
AMD’s Unified CPU & GPU Processor
Concept

Advanced Seminar Computer Engineering

Sven Nobis

Institute of Computer Engineering (ZITI)
University of Heidelberg

February 5, 2014

AMD’s
Unified CPU

& GPU
Processor
Concept

Sven Nobis

Introduction

Background

CPU vs. GPU

OpenCL &
CUDA

Related Work

The way to
HSA

Heterogeneous
Unified Memory
Access

HSA

Concepts

System
Components

Development
Tools

Conclusion /
Outlook

References

Overview

1 Introduction

2 Background
CPU vs. GPU
Current Platforms: OpenCL & CUDA

3 Related Work

4 The way to HSA
Heterogeneous Unified Memory Access

5 Heterogeneous System Architecture
Concepts
System Components
Development Tools

6 Conclusion / Outlook

2/37

AMD’s
Unified CPU

& GPU
Processor
Concept

Sven Nobis

Introduction

Background

CPU vs. GPU

OpenCL &
CUDA

Related Work

The way to
HSA

Heterogeneous
Unified Memory
Access

HSA

Concepts

System
Components

Development
Tools

Conclusion /
Outlook

References

Previous: Single-Core Era

INFLECTIONS IN PROCESSOR DESIGN

© Copyright 2012 HSA Foundation. All Rights Reserved. 5

?

S
in

g
le

-t
h

re
a

d

P
e
rf

o
rm

a
n
c
e

Time

we are

here

Enabled by:
 Moore’s

Law

 Voltage
Scaling

Constrained by:

Power

Complexity

Single-Core Era

M
o
d

e
rn

 A
p

p
lic

a
ti
o

n

P
e

rf
o

rm
a

n
c
e

Time (Data-parallel exploitation)

we are

here

Heterogeneous

Systems Era

Enabled by:
 Abundant data

parallelism

 Power efficient

GPUs

Temporarily

Constrained by:
Programming

models

Comm.overhead

T
h

ro
u

g
h
p

u
t

P
e

rf
o

rm
a

n
c
e

Time (# of processors)

we are

here

Enabled by:
 Moore’s Law

 SMP

architecture

Constrained by:
Power

Parallel SW

Scalability

Multi-Core Era

Assembly  C/C++  Java … pthreads  OpenMP / TBB …
Shader  CUDA OpenCL

 C++ and Java

[8, P. 5]

3/37

AMD’s
Unified CPU

& GPU
Processor
Concept

Sven Nobis

Introduction

Background

CPU vs. GPU

OpenCL &
CUDA

Related Work

The way to
HSA

Heterogeneous
Unified Memory
Access

HSA

Concepts

System
Components

Development
Tools

Conclusion /
Outlook

References

Today: Multi-Core Era

INFLECTIONS IN PROCESSOR DESIGN

© Copyright 2012 HSA Foundation. All Rights Reserved. 5

?

S
in

g
le

-t
h

re
a

d

P
e
rf

o
rm

a
n
c
e

Time

we are

here

Enabled by:
 Moore’s

Law

 Voltage
Scaling

Constrained by:

Power

Complexity

Single-Core Era

M
o
d

e
rn

 A
p

p
lic

a
ti
o

n

P
e

rf
o

rm
a

n
c
e

Time (Data-parallel exploitation)

we are

here

Heterogeneous

Systems Era

Enabled by:
 Abundant data

parallelism

 Power efficient

GPUs

Temporarily

Constrained by:
Programming

models

Comm.overhead

T
h

ro
u

g
h
p

u
t

P
e

rf
o

rm
a

n
c
e

Time (# of processors)

we are

here

Enabled by:
 Moore’s Law

 SMP

architecture

Constrained by:
Power

Parallel SW

Scalability

Multi-Core Era

Assembly  C/C++  Java … pthreads  OpenMP / TBB …
Shader  CUDA OpenCL

 C++ and Java

[8, P. 5]

4/37

AMD’s
Unified CPU

& GPU
Processor
Concept

Sven Nobis

Introduction

Background

CPU vs. GPU

OpenCL &
CUDA

Related Work

The way to
HSA

Heterogeneous
Unified Memory
Access

HSA

Concepts

System
Components

Development
Tools

Conclusion /
Outlook

References

Today till future: Heterogeneous System Era

INFLECTIONS IN PROCESSOR DESIGN

© Copyright 2012 HSA Foundation. All Rights Reserved. 5

?

