
Deep Machine Learning
on GPUs

Seminar talk | Daniel Schlegel | 28.01.2015

University of Heidelberg, Computer Engineering Group
Supervisor: JProf. Dr. Holger Fröning

Outline

1. Introduction
1. What is Machine Learning
2. History
3. Application areas

2. Neural Networks
1. What are Neural Networks
2. How do they work?
3. Types of Neural Networks
4. Example (simple & advanced)

3. Tools for Neural Network
1. Available tools
2. Caffe
3. cuDNN
4. cuda-convnet2

2

4. DML on GPUs
1. GPU
2. Performance evaluation
3. Scalability evaluation
4. Example

5. Outlook
6. Conclusion
7. References

Introduction
3

Introduction
What is Machine Learning?

• What is learning?
⚪ Defined as every active, effort demanding (mental

and psychomotorical), confrontation of a human
with any objects of experience. In doing so intern
representations are created and modified which
causes a relative and permanent change of skills
and capabilities

4
Source: http://35if8l37rcx617qr9x4es9ybri5.wpengine.netdna-cdn.com/wp-content/uploads/2014/01/Brain1.jpg

• What is Machine Learning
⚪ Attempt to imitate the human/animal learning process.
⚪ No explicitly defined functions on how to react to a specific input

⇒ System has to “learn” the reaction.
• What is Deep Machine Learning?

⚪ Like ML but the structure of the system is closer to the human
brain.

http://35if8l37rcx617qr9x4es9ybri5.wpengine.netdna-cdn.com/wp-content/uploads/2014/01/Brain1.jpg
http://35if8l37rcx617qr9x4es9ybri5.wpengine.netdna-cdn.com/wp-content/uploads/2014/01/Brain1.jpg

Introduction

• Origins are in the area of Artificial Intelligence (AI)
⚪ Today: Separate field
⚪ Parts of AI and probability theory

• A pioneer of machine learning once said:

“I discovered how the brain really works.

 Once a year for the last 25 years.”

Geoffrey Hinton

• We can rebuild the structure of the brain
⚪ We are able to train it to do what we want.
⚪ But we don’t really understand it!

5

Introduction
History

6
Source: http://www.aboutdm.com/2013/04/history-of-machine-learning.html

http://www.aboutdm.com/2013/04/history-of-machine-learning.html

Introduction
History

• Support Vector Machines (SVMs)
⚪ SVMs superseded NNs in the 90th
⚪ They use hyperplanes to separate the classes
⚪ Only objects close to the hyperplane are important for learning
⚪ Classes need to be linear separable

★ Or an additional transformation is needed (higher dimension)
★ For image classification ≫ 100k dimensions (RGB image is 3D)

7Source: http://www.aboutdm.com/2013/04/history-of-machine-learning.html
Source: http://docs.opencv.org/doc/tutorials/ml/introduction_to_svm/introduction_to_svm.html

http://www.aboutdm.com/2013/04/history-of-machine-learning.html
http://docs.opencv.org/doc/tutorials/ml/introduction_to_svm/introduction_to_svm.html

Introduction
History

• Perceptrons
⚪ Predecessor of modern Neural Networks
⚪ Output either “0” or “1”
⚪ Only for simple tasks

• Neural Networks
⚪ Emulate the human brain
⚪ Explained in the next section

8
Source: http://www.aboutdm.com/2013/04/history-of-machine-learning.html

http://www.aboutdm.com/2013/04/history-of-machine-learning.html

• Image classification
⚪ What does the picture show

• Natural Language Processing
⚪ Speech to text conversion

• Optical Character Recognition
⚪ Convert handwritten text to text document

• Email Spam filter
⚪ Automatically send unwanted emails in Spam folder

• Google Translate
⚪ Translate a text without human intervention

• And of course, Big Data
⚪ Finding structure in unstructured data

9

Introduction
Application areas

Neural Networks
10

Neural Networks
What are Neural Networks?

• Neural Networks are a section of Machine Learning
⚪ Imitate structure of brain
⚪ Artificial neuron is basic building block

• Artificial neurons
⚪ Take n inputs x1 ... xn and calculate the output
⚪ Most NNs use Sigmoid or Tanh function

★ Sigmoid: not normalized; Tanh: normalized
★ Smooth transition between zero and one
★ Outputs show probability

11

Neural Networks
How do they work?

