Jetson TK1

Benjamin Baumann
Department of Computer Engineering
University of Heidelberg
Germany, 68131 Mannheim
Email: Benjamin.Baumann@stud.uni-heidelberg.de

Abstract—In the paper GPU Computing by J. D. Owens, M.

Houston et al., 2008 the authors stated that the graphics processing
unit (GPU) has become an integral part of today’s mainstream
computing systems[1]. Seven years later the GPU is going to
become an integral part of embedded computing. The ongoing
automation in industrial fields and automated driving made image
processing a key workload for autonomous systems. So combining
a CPU and GPU in one system on chip (SOC) is a useful step
to reduce consumption and cost of these systems. The NVIDIA
Tegra K1 is the first SOC with a CUDA capable general purpose
GPU (GPGPU) and an energy efficient ARM CPU to fulfill
these parallel workloads and high demands on efficient energy
consumption and high performance.
This paper gives an insight into the SOC and examines whether it
can be used as a lower power high performance System. Further-
more, the chip is compared with an existing high performance
system and the results are interpreted.

Keywords—CUDA, GPU, SOC, Embedded GPGPU, Tegra Kl,
parallel computing, UVM

I. INTRODUCTION

A utomation is a key part of todays industry. An increasing
number of work is done by robot-like systems. Image
processing is a major task for these systems so it is
understandable that graphics cards are used. But GPGPUs
have a high energy consumption and are too large for
embedded systems.

In the beginning the GPU was only a fixed function
processor. It was used to render the threedimensional
graphics but not much in addition. Over the years the GPU
evolved into a programmable processor with a extensive
application programming interface (API). But not only the
software side progressed also the hardware focused on adding
programmability to the GPU.

Current GPU have an immense arithmetic capability and
a high streaming memory bandwidth which is both greater
than in a high-end CPU. Considering this, it’s no surprise that
throughput-oriented applications can benefit most from GPUs.

A GPU can execute thousands of threads concurrently
because it consists of a large number of fine-grained parallel
processors. To get most performance out of all these thousands
of cores an advancement of the programming model and
the programming tools is necessary. The GPU need to
balance between low-level access to the hardware ton enable

performance and high level programming languages and tools
that allow programmer flexibility and productivity. NVIDIA
is offering CUDA which is integrated in C/C++. CUDA
provides easy programmability and low level access to the
architecture. In Section II-B, CUDA is described in detail.

In the beginning using GPUs could best be described as
an academic exchange [1]. Fast GPUs demonstrated an appre-
ciable advantage also in real applications. Limited by CPU
performance, the high performance computing community
rapidly adopted GPUs and offloaded complex CPU tasks to the
GPU which yields better overall performance. In 2013 19% of
FLOPS (floating point per second) in the TOP500 list where
achived by GPU systems [2].

II. GPU COMPUTING

GPU computing is the heterogeneous computing of the
CPU and GPU. The programmer has the choice between high
throughput of parallel code, the GPU, and high single thread
performance and low latency, the CPU. So the application
has to be divided in an parallel section and serial section. In
figure 1 it is shown how heterogeneous computing is used.

S
I =
]

Rest of Sequential

Cmpute-Intensive FunctlonsE CPU Code

C— CPU

ca— - r.

C—

C— u
J

Application Code and Heterogeneous Computing [3]

Fig. 1.

Over the years many applications have been ported to GPUs
and this is an ongoing process. Only between 2010 and 2012
the number of applications has more than doubled. [2]

A. GPU Architecture

GPUs are throughput-oriented and have a relaxed latency
compared to CPUs. To still have these high throughput GPUs
can change threads in one clock cycle. In figure 2 can be
seen that one streaming multiprocessor has 32 cores, this is
called a thread warp. All these cores are instructed by the
same scheduler. [4]

Instruction Cache

Register File

Interconnect Network

64K Configurable
Cache/Shared Mem

Uniform Cache

Fig. 2. Streaming Multiprozessor in Fermi architecture [5]

GPUs are build for different application demands than
CPUs. They are build for large parallel computation require-
ments with priority on throughput rather than latency. So the
architecture has progressed in a different direction than that of
the CPU. [1]

To fulfill the needs of large parallel computation workloads
the GPUs consist of up to thousands of cores.