S
in

g
le

-t
h

re
a

d

P
e
rf

o
rm

a
n
c
e

Time

we are

here

Enabled by:
 Moore’s

Law

 Voltage
Scaling

Constrained by:

Power

Complexity

Single-Core Era

M
o
d

e
rn

 A
p

p
lic

a
ti
o

n

P
e

rf
o

rm
a

n
c
e

Time (Data-parallel exploitation)

we are

here

Heterogeneous

Systems Era

Enabled by:
 Abundant data

parallelism

 Power efficient

GPUs

Temporarily

Constrained by:
Programming

models

Comm.overhead

T
h

ro
u

g
h
p

u
t

P
e

rf
o

rm
a

n
c
e

Time (# of processors)

we are

here

Enabled by:
 Moore’s Law

 SMP

architecture

Constrained by:
Power

Parallel SW

Scalability

Multi-Core Era

Assembly  C/C++  Java … pthreads  OpenMP / TBB …
Shader  CUDA OpenCL

 C++ and Java

[8, P. 5]

5/37

AMD’s
Unified CPU

& GPU
Processor
Concept

Sven Nobis

Introduction

Background

CPU vs. GPU

OpenCL &
CUDA

Related Work

The way to
HSA

Heterogeneous
Unified Memory
Access

HSA

Concepts

System
Components

Development
Tools

Conclusion /
Outlook

References

Introduction

Today’s problems on CPU /
GPU programming

programmability barrier
communication costs

Solution
AMD’s Unified CPU & GPU
Processor Concept?

→ Heterogeneous System
Architecture (HSA)

[3, P. 4]

6/37

AMD’s
Unified CPU

& GPU
Processor
Concept

Sven Nobis

Introduction

Background

CPU vs. GPU

OpenCL &
CUDA

Related Work

The way to
HSA

Heterogeneous
Unified Memory
Access

HSA

Concepts

System
Components

Development
Tools

Conclusion /
Outlook

References

Introduction

Today’s problems on CPU /
GPU programming

programmability barrier
communication costs

Solution
AMD’s Unified CPU & GPU
Processor Concept?

→ Heterogeneous System
Architecture (HSA)

[3, P. 4]

6/37

AMD’s
Unified CPU

& GPU
Processor
Concept

Sven Nobis

Introduction

Background

CPU vs. GPU

OpenCL &
CUDA

Related Work

The way to
HSA

Heterogeneous
Unified Memory
Access

HSA

Concepts

System
Components

Development
Tools

Conclusion /
Outlook

References

Overview

1 Introduction

2 Background
CPU vs. GPU
Current Platforms: OpenCL & CUDA

3 Related Work

4 The way to HSA
Heterogeneous Unified Memory Access

5 Heterogeneous System Architecture
Concepts
System Components
Development Tools

6 Conclusion / Outlook

7/37

AMD’s
Unified CPU

& GPU
Processor
Concept

Sven Nobis

Introduction

Background

CPU vs. GPU

OpenCL &
CUDA

Related Work

The way to
HSA

Heterogeneous
Unified Memory
Access

HSA

Concepts

System
Components

Development
Tools

Conclusion /
Outlook

References

CPU vs. GPU

CPU:
LCU

Latency Compute Unit

GPU:
TCU

Throughput Compute Unit

8/37

AMD’s
Unified CPU

& GPU
Processor
Concept

Sven Nobis

Introduction

Background

CPU vs. GPU

OpenCL &
CUDA

Related Work

The way to
HSA

Heterogeneous
Unified Memory
Access

HSA

Concepts

System
Components

Development
Tools

Conclusion /
Outlook

References

OpenCL & CUDA

Both well-established platforms for GPU programming

Compute Unified Device Architecture (CUDA)

Proprietary
Only for NVIDIA GPUs

Open Computing Language (OpenCL)

Open standard
ATI, NVIDIA, Intel, ...
Not only GPUs

9/37

AMD’s
Unified CPU

& GPU
Processor
Concept

Sven Nobis

Introduction

Background

CPU vs. GPU

OpenCL &
CUDA

Related Work

The way to
HSA

Heterogeneous
Unified Memory
Access

HSA

Concepts

System
Components

Development
Tools

Conclusion /
Outlook

References

OpenCL
Platform Model

[10]