• How do they learn?
⚪ Supervised

★ Network learns from classified data
★ Network adjusts parameters to reduce cost function
★ Used for most tasks, e.g. object classification

⚪ Unsupervised
★ Network learns from unlabeled data
★ Find structure in the data

• Weights and biases are adjusted by Back-propagation
• Basics of Back-propagation

⚪ Process a labeled training object
⚪ Compare output to desired output (cost function)
⚪ Calculate the share of each parameter to the error
⚪ Adjust the weights and biases to minimize error

12

Neural Networks
How do they work?

• Neural Networks (NNs)
⚪ Simplest implementation
⚪ No hierarchical feature extraction

• Deep Neural Networks (DNNs)
⚪ Based on the structure of the human brain
⚪ All-to-all connection between layers
⚪ Millions of weights and biases

★ Nearly impossible to train with more than 3 layers

• Convolutional Neural Networks (CNNs)
⚪ Based on the human visual recognition system
⚪ No all-to-all connection
⚪ Shift invariance during feature extraction
⚪ Reduced amount of weights and biases

★ Can be trained with many layers (common are 7 layers)

13

Neural Networks
How do they work? | Basic operations

• Convolution
⚪ Used for feature extraction
⚪ Reduces amount of weights and biases
⚪ Reduces feature map size when used with stride

• Pooling
⚪ Used to reduce the size of feature maps
⚪ Several different forms

★ MaxPooling (most common)
★ MedianPooling
★ AveragePooling

• SoftMax
⚪ Used at the output to scale the probabilities

★ All outputs sum up to “1”
★ All outputs lie between “0” and “1”

14Source: http://wiki.ldv.ei.tum.de/show_image.php?id=259
Source: http://www.songho.ca/dsp/convolution/files/conv2d_matrix.jpg

http://wiki.ldv.ei.tum.de/show_image.php?id=259
http://www.songho.ca/dsp/convolution/files/conv2d_matrix.jpg

Neural Networks
Example (simple version)

15

• Simple Neural Network for handwritten digit recognition
⚪ Shallow NN (only one hidden layer)
⚪ Number of neurons: 810
⚪ Input images are all the same size and centered (MNIST dataset)
⚪ Error rate at ~ 5 %

Neural Networks
Example (simple version)

16

• Simple Neural Network for handwritten digit recognition
⚪ Shallow NN (only one hidden layer)
⚪ Number of neurons: 810
⚪ Input images are all the same size and centered (MNIST dataset)
⚪ Error rate at ~ 5 %

• Shallow architecture
⚪ Easy to implement and train
⚪ “Human understandable” weights and biases
⚪ Not accurate enough for most tasks

Source: http://nn.cs.utexas.edu/demos/digit-recognition/

http://nn.cs.utexas.edu/demos/digit-recognition/

Neural Networks
Example (advanced version)

17

• Convolutional Neural Net for handwritten digit recognition
⚪ Number of neurons: 2989
⚪ Same input as in the first example (one pixel for padding)
⚪ Error rate at ~ 0.8 %

Tools for Neural Networks
18

• Lots of frameworks and libraries are available
⚪ Caffe

★ Universal framework with good performance
★ CPU and GPU implementation

⚪ cuDNN
★ Highly optimized functions for NVidia GPUs

⚪ cuda-convnet2
★ Python library written in C++/CUDA-C
★ Multi GPU support

⚪ THEANO
★ Full Python implementation (CPU and GPU)

⚪ Microsoft Azure Machine Learning
★ Cloud based Neural Networks

⚪ MATLAB
★ Text based or graphical

19

Tools for Neural Networks
Available tools

Tools for Neural Networks
Caffe

• Open Source Project: BVLC
⚪ https://github.com/BVLC/Caffe

• No “real” programming needed
⚪ Structure defined by configuration files
⚪ Edit paths is predefined scripts

