different categories of what to be traced
additional hardware may be required
OS dependent
indispensable for RTOS debugging

February 5, 2014 Seminar - Software Execution Analysis Philipp Schäfer 38 / 42

Introduction Software Profiling System Tracing Summary

Thanks for your attention!

Questions?

February 5, 2014 Seminar - Software Execution Analysis Philipp Schäfer 39 / 42

Introduction Software Profiling System Tracing Summary

For Further Reading I

T. Fletcher
Using System Tracing Tools to Optimize Software Quality
and Behavior

M. Desnoyers and M.R. Dagenais
The LTTng tracer: A low impact performance and behavior
monitor for GNU/Linux
Ottawa Linux Symposium, 2006

T. Zanussi, K. Yaghmour, R. Wisniewski, R. Moore and
M.R. Dagenais
relayfs: An Efficient Unified Approach for Transmitting Data
from Kernel to User Space
Ottawa Linux Symposium, 2003

February 5, 2014 Seminar - Software Execution Analysis Philipp Schäfer 40 / 42

Introduction Software Profiling System Tracing Summary

For Further Reading II

E.G. Bregnant and D.P.B. Renaux
RTOS Scheduling Analysis using a Trace Toolkit

M. Desnoyers and M.R. Dagenais
Deploying LTTng on Exotic Embedded Architectures

R.W. Wisniewski and B. Rosenburg
Efficient, Unified, and Scalable Performance Monitoring for
Multiprocessor Operating Systems

J. Kraft, A. Wall and H. Kienle
Trace Recording for Embedded Systems: Lessons Learned
from Five Industrial Projects

February 5, 2014 Seminar - Software Execution Analysis Philipp Schäfer 41 / 42

Introduction Software Profiling System Tracing Summary

For Further Reading III

J. Fenlason and R. Stallman
GNU gprof - The GNU Profiler
http://www.cs.utah.edu/dept/old/texinfo/as/
gprof_toc.html, 1994

Google
GooglePerformanceTools
http://code.google.com/p/gperftools/wiki/
GooglePerformanceTools, 2013

Google
Android Debugging
http://developer.android.com/tools/
debugging/index.html, 2013

February 5, 2014 Seminar - Software Execution Analysis Philipp Schäfer 42 / 42

http://www.cs.utah.edu/dept/old/texinfo/as/gprof_toc.html
http://www.cs.utah.edu/dept/old/texinfo/as/gprof_toc.html
http://code.google.com/p/gperftools/wiki/GooglePerformanceTools
http://code.google.com/p/gperftools/wiki/GooglePerformanceTools
http://developer.android.com/tools/debugging/index.html
http://developer.android.com/tools/debugging/index.html

	Introduction
	Software Profiling
	GNU Profiler
	Google Performance Tools

	System Tracing
	Linux Trace Toolkit Next Generation
	Percepio Tracealyzer
	Android Systrace
	RTOS Tracing

	Summary