10/37

AMD’s
Unified CPU

& GPU
Processor
Concept

Sven Nobis

Introduction

Background

CPU vs. GPU

OpenCL &
CUDA

Related Work

The way to
HSA

Heterogeneous
Unified Memory
Access

HSA

Concepts

System
Components

Development
Tools

Conclusion /
Outlook

References

OpenCL
Execution Model

[5, P. 11]

11/37

AMD’s
Unified CPU

& GPU
Processor
Concept

Sven Nobis

Introduction

Background

CPU vs. GPU

OpenCL &
CUDA

Related Work

The way to
HSA

Heterogeneous
Unified Memory
Access

HSA

Concepts

System
Components

Development
Tools

Conclusion /
Outlook

References

Overview

1 Introduction

2 Background
CPU vs. GPU
Current Platforms: OpenCL & CUDA

3 Related Work

4 The way to HSA
Heterogeneous Unified Memory Access

5 Heterogeneous System Architecture
Concepts
System Components
Development Tools

6 Conclusion / Outlook

12/37

AMD’s
Unified CPU

& GPU
Processor
Concept

Sven Nobis

Introduction

Background

CPU vs. GPU

OpenCL &
CUDA

Related Work

The way to
HSA

Heterogeneous
Unified Memory
Access

HSA

Concepts

System
Components

Development
Tools

Conclusion /
Outlook

References

Related Work

In CUDA [4]

Unified Virtual Addressing (UVA) in CUDA 4
Unified Memory in CUDA 6

→ Developer view to the memory

Implicit copy & pinning

In OpenCL

Shared Virtual Memory

Copy is still necessary (for fast access)

13/37

AMD’s
Unified CPU

& GPU
Processor
Concept

Sven Nobis

Introduction

Background

CPU vs. GPU

OpenCL &
CUDA

Related Work

The way to
HSA

Heterogeneous
Unified Memory
Access

HSA

Concepts

System
Components

Development
Tools

Conclusion /
Outlook

References

Overview

1 Introduction

2 Background
CPU vs. GPU
Current Platforms: OpenCL & CUDA

3 Related Work

4 The way to HSA
Heterogeneous Unified Memory Access

5 Heterogeneous System Architecture
Concepts
System Components
Development Tools

6 Conclusion / Outlook

14/37

AMD’s
Unified CPU

& GPU
Processor
Concept

Sven Nobis

Introduction

Background

CPU vs. GPU

OpenCL &
CUDA

Related Work

The way to
HSA

Heterogeneous
Unified Memory
Access

HSA

Concepts

System
Components

Development
Tools

Conclusion /
Outlook

References

CPU and GPU cores in a single die

APU

GPU

CPU

Llano

[3, P. 2] [7, P. 7]

15/37

AMD’s
Unified CPU

& GPU
Processor
Concept

Sven Nobis

Introduction

Background

CPU vs. GPU

OpenCL &
CUDA

Related Work

The way to
HSA

Heterogeneous
Unified Memory
Access

HSA

Concepts

System
Components

Development
Tools

Conclusion /
Outlook

References

hUMA: Heterogeneous Unified Memory Access

Today: Non-Uniform
Memory Access

Different/partitioned
physical memory per
compute unit
Multiple virtual
memory address spaces

hUMA: Heterogeneous
Unified Memory Access

Same physical memory
Same virtual memory
for all compute units

PHYSICAL MEMORY

SHARED VIRTUAL MEMORY (TODAY)

 Multiple Virtual memory address spaces

© Copyright 2012 HSA Foundation. All Rights Reserved. 7

CPU0 GPU

VIRTUAL MEMORY1

PHYSICAL MEMORY

VA1->PA1 VA2->PA1

VIRTUAL MEMORY2

PHYSICAL MEMORY

SHARED VIRTUAL MEMORY (HSA)

 Common Virtual Memory for all HSA agents

© Copyright 2012 HSA Foundation. All Rights Reserved. 8

CPU0 GPU

VIRTUAL MEMORY

PHYSICAL MEMORY

VA->PA VA->PA

[2, P. 7], [2, P. 8]