B. CUDA Platform and Programming Model

CUDA is general purpose parallel computing platform and
programming model. With CUDA the parallel compute engine
in NVIDIA GPUs can solve many complex computational
problems in a more efficient way than a CPU. The CUDA
parallel programming model is designed to scale its
parallelism to the increasing number of processor cores like
three-dimensional graphics applications do. Developers can
use C and C++ as a high-level programming language in the
CUDA environment. C and C++ is used to maintain a low
learning curve for programmers, who are used to use these
programming languages. [6]

The programming model of CUDA consists of three key
abstractions:

e hierarchy of thread groups

e shared memories

e Dbarrier synchronization

These abstractions provide fine-grained data parallelism
and thread parallelism, nested within coarse-grained data

parallelism and task parallelism. They guide the programmer
to partition the problem into coarse sub-problems that can
be solved independently in parallel by blocks of threads,
and each sub-problem into finer pieces that can be solved
cooperatively in parallel by all threads within the block. [6]

The positive side-effect of this partition is, that the applica-
tion gains automatic scalability. Each block of threads can be
scheduled to any of the available streaming multiprocessor, see
figure 2. Also it is possible to schedule the threads concurrently
or sequentially, so the runtime system only needs to know
the number of streaming multiprocessors and can optimize the
scheduling for any given GPU.

// Allocate two N-vectors h_x and h_y
int size = N * sizeof(float);

float* h_x = (float*)malloc(size);
float* h_y = (float*)malloc(size);

// Initialize them...

// Allocate device memory
float* d_x; float* d_y;
cudaMalloc((void**)&d_x, size));
cudaMalloc((void**)&d_y, size));

// Copy host memory to device memory
cudaMemcpy(d_x, h_x, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_y, h_y, size, cudaMemcpyHostToDevice);

// Invoke parallel SAXPY kernel with 256 threads/block
int nblocks = (N + 255) / 256;
saxpy_parallel<=<nblocks, 256>>>(N, 2.0, d x, d_y);

// Copy result back from device memory to host memory
cudaMemcpy(h_y, d_y, size, cudaMemcpyDeviceToHost);

Fig. 3. SAXPY: Host Code [5]

cPU

CPU Me: ~

11

RAM

Fig. 4. Processing flow for GPU transfers [5]

In figure 3, CUDA C Code for Host machines can be
seen. At first memory for the variables on the host machine
is allocated. Then the same size is allocated on the machine
with the CUDA instruction cudaMalloc. After the host
variables have to be copied to the device memory with
the cudaMemcpy function. Now the saxpy_parallel kernel
is started. The values between the <<<.. >>> tells
the runtime how many blocks and how many threads per

block have to be started. After the computation of the
saxpy_parallel kernel the result has to be copied back to the
system. These two copy instructions are a major bottleneck of
actual heterogeneous computing. In figure 4 can be seen that
the data has to be move from the CPU memory over the PCI
Bus to the device memory and back over the PCI memory to
the CPU memory.

void saxpy_serial(int n, float a, float *x, float *y)

{

for (inti =0; i < n; ++i)
ylil = a*x[i] + y[il;

void saxpy_parallel(int n, float a, float *x, float *y)
{

inti= X X + X;

if (i < n) yIil = a*xil + yIil;
}

Fig. 5. SAXPY serial and SAXPY parallel [5]

Figure 5 shows a the saxpy_serial code for the CPU and
the saxpy_parallel code for the GPU kernel. The biggest
difference between these to code snippets is that the parallel
version has no for-loop. The serial processing of each element
is now done parallel by many threads. The loop variable i is
now a unique thread identifier and assigns one element to each
thread. The __global__ shows that the function saxpy_parallel
can be called by the host, like in figure 3 and is processed by
the device.

g++ nvee

Host
functions
g++

CUDA
kernels

L

cudacc

(=) [*

)

Executable/

i
=]

Fig. 6. Compilation on a Linux system [5]

Compiling the heterogeneous code is shown in figure 6.

