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Previous: Single-Core Era

INFLECTIONS IN PROCESSOR DESIGN
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Today: Multi-Core Era

INFLECTIONS IN PROCESSOR DESIGN
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Today till future: Heterogeneous System Era

INFLECTIONS IN PROCESSOR DESIGN
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→ Heterogeneous System
Architecture (HSA)
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CPU vs. GPU

CPU:
LCU

Latency Compute Unit

GPU:
TCU

Throughput Compute Unit
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OpenCL & CUDA

Both well-established platforms for GPU programming

Compute Unified Device Architecture (CUDA)

Proprietary
Only for NVIDIA GPUs

Open Computing Language (OpenCL)

Open standard
ATI, NVIDIA, Intel, ...
Not only GPUs

9/37



AMD’s
Unified CPU

& GPU
Processor
Concept

Sven Nobis

Introduction

Background

CPU vs. GPU

OpenCL &
CUDA

Related Work

The way to
HSA

Heterogeneous
Unified Memory
Access

HSA

Concepts

System
Components

Development
Tools

Conclusion /
Outlook

References

OpenCL
Platform Model

[10]

10/37



AMD’s
Unified CPU

& GPU
Processor
Concept

Sven Nobis

Introduction

Background

CPU vs. GPU

OpenCL &
CUDA

Related Work

The way to
HSA

Heterogeneous
Unified Memory
Access

HSA

Concepts

System
Components

Development
Tools

Conclusion /
Outlook

References

OpenCL
Execution Model

[5, P. 11]

11/37



AMD’s
Unified CPU

& GPU
Processor
Concept

Sven Nobis

Introduction

Background

CPU vs. GPU

OpenCL &
CUDA

Related Work

The way to
HSA

Heterogeneous
Unified Memory
Access

HSA

Concepts

System
Components

Development
Tools

Conclusion /
Outlook

References

Overview

1 Introduction

2 Background
CPU vs. GPU
Current Platforms: OpenCL & CUDA

3 Related Work

4 The way to HSA
Heterogeneous Unified Memory Access

5 Heterogeneous System Architecture
Concepts
System Components
Development Tools

6 Conclusion / Outlook

12/37



AMD’s
Unified CPU

& GPU
Processor
Concept

Sven Nobis

Introduction

Background

CPU vs. GPU

OpenCL &
CUDA

Related Work

The way to
HSA

Heterogeneous
Unified Memory
Access

HSA

Concepts

System
Components

Development
Tools

Conclusion /
Outlook

References

Related Work

In CUDA [4]

Unified Virtual Addressing (UVA) in CUDA 4
Unified Memory in CUDA 6

→ Developer view to the memory

Implicit copy & pinning

In OpenCL

Shared Virtual Memory

Copy is still necessary (for fast access)
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CPU and GPU cores in a single die

APU

GPU

CPU

Llano

[3, P. 2] [7, P. 7]
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hUMA: Heterogeneous Unified Memory Access

Today: Non-Uniform
Memory Access

Different/partitioned
physical memory per
compute unit
Multiple virtual
memory address spaces

hUMA: Heterogeneous
Unified Memory Access

Same physical memory
Same virtual memory
for all compute units

PHYSICAL MEMORY

SHARED VIRTUAL MEMORY (TODAY)

 Multiple Virtual memory address spaces

© Copyright 2012 HSA Foundation.  All Rights Reserved. 7

CPU0 GPU

VIRTUAL MEMORY1

PHYSICAL MEMORY

VA1->PA1 VA2->PA1

VIRTUAL MEMORY2

PHYSICAL MEMORY

SHARED VIRTUAL MEMORY (HSA)

 Common Virtual Memory for all HSA agents

© Copyright 2012 HSA Foundation.  All Rights Reserved. 8

CPU0 GPU

VIRTUAL MEMORY

PHYSICAL MEMORY

VA->PA VA->PA

[2, P. 7], [2, P. 8]
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hUMA: Heterogeneous Unified Memory Access (2)