16/37

AMD’s
Unified CPU

& GPU
Processor
Concept

Sven Nobis

Introduction

Background

CPU vs. GPU

OpenCL &
CUDA

Related Work

The way to
HSA

Heterogeneous
Unified Memory
Access

HSA

Concepts

System
Components

Development
Tools

Conclusion /
Outlook

References

hUMA: Heterogeneous Unified Memory Access

Today: Non-Uniform
Memory Access

Different/partitioned
physical memory per
compute unit
Multiple virtual
memory address spaces

hUMA: Heterogeneous
Unified Memory Access

Same physical memory
Same virtual memory
for all compute units

PHYSICAL MEMORY

SHARED VIRTUAL MEMORY (TODAY)

 Multiple Virtual memory address spaces

© Copyright 2012 HSA Foundation. All Rights Reserved. 7

CPU0 GPU

VIRTUAL MEMORY1

PHYSICAL MEMORY

VA1->PA1 VA2->PA1

VIRTUAL MEMORY2

PHYSICAL MEMORY

SHARED VIRTUAL MEMORY (HSA)

 Common Virtual Memory for all HSA agents

© Copyright 2012 HSA Foundation. All Rights Reserved. 8

CPU0 GPU

VIRTUAL MEMORY

PHYSICAL MEMORY

VA->PA VA->PA

[2, P. 7], [2, P. 8]

16/37

AMD’s
Unified CPU

& GPU
Processor
Concept

Sven Nobis

Introduction

Background

CPU vs. GPU

OpenCL &
CUDA

Related Work

The way to
HSA

Heterogeneous
Unified Memory
Access

HSA

Concepts

System
Components

Development
Tools

Conclusion /
Outlook

References

hUMA: Heterogeneous Unified Memory Access (2)

Required: hUMA Memory Controller

Features
Shared page table support

Same large address space as the CPU
Page faulting

Coherent memory regions

Fully coherent shared memory model
Like on today’s SMP CPU systems

17/37

AMD’s
Unified CPU

& GPU
Processor
Concept

Sven Nobis

Introduction

Background

CPU vs. GPU

OpenCL &
CUDA

Related Work

The way to
HSA

Heterogeneous
Unified Memory
Access

HSA

Concepts

System
Components

Development
Tools

Conclusion /
Outlook

References

Overview

1 Introduction

2 Background
CPU vs. GPU
Current Platforms: OpenCL & CUDA

3 Related Work

4 The way to HSA
Heterogeneous Unified Memory Access

5 Heterogeneous System Architecture
Concepts
System Components
Development Tools

6 Conclusion / Outlook

18/37

AMD’s
Unified CPU

& GPU
Processor
Concept

Sven Nobis

Introduction

Background

CPU vs. GPU

OpenCL &
CUDA

Related Work

The way to
HSA

Heterogeneous
Unified Memory
Access

HSA

Concepts

System
Components

Development
Tools

Conclusion /
Outlook

References

Concepts

Unified Address Space

Already mentioned with hUMA

Unified Programming Model

Queuing

HSA Intermediate Language

19/37

AMD’s
Unified CPU

& GPU
Processor
Concept

Sven Nobis

Introduction

Background

CPU vs. GPU

OpenCL &
CUDA

Related Work

The way to
HSA

Heterogeneous
Unified Memory
Access

HSA

Concepts

System
Components

Development
Tools

Conclusion /
Outlook

References

Concepts
Unified Programming Model

Current programming models
→ Treating the GPU as a remote processor

Extending existing concepts to use HSA
Programming languages like C++
Task parallel and data parallel APIs like C++ AMP

Stay in developers environment

#include <iostream>
#include <amp.h>
using namespace concurrency;
int main() // "Hello World" in C++ AMP
{
 int v[11] = {'G', 'd', 'k', 'k', 'n', 31, 'v', 'n', 'q', 'k', 'c'};

 array_view<int> av(11, v);
 parallel_for_each(av.extent, [=](index<1> idx) restrict(amp)
 {
 av[idx] += 1;
 });

 for(unsigned int i = 0; i < av.extent.size(); i++)
 std::cout << static_cast<char>(av(i));
} [6]

20/37

AMD’s
Unified CPU

& GPU
Processor
Concept

Sven Nobis

Introduction

Background

CPU vs. GPU

OpenCL &
CUDA

Related Work

The way to
HSA

Heterogeneous
Unified Memory
Access

HSA

Concepts

System
Components

Development
Tools

Conclusion /
Outlook

References

Concepts
Queuing - Current

[5, P.9]

21/37

AMD’s
Unified CPU

& GPU
Processor
Concept

Sven Nobis

Introduction

Background

CPU vs. GPU

OpenCL &
CUDA

Related Work

The way to
HSA

Heterogeneous
Unified Memory
Access

HSA

Concepts

System
Components

Development
Tools

Conclusion /
Outlook

References

Concepts
Queuing - New!