The command for compiling the .cu is nvee kernel.cu -o
program.o. In the figure is shown the nvee divides the host
functions from the CUDA kernels and compiles the CPU
code with g++ and the GPU with cudacc. After compiling
is finished the host output and device output is combined to
one executable.

III. JETSON TK1

The embedded system board Jetson TK1 was presented in
March 2014 by NVIDIA. This board is based on the hybrid
processor Tegra K1. The Tegra K1 is schon in figure 7.
It consists of a quad-core ARM Cortex Al5 CPU with a
battery saver core and a NVIDIA Kepler Core with 192
computational cores.

Furthermore the board offers:

1 mini-PCle slot

1 SD/MMC connector
1 HDMI port

1 USB 2.0 port

1 USB 3.0 port

1 RS232 serial port

1 Gig LAN

1 SATA data port

SPI 4MByte boot flash

The board comes with a pre-installed Linux and the CUDA
environment can be downloaded and installed on the system.

r -
1 Battery
|l Saver Core

2160p30 | 2160p30
ARM7 VIDEO = VIDEO = AUDIO
ENCODER DECODER

USB SECURITY

3.0 ENGINE DM

UART

Dual
DISPLAY

MIPI DDR3L
psi/csi/ - EMMCT Fipppry - S 53
Hsi 5 LPDDR3

Fig. 7. Tegra K1 on Jetson TK1 [7]

Tegra K1

In figure 7 the Tegra K1 is shown. Compared to the GPU
Tesla K20m from the benchmark in section IV the Kepler GPU
in the Tegra K1 is pretty small. The K20m has 2496 CUDA
cores and the Tegra K1 only 192 CUDA cores, in figure 8 the
sizes of the different NVIDIA GPU CUDA cores is shown.

Fig. 8. Kepler Core on Tegra K1 [3]

Memory: Due to sharing the on chip memory with the CPU,
there are no communication overheads between the CPU and
the GPU, avoiding the major performance bottleneck found in
heterogeneous systems with a discrete GPU. In figure 9 the
difference of a discrete GPU system and the shared physical
memory of the Jetson TK1 is shown. [8]

Discrete GPU

Integrated GPU with Tegra
K1
. i.
_ = = =
System GPU Memory Shared Physikal Memory
Memory
Fig. 9. Unified physical memory on Tegra K1 [3]

To use this advantage the programmer hast to use the zero
copy option in the CUDA environment. With the cudaHostAl-
loc function the programmer can allocate memory on the host
which is accessible from the GPU. With cudaHostGetDe-
vicePointer a pointer for the device to the memory can be
generated. Now the GPU can directly access the host memory
with this pointer and there is no need for a cudaMemcpy. A
huge advantage of the Tegra K1 is that the CPU and the GPU
share the same memory, see figure 10. The GPU can still use

the cache benefits. If the zero copy option is used on a discrete
GPU all the caching benefits get lost.

IV. BENCHMARK

In this section is showed the performance and energy
efficiency of the Jetson TK1 evaluation Board. For both bench-
marks the NVIDIA CUDA nBody sample is used because it
is more compute than memory intensive.

A. Performance

The performance of the Jetson TK1 is benchmarked against
a system with an Intel Ivy Bridge E5-2630 v2 with two times
6 cores at 2.6 GHz, 64GB of RAM and a Tesla K20m. In

Discrete GPU on ARM . Integrated GPU with Tegra

-H
L 1

Unified Physical Memory

System
Memory

Fig. 10. Zero Copy with cache benefits [3]

the figure 11 can be seen that at a number of 1024 bodies
the Jetson TK1 reaches his peak-performance. This is really
good for small problem sizes. The Tesla K20m only reaches
the peak performance at 16384 bodies.