Required: hUMA Memory Controller

Features
Shared page table support

Same large address space as the CPU
Page faulting

Coherent memory regions

Fully coherent shared memory model
Like on today’s SMP CPU systems
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Concepts

Unified Address Space

Already mentioned with hUMA

Unified Programming Model

Queuing

HSA Intermediate Language
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Concepts
Unified Programming Model

Current programming models
→ Treating the GPU as a remote processor

Extending existing concepts to use HSA
Programming languages like C++
Task parallel and data parallel APIs like C++ AMP

Stay in developers environment

#include <iostream> 
#include <amp.h> 
using namespace concurrency; 
int main() // "Hello World" in C++ AMP 
{ 
    int v[11] = {'G', 'd', 'k', 'k', 'n', 31, 'v', 'n', 'q', 'k', 'c'};

    array_view<int> av(11, v); 
    parallel_for_each(av.extent, [=](index<1> idx) restrict(amp) 
    { 
        av[idx] += 1; 
    });

    for(unsigned int i = 0; i < av.extent.size(); i++) 
        std::cout << static_cast<char>(av(i)); 
} [6]
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Concepts
Queuing - Current

[5, P.9]
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Concepts
Queuing - New!

[5, P.9]
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Concepts
HSA Intermediate Language

HSAIL: HSA Intermediate Language

Bytecode
Designed for data parallel programming
GPU independent

Generated by compilation stack (later)

Bytecode is compiled at runtime

to the Hardware Instruction Set of the current device

Execution Model is similar to OpenCL
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System Components

APU

Software stack

Compilation Stack
Runtime Stack
System (Kernel) Software
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Development Tools

OpenCL

C++ AMP: C++ Accelerated Massive Parallelism

BOLT Library

Aparapi
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Development Tools
OpenCL

”HSA is an optimized platform architecture for OpenCL
- Not an alternative to OpenCL” [8, P. 13]

OpenCL on HSA will benefit from its features
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Development Tools
BOLT Library

Simple Example:

5 |  BOLT   |  June 2012 

SIMPLE BOLT EXAMPLE 
#include <bolt/sort.h> 
#include <vector> 
#include <algorithm> 
 
void main() 
{ 
    // generate random data (on host) 
    std::vector<int> a(1000000); 
    std::generate(a.begin(), a.end(), rand); 
 
    // sort, run on best device 
    bolt::sort(a.begin(), a.end()); 
} 

§ Interface similar to familiar C++ Standard Template Library 

§ No explicit mention of C++ AMP or OpenCL™ (or GPU!)  
–  More advanced use case allow programmer to supply a kernel in C++ AMP or OpenCL™ 

§ Direct use of host data structures (ie std::vector) 

§ bolt::sort implicitly runs on the platform 
–  Runtime automatically selects CPU or GPU (or both) 

[9, P.5]
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Development Tools
BOLT and C++ AMP

Simple Example:

6 |  BOLT   |  June 2012 

BOLT FOR C++ AMP : USER-SPECIFIED FUNCTOR 
#include <bolt/transform.h> 
#include <vector> 
 
struct SaxpyFunctor 
{ 
   float _a; 
   SaxpyFunctor(float a) : _a(a) {}; 
  
   float operator() (const float &xx, const float &yy) restrict(cpu,amp)      
   { 
         return _a * xx + yy; 
   }; 
}; 
  
void main() { 
   SaxpyFunctor s(100); 
   std::vector<float> x(1000000); // initialization not shown 
   std::vector<float> y(1000000); // initialization not shown 
   std::vector<float> z(1000000); 
  
   bolt::transform(x.begin(), x.end(), y.begin(), z.begin(), s); 
}; 

[9, P.6]
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Conclusion

Interesting concept

Simplifies development
Open up new possibilities

Open platform

In heavy development
Missing hardware with hUMA

→ Outlook

Software components not ready

→ A lot of potential
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Outlook

Middle of January 2014:

Kaveri APU is available
[1]
Desktop APU
Support for

hUMA
Queuing

Can connect both
DDR3 and GDDR5 [11]

Server APU follows:

Berlin
ARM-Based: Seattle

[11]
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