[5, P.9]

22/37

AMD’s
Unified CPU

& GPU
Processor
Concept

Sven Nobis

Introduction

Background

CPU vs. GPU

OpenCL &
CUDA

Related Work

The way to
HSA

Heterogeneous
Unified Memory
Access

HSA

Concepts

System
Components

Development
Tools

Conclusion /
Outlook

References

Concepts
HSA Intermediate Language

HSAIL: HSA Intermediate Language

Bytecode
Designed for data parallel programming
GPU independent

Generated by compilation stack (later)

Bytecode is compiled at runtime

to the Hardware Instruction Set of the current device

Execution Model is similar to OpenCL

23/37

AMD’s
Unified CPU

& GPU
Processor
Concept

Sven Nobis

Introduction

Background

CPU vs. GPU

OpenCL &
CUDA

Related Work

The way to
HSA

Heterogeneous
Unified Memory
Access

HSA

Concepts

System
Components

Development
Tools

Conclusion /
Outlook

References

System Components

APU

Software stack

Compilation Stack
Runtime Stack
System (Kernel) Software

24/37

AMD’s
Unified CPU

& GPU
Processor
Concept

Sven Nobis

Introduction

Background

CPU vs. GPU

OpenCL &
CUDA

Related Work

The way to
HSA

Heterogeneous
Unified Memory
Access

HSA

Concepts

System
Components

Development
Tools

Conclusion /
Outlook

References

System Components
Compilation Stack

[5, P. 15]
25/37

AMD’s
Unified CPU

& GPU
Processor
Concept

Sven Nobis

Introduction

Background

CPU vs. GPU

OpenCL &
CUDA

Related Work

The way to
HSA

Heterogeneous
Unified Memory
Access

HSA

Concepts

System
Components

Development
Tools

Conclusion /
Outlook

References

System Components
Runtime-Stack

[5, P. 16]
26/37

AMD’s
Unified CPU

& GPU
Processor
Concept

Sven Nobis

Introduction

Background

CPU vs. GPU

OpenCL &
CUDA

Related Work

The way to
HSA

Heterogeneous
Unified Memory
Access

HSA

Concepts

System
Components

Development
Tools

Conclusion /
Outlook

References

Development Tools

OpenCL

C++ AMP: C++ Accelerated Massive Parallelism

BOLT Library

Aparapi

27/37

AMD’s
Unified CPU

& GPU
Processor
Concept

Sven Nobis

Introduction

Background

CPU vs. GPU

OpenCL &
CUDA

Related Work

The way to
HSA

Heterogeneous
Unified Memory
Access

HSA

Concepts

System
Components

Development
Tools

Conclusion /
Outlook

References

Development Tools
OpenCL

”HSA is an optimized platform architecture for OpenCL
- Not an alternative to OpenCL” [8, P. 13]

OpenCL on HSA will benefit from its features

28/37

AMD’s
Unified CPU

& GPU
Processor
Concept

Sven Nobis

Introduction

Background

CPU vs. GPU

OpenCL &
CUDA

Related Work

The way to
HSA

Heterogeneous
Unified Memory
Access

HSA

Concepts

System
Components

Development
Tools

Conclusion /
Outlook

References

Development Tools
BOLT Library

Simple Example:

5 | BOLT | June 2012

SIMPLE BOLT EXAMPLE
#include <bolt/sort.h>
#include <vector>
#include <algorithm>

void main()
{
 // generate random data (on host)
 std::vector<int> a(1000000);
 std::generate(a.begin(), a.end(), rand);

 // sort, run on best device
 bolt::sort(a.begin(), a.end());
}

§ Interface similar to familiar C++ Standard Template Library

§ No explicit mention of C++ AMP or OpenCL™ (or GPU!)
–  More advanced use case allow programmer to supply a kernel in C++ AMP or OpenCL™

§ Direct use of host data structures (ie std::vector)

§ bolt::sort implicitly runs on the platform
–  Runtime automatically selects CPU or GPU (or both)