1000
@
o
=]
ur}
[
S
2 100
5
E
£
@
=8
== Jetson TK1
| K 20mM
10
512 1024 2048 4096 8192 16384 32768 65535

Number of bodies

Fig. 11. Performance analysis between Jetson TK1 and Tesla K20m

The early reach of peak performance can be explained
with figure 8. Due to a significant lower number of cores,
the Jetson TK1 can work with full power already with 1024
bodies. The Tesla K20m is a Tesla GPU with 2496 CUDA
cores instead of 192 CUDA cores like the Tegra K1 has. So
to work with peak-performance the Tesla K20m needs 16384
bodies.

With a peek performance of 160 GFlops on Jetson TK1
versus 1722 GFlops on Tesla K20m Jetson TK1 reaches an
eleventh part of performance with only a thirteenth part of
cores, which is pretty impressive for this small device. Also
that in the NVIDIA CUDA nBody sample the zero copy with
cache benefits advantage is not used.

B. Efficiency

In the efficiency benchmark the Jetson shows its overall
energy efficiency. The full system, consisting of power supply
and the whole evaluation board. In bootup mode the system
did use up to 6.5 Watts. When booting was finished and the
system was idle it consumed only 3.2 Watts.

In default the Jetson TK1 is in energy saving mode. The
GPU and CPU clock rates are on minimum. In the table I it

can be seen that the performance in the benchmark did only
reach 13.4 single precision GFlops and an efficiency of 3.2
single precision GFLOPS per Watt was achieved.

Compared to nBody benchmark where the GPU clock rate is
set to 852 MHz the achieved GFlops are much higher than in
energy saving mode. It is more than ten times the value than
before.

TABLE 1L ENERGY CONSUMPTION OF JETSON TK1
l System Status H Power [W] GFlops GFlops/W ‘
boot up to 6.5 - -
idle 32 - -
nBody (energy saving) 4.2 134 32
nBody (GPU max clock rate) 14.2 159.9 11.3
nBody on K20m (only GPU) 162 1753 10.8

Impressive is the achieved efficiency of 11.3 single precision
GFlops per Watt compared to the 10.8 that the K20m achieved.
On the K20m is only measured the GPU consumption. In
figure 12 can be seen that NVIDIA is going to double the
efficiency with Maxwell and quadruple it with Volta.

32
= \olta
Bl Stacked DRAM

16
B Maxwell

@l Unified Virtual Memory
8
I Kepler
Bl Dynamic Parallelism

4

3 Fermi

2 il FPos

DP GFLOPS per Watt

1

0.5 Tesla
CUDA

2008 2010 2012 2014

Fig. 12. NVIDIA GPU Roadmap [2]

This gain of efficiency is important for the 20 MWatt exaflop
goal in 2020.[9]

V. RELATED WORK

The NVIDIA Tegra K1 is build for embedded systems, so
many of other related work is using the Jetson TKI1 as an
embedded system and not as a high performance computing
system. One interesting work is to use Jetson TK1 and
Microsoft Kinetic to control a robotic system in a room. [10]

Another interesting Work is the AdasWorks Automated
Driving [11]. The Jetson TK1 is controlling the whole car and
gets the course information through two front facing cameras.
It is processing the camera images and calculates the steering
signals.

VI. CONCLUSION

In the paper it can be seen that the NVIDIA Jetson TK1 is a
great step towards energy efficiency. The paper did show, that
the NVIDIA Tegra K1 could be used as a high performance
system. Further steps would be to build a cluster of Jetson
TKl1s and test their ability in using message pass functions.

The related work shows that embedded GPGPU computing is
a technology that will revolutionize the automation industry.
Through the new gained performance in embedded image
processing, technology is a step further to automation that can
work like human eyes do and make it easier to use augmented
reality or robotic systems.

VII. FUTURE WORK

The next steps to see if the Jetson TK1 is a great high
performance component will be benchmarks with MPI and
CUDA which also use the full capability of the shared physical
memory. Furthermore a new board with support of the PCle
2.0 4x for high performance interconnection networks to make
use of MPI with low latency data movements.