• Can run on CPU and GPU
⚪ determined by parameter

• Lots of examples included
⚪ Character recognition
⚪ Object classification

• Currently only single GPU support

20

Simple convolutional layer

layers {

 name: "conv1"

 type: CONVOLUTION

 bottom: "data"

 top: "conv1"

 convolution_param {

 num_output: 96

 kernel_size: 11

 weight_filler {

 type: "gaussian"

 std: 0.01

 }

 bias_filler {

 type: "constant"

 value: 0

 }

 }

}

https://github.com/BVLC/Caffe
https://github.com/BVLC/Caffe

Tools for Neural Networks
Caffe | Implementation

• How does Caffe work internally?
• Each function is implemented for CPU and GPU
• Uses cuBLAS library internally for most tasks
• Between each layer is a “blob” for the communication

⚪ Include forward and backward pass
⚪ Multi dimensional array (num, channels, height & width)
⚪ Syncs CPU and GPU memory automatically if needed

• Neuron Layer on GPU
⚪ Performed in two steps

★ Sum up all inputs with weights and biases (SAXPY + all-reduce)
★ Calculate output with corresponding activation function

• Convolutional Layer on GPU
⚪ Performed in four steps

★ Rearrange data (im2col())
★ Perform convolution (cublasSgemm())
★ Add bias to results
★ Calculate final value with activation function 21

Tools for Neural Networks
cuDNN

• Library for CUDA capable GPUs from NVidia

⚪ GPU optimized functions for DNNs
⚪ Including forward and backward operations
⚪ Not open source, but freely available at NVidia https://developer.

nvidia.com/cuDNN
• Will be included in Caffe 1.0 (not yet released)

⚪ Speedup of ~ 13 % compared to normal implementation
★ 7 days training ⇒ 6 days training

• Measurements done with cuDNN RC1
⚪ CUDA 7 brings new version with

improved performance

22

https://developer.nvidia.com/cuDNN
https://developer.nvidia.com/cuDNN
https://developer.nvidia.com/cuDNN

Tools for Neural Networks
cuda-convnet2

• Open source project hosted at

https://code.google.com/p/cuda-convnet2/

• Python library written in C++ and CUDA-C
• Fastest implementation so far
• Supports multiple GPUs with different

parallelism approaches1

• Network is defined by configuration file
(like Caffe)

• Written for ILSVRC-2012
⚪ One node with two GPUs
⚪ Winning system with 17 % error rate

(second best: 27 %)
• 6.25x Speedup on 8 GPUs

23
1. See Alex Krizhevsky, One weird trick for parallelizing convolutional neural networks, eprint arXiv:1404.5997, 2014

Simple convolutional layer

[conv32]

 type = conv

 inputs = data

 channels = 3

 filters = 32

 padding = 4

 stride = 1

 filterSize = 9

 neuron = logistic

 initW = 0.00001

 initB = 0.5

 sharedBiases = true

 sumWidth = 4

https://code.google.com/p/cuda-convnet2/
https://code.google.com/p/cuda-convnet2/

DNN on GPUs
24

• Number of competitors in the ImageNet challenge.
⚪ 2012 ⇒ One system, won with 10% lead (mostly CPU-based SVMs)
⚪ 2014 ⇒ 90 % use GPUs

• Networks can get more complex due to high computational power
⚪ Only limited by GPU memory

25

DNN on GPUs

Source: http://devblogs.nvidia.com/parallelforall/accelerate-machine-learning-cudnn-deep-neural-network-library/

http://devblogs.nvidia.com/parallelforall/accelerate-machine-learning-cudnn-deep-neural-network-library/

DNN on GPUs
GPU | What’s that?

• Extension card for PCs
⚪ Optimized for graphics processing
⚪ Recent GPUs capable of general purpose computations (GPGPU)
⚪ Special GPUs without video output

• Used as an accelerator
⚪ Can increase the performance of special workloads
⚪ Different architecture and execution model than a CPU

26
Source: NVidia

DNN on GPUs
GPU | Basic architecture

• CPU: Multicore ⇔ GPU: Manycore
⚪ CPU has few complex cores
⚪ GPU has many simple cores

• Basic building block Streaming Multiprocessor (SM)
⚪ SMs contain many ALUs for calculation
⚪ Each ALU in an SM performs same operation on

different memory ⇒ SIMT
• Context switch every clock cycle

⚪ Lots of outstanding loads
⇒ Memory latency can be tolerated

• High memory bandwidth
• User controlled cache (SharedMemory)