[9, P.5]

29/37

AMD’s
Unified CPU

& GPU
Processor
Concept

Sven Nobis

Introduction

Background

CPU vs. GPU

OpenCL &
CUDA

Related Work

The way to
HSA

Heterogeneous
Unified Memory
Access

HSA

Concepts

System
Components

Development
Tools

Conclusion /
Outlook

References

Development Tools
BOLT and C++ AMP

Simple Example:

6 | BOLT | June 2012

BOLT FOR C++ AMP : USER-SPECIFIED FUNCTOR
#include <bolt/transform.h>
#include <vector>

struct SaxpyFunctor
{
 float _a;
 SaxpyFunctor(float a) : _a(a) {};

 float operator() (const float &xx, const float &yy) restrict(cpu,amp)
 {
 return _a * xx + yy;
 };
};

void main() {
 SaxpyFunctor s(100);
 std::vector<float> x(1000000); // initialization not shown
 std::vector<float> y(1000000); // initialization not shown
 std::vector<float> z(1000000);

 bolt::transform(x.begin(), x.end(), y.begin(), z.begin(), s);
};

[9, P.6]

30/37

AMD’s
Unified CPU

& GPU
Processor
Concept

Sven Nobis

Introduction

Background

CPU vs. GPU

OpenCL &
CUDA

Related Work

The way to
HSA

Heterogeneous
Unified Memory
Access

HSA

Concepts

System
Components

Development
Tools

Conclusion /
Outlook

References

Overview

1 Introduction

2 Background
CPU vs. GPU
Current Platforms: OpenCL & CUDA

3 Related Work

4 The way to HSA
Heterogeneous Unified Memory Access

5 Heterogeneous System Architecture
Concepts
System Components
Development Tools

6 Conclusion / Outlook

31/37

AMD’s
Unified CPU

& GPU
Processor
Concept

Sven Nobis

Introduction

Background

CPU vs. GPU

OpenCL &
CUDA

Related Work

The way to
HSA

Heterogeneous
Unified Memory
Access

HSA

Concepts

System
Components

Development
Tools

Conclusion /
Outlook

References

Conclusion

Interesting concept

Simplifies development
Open up new possibilities

Open platform

In heavy development
Missing hardware with hUMA

→ Outlook

Software components not ready

→ A lot of potential

32/37

AMD’s
Unified CPU

& GPU
Processor
Concept

Sven Nobis

Introduction

Background

CPU vs. GPU

OpenCL &
CUDA

Related Work

The way to
HSA

Heterogeneous
Unified Memory
Access

HSA

Concepts

System
Components

Development
Tools

Conclusion /
Outlook

References

Outlook

Middle of January 2014:

Kaveri APU is available
[1]
Desktop APU
Support for

hUMA
Queuing

Can connect both
DDR3 and GDDR5 [11]

Server APU follows:

Berlin
ARM-Based: Seattle

[11]

33/37

AMD’s
Unified CPU

& GPU
Processor
Concept

Sven Nobis

Introduction

Background

CPU vs. GPU

OpenCL &
CUDA

Related Work

The way to
HSA

Heterogeneous
Unified Memory
Access

HSA

Concepts

System
Components

Development
Tools

Conclusion /
Outlook

References

References I

[1] Benz, Benjamin: AMD fordert mit Kaveri Intels Core i5
heraus. Heise Online. http://heise.de/-2085447.
Version: Januar 2014

[2] Bratt, Ian: HSA Queueing. HOT CHIPS 2013.
http://www.slideshare.net/hsafoundation/

hsa-queuing-hot-chips-2013. Version: August 2013

[3] Fröning, Holger: Lecture 02 – CUDA Programming.
Lecture: GPU Computing, 2013

[4] Harris, Mark: Unified Memory in CUDA 6.
http://devblogs.nvidia.com/parallelforall/

unified-memory-in-cuda-6/. Version: November 2013

34/37

http://heise.de/-2085447
http://www.slideshare.net/hsafoundation/hsa-queuing-hot-chips-2013
http://www.slideshare.net/hsafoundation/hsa-queuing-hot-chips-2013
http://devblogs.nvidia.com/parallelforall/unified-memory-in-cuda-6/
http://devblogs.nvidia.com/parallelforall/unified-memory-in-cuda-6/

AMD’s
Unified CPU

& GPU
Processor
Concept

Sven Nobis

Introduction

Background

CPU vs. GPU

OpenCL &
CUDA

Related Work

The way to
HSA

Heterogeneous
Unified Memory
Access

HSA

Concepts

System
Components

Development
Tools

Conclusion /
Outlook

References

References II

[5] Kyriazis, George: A Heterogeneous System
Architecture: Technical Review / HSA Foundation. AMD,
August 2012. – Forschungsbericht. – Rev. 1.0 S.