REFERENCES

[1] J. Owens, M. Houston, D. Luebke, S. Green, J. Stone, and J. Phillips,
“GPU computing,” Proceedings of the IEEE, vol. 96, no. 5, pp. 879—
899, May 2008.

[2] J. Purches and T. Lanfear, “NVIDIA technology overview,”
2013. [Online]. Available: https:/intranet.birmingham.ac.uk/it/
teams/infrastructure/fm/bear/documents/public/CUDA-2013-07-31/
NVIDIA-Technology-Overview.pdf

[3] A. Rao and N. Garg, “Mobile GPU compute with tegra kl,”
2014. [Online]. Available: http://on-demand.gputechconf.com/gtc/2014/
presentations/S4906-mobile-compute-tegra-K1.pdf

[4] L. Oden and H. Froning, “GGAS: Global GPU address spaces for
efficient communication in heterogeneous clusters,” in 2013 IEEE In-
ternational Conference on Cluster Computing (CLUSTER), Sep. 2013,
pp. 1-8.

[S] T. Lanfear, “CUDA tutorial,” 2009. [Online]. Available: http:
//gpulab.compute.dtu.dk/PhDschool/slides/CUDA%20Tutorial.pdf

[6] NVidiaCorp, “CUDA c programming guide,” 2014. [Online]. Available:
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf

[71 NVidiaCorp., “NVIDIA jetson TK1 development kit,” 2014. [Online].
Available: http://developer.download.nvidia.com/embedded/jetson/TK1/
docs/Jetson_platform_brief_May2014.pdf

[8] S.Yi, I Yoon, C. Oh, and Y. Yi, “Real-time integrated face detection and
recognition on embedded GPGPUS,” in 2014 IEEE 12th Symposium on
Embedded Systems for Real-time Multimedia (ESTIMedia), Oct. 2014,
pp. 98-107.

[9] B. Subramaniam, W. Saunders, T. Scogland, and W.-c. Feng, “Trends in
energy-efficient computing: A perspective from the green500,” in Green
Computing Conference (IGCC), 2013 International, Jun. 2013, pp. 1-8.

[10] M. N. Rud and A. R. Pantiykchin, “Development of GPU-accelerated
localization system for autonomous mobile robot,” in 2014 International
Conference on Mechanical Engineering, Automation and Control Sys-
tems (MEACS), Oct. 2014, pp. 1-4.

[11] “AdasWorks automated driving,” Jan. 2015. [Online]. Available:
https://www.youtube.com/watch?v=37cOQS9gclw

https://intranet.birmingham.ac.uk/it/teams/infrastructure/fm/bear/documents/public/CUDA-2013-07-31/NVIDIA-Technology-Overview.pdf
https://intranet.birmingham.ac.uk/it/teams/infrastructure/fm/bear/documents/public/CUDA-2013-07-31/NVIDIA-Technology-Overview.pdf
https://intranet.birmingham.ac.uk/it/teams/infrastructure/fm/bear/documents/public/CUDA-2013-07-31/NVIDIA-Technology-Overview.pdf
http://on-demand.gputechconf.com/gtc/2014/presentations/S4906-mobile-compute-tegra-K1.pdf
http://on-demand.gputechconf.com/gtc/2014/presentations/S4906-mobile-compute-tegra-K1.pdf
http://gpulab.compute.dtu.dk/PhDschool/slides/CUDA%20Tutorial.pdf
http://gpulab.compute.dtu.dk/PhDschool/slides/CUDA%20Tutorial.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/embedded/jetson/TK1/docs/Jetson_platform_brief_May2014.pdf
http://developer.download.nvidia.com/embedded/jetson/TK1/docs/Jetson_platform_brief_May2014.pdf
https://www.youtube.com/watch?v=37cOQS9gc1w

	Introduction
	GPU Computing
	GPU Architecture
	CUDA Platform and Programming Model

	Jetson TK1
	Benchmark
	Performance
	Efficiency

	Related Work
	Conclusion
	Future Work
	References