27
Source: NVidia

DNN on GPUs
GPU | Execution model

• Execution described by “Bulk Synchronous
Parallel” model
⚪ Execution is done in supersteps

★ Computation
★ Communication
★ Barrier

⚪ More tasks than resources to overcome
parallel slackness

• Memory loads and stores should be coalesced
• Task is split into several blocks

⚪ Block indices have three dimensional ID
⚪ On block runs on one SM
⚪ No safe synchronization between blocks

possible

28

• Execution model optimal for NNs
⚪ Compute one layer
⚪ Perform memory operations
⚪ Synchronize

• High computational power of GPUs can be utilized
⚪ Caffe on GPU is 11x faster than on CPU (14x with cuDNN)
⚪ cuDNN achieves 2.5 TFLOPS on a GTX 980 (51 % of peak perf.)

• No data dependencies in layers
⚪ Relatively easy to implement

29

DNN on GPUs
Performance

GPU: NVidia K40
CPU: 24-core Intel E5-2697v2 CPU @ 2.4GHz running Caffe with Intel MKL 11.1.3

• Important Factor: Does it scale?
⚪ Several multi GPU implementations
⚪ All have good linear speedup

• Only the training has to be split
⚪ Each node broadcasts changes in

weights and biases
• GPU memory is very limited

⚪ Limits size of networks
⚪ Limits mini-batch size

⇒ Multiple GPUs increase the possible size
• CNNs reduce amount of communication dramatically

⚪ CNNs can be designed to fit network topology
• Only tested and documented with 8 GPUs in one node and 16 nodes

with 4 GPUs each
30

DNN on GPUs
Scalability evaluation

Number of GPUs

• Winning system of the ILSVRC-2012
⚪ 1,000 classes and 1,400,000 images

• Specs:
⚪ Network split to two GPUs (NVidia GTX 580)
⚪ 650.000 neurons
⚪ 60.000.000 weights and biases

• P2P access limited to two cards
⚪ Have to be connected to same PCIe root complex 31

DNN on GPUs
Example

Source: A. Krizhevsky, I. Sutskever and G. E. Hinton, ImageNet Classification with Deep Convolutional Neural Networks. NIPS. 2012.

• Google build a “Brain” to find two most common
images in the internet (2006 - 2011)
⚪ 1,000 nodes (2,000 CPUs, 16,000 cores)
⚪ ~ 600 kW energy consumption (IDLE)
⚪ $5,000,000 system costs
⚪ 10,000,000,000 connections

★ Complexity comparable to a bee
• First GPU-based challenger (2014)

⚪ 3 nodes with (3 Tesla K20 each)
⚪ 4 kW energy consumption
⚪ $33,000 system costs

• Second GPU-based challenger (2014)
⚪ 1 node (3 GeForce Titan Z / 6 GPUs)
⚪ 2 kW energy consumption
⚪ $12,000 system costs

32

DNN on GPUs
Example | System level

Source: http://hilaryschenker.files.wordpress.com/2011/08/googlebrain2.jpg

http://hilaryschenker.files.wordpress.com/2011/08/googlebrain2.jpg
http://hilaryschenker.files.wordpress.com/2011/08/googlebrain2.jpg

What can we expect?

• Robot learning how to cook by watching YouTube videos
• Two CNNs for:

⚪ Object recognition
★ Which ingredient is next

⚪ Grasping type
★ Which tool and which operation

⚪ Precisions:
Object 79 %; Grasping type 91 %; Action 83 %

• Predefined set of tools and ingredients
⚪ Can not learn new tools or ingredients

33Source: http://images.gizmag.com/hero/youtube-robot-7.jpg
Source: Y. Yang et. al.. Robot Learning Manipulation Action Plans by “Watching” Unconstrained Videos from the World Wide Web. AAAI-15. 2015.

http://images.gizmag.com/hero/youtube-robot-7.jpg

Outlook

• GPU memory and performance increased over the last years
⇒ Stacked Memory
⚪ Bigger networks
⚪ Less copy operations

• Faster Host-GPU connection
⇒ NVlink
⚪ Biggest bottleneck at the moment

• Focus of most NN architects/researchers lies on GPUs
⇒ A lot of research at the moment
⚪ Better accuracy of DNNs
⚪ Better performance on GPUs
⚪ Better communication strategies for clusters