[6] Moth, Daniel: ”Hello world” in C++ AMP.
http://blogs.msdn.com/b/nativeconcurrency/

archive/2012/03/04/

quot-hello-world-quot-in-c-amp.aspx.
Version: März 2012

[7] Rogers, Phil: THE PROGRAMMER’S GUIDE TO THE
APU GALAXY. AMD Fusion Developer Summit.
http://www.slideshare.net/hsafoundation/

afds-keynote-the-programmers-guide-to-the-apu-galaxy.
Version: Juni 2011

35/37

http://blogs.msdn.com/b/nativeconcurrency/archive/2012/03/04/quot-hello-world-quot-in-c-amp.aspx
http://blogs.msdn.com/b/nativeconcurrency/archive/2012/03/04/quot-hello-world-quot-in-c-amp.aspx
http://blogs.msdn.com/b/nativeconcurrency/archive/2012/03/04/quot-hello-world-quot-in-c-amp.aspx
http://www.slideshare.net/hsafoundation/afds-keynote-the-programmers-guide-to-the-apu-galaxy
http://www.slideshare.net/hsafoundation/afds-keynote-the-programmers-guide-to-the-apu-galaxy

AMD’s
Unified CPU

& GPU
Processor
Concept

Sven Nobis

Introduction

Background

CPU vs. GPU

OpenCL &
CUDA

Related Work

The way to
HSA

Heterogeneous
Unified Memory
Access

HSA

Concepts

System
Components

Development
Tools

Conclusion /
Outlook

References

References III

[8] Rogers, Phil: Heterogeneous System Architecture
Overview. HOT CHIPS 2013.
http://de.slideshare.net/hsafoundation/

hsa-intro-hot-chips2013-final. Version: August
2013

[9] Sander, Ben: BOLT: A C++ Template Library for HSA.
AMD Fusion Developer Summit.
http://www.slideshare.net/hsafoundation/

bolt-for-hsa-by-ben-sanders. Version: Juni 2012

[10] Staff, AMD: OpenCL™ and the AMD APP SDK v2.4.
http://developer.amd.com/resources/

documentation-articles/articles-whitepapers/

opencl-and-the-amd-app-sdk-v2-4/. Version: April
2011

36/37

http://de.slideshare.net/hsafoundation/hsa-intro-hot-chips2013-final
http://de.slideshare.net/hsafoundation/hsa-intro-hot-chips2013-final
http://www.slideshare.net/hsafoundation/bolt-for-hsa-by-ben-sanders
http://www.slideshare.net/hsafoundation/bolt-for-hsa-by-ben-sanders
http://developer.amd.com/resources/documentation-articles/articles-whitepapers/opencl-and-the-amd-app-sdk-v2-4/
http://developer.amd.com/resources/documentation-articles/articles-whitepapers/opencl-and-the-amd-app-sdk-v2-4/
http://developer.amd.com/resources/documentation-articles/articles-whitepapers/opencl-and-the-amd-app-sdk-v2-4/

AMD’s
Unified CPU

& GPU
Processor
Concept

Sven Nobis

Introduction

Background

CPU vs. GPU

OpenCL &
CUDA

Related Work

The way to
HSA

Heterogeneous
Unified Memory
Access

HSA

Concepts

System
Components

Development
Tools

Conclusion /
Outlook

References

References IV

[11] Windeck, Christof: AMD Kaveri: Feinheiten aus den
Datenblättern. Heise Online.
http://heise.de/-2088349. Version: Januar 2014

37/37

http://heise.de/-2088349

	Introduction
	Background
	CPU vs. GPU
	Current Platforms: OpenCL & CUDA

	Related Work
	The way to HSA
	Heterogeneous Unified Memory Access

	Heterogeneous System Architecture
	Concepts
	System Components
	Development Tools

	Conclusion / Outlook