34
Source: http://cdn.wccftech.com/wp-content/uploads/2014/03/NVIDIA-Pascal-GPU-Chip-Module.jpg

http://cdn.wccftech.com/wp-content/uploads/2014/03/NVIDIA-Pascal-GPU-Chip-Module.jpg

• DNNs offer an unified way to realise ML systems
⚪ A lot of frameworks available
⚪ Basic functions are the same for different tasks

• High amount of parallelism with few data dependencies
⚪ Fits the BSP model
⚪ Optimal task for GPUs

• CNNs reduce amount of communication
⚪ Can be trained with lots of layers

★ Complex networks can be realized
★ High accuracy if trained well

⚪ Can be designed to match a network topology
★ Increased performance on cluster level

35

Conclusion

The End

Questions?

36

References

[1] E. Alpaydin. Introduction to Machine Learning. Adaptive Computation and Machine Learning Series, MIT Press.
2014.

[2] Lotter, Hempel. Lernen, Lernschwierigkeiten – Diagnostik der Lernvoraussetzungen. Regierung Oberbayern. 2008.
[3] S. Chetlur. cuDNN: Efficient Primitives for Deep Learning. arXiv preprint arXiv:1410.0759c2. 2014
[4] T. Brants et. al.. Large Language Models in Machine Translation. EMNLP-CoNLL. 2007.
[5] W. Ding, et. al.. Theano-based Large-Scale Visual Recognition with Multiple GPUs. ICLR. 2015.
[6] P. Flach. Machine Learning: The Art and Science of Algorithms that Make Sense of Data. Cambridge University

Press. 2012.
[7] H. Fröning. GPU Computing Slides. University of Heidelberg, ZITI. 2014.
[8] Y. Jia et. al.. Caffe: Convolutional Architecture for Fast Feature Embedding. arXiv preprint arXiv:1408.5093v1, 2014.
[9] A. Krizhevsky, I. Sutskever and G. E. Hinton, ImageNet Classification with Deep Convolutional Neural Networks.

NIPS. 2012.
[10] A. Krizhevsky. One weird trick for parallelizing convolutional neural networks. arXiv:1404.5997 [cs.NE]. 2014.
[11] Y. LeCun, et. al.. Backpropagation applied to handwritten zip code recognition. AT&T Bell Laboratories. 1989.
[12] Y. LeCun, et. al.. Efficient BackProp. Neural Networks: Tricks of the trade, Springer. 1998.
[13] K. P. Murphy. Machine Learning: A Probabilistic Perspective. MIT Press. 2012.
[14] M. A. Nielsen. Neural Networks and Deep Learning. Determination Press. 2015.
[15] NVidia. User Guide – cuDNN Library. NVidia. DU-06702-001_v6.5. 2014.
[16] T. Paine et al.. Gpu asynchronous stochastic gradient descent to speed up neural network training. arXiv preprint

arXiv:1312.6186. 2013.
[17] O. Russakovsky el. al.. ImageNet Large Scale Visual Recognition Challenge. arXiv preprint arXiv:1409.0575. 2014.
[18] S. Shalev-Shwartz, S. Ben-David. Understanding Machine Learning: From Theory to Algorithms. Cambridge

University Press. 2014.

37

References

[19] N. Srivastava, et. al.. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. University of Toronto,
Department of Computer Science. 2014.

[20] C. Stergiou, D. Siganos. Neural Networks. Imperial College London. http://www.doc.ic.ac.uk/~nd/surprise_96/
journal/vol4/cs11/report.html#WhatisaNeuralNetwork, last visited 28.12.14.

[21] X. Tang. Introduction to General Purpose GPU Computing. University of Rochester. 2011.
[22] L. G. Valiant. A bridging model for parallel computation. Communications of the ACM, Volume 33 Issue 8. 1990.
[23] J. Wart, et. al.. Efficient mapping of the training of Convolutional Neural Networks to a CUDA-based cluster.

Eindhoven University of Technology, The Netherlands. 2011.
[24] O. Yadan et. al.. Multi-gpu training of convnets. arXiv preprint arXiv:1312.5853. 2013.
[25] Y. Yang et. al.. Robot Learning Manipulation Action Plans by “Watching” Unconstrained Videos from the World

Wide Web. AAAI-15. 2015.
[26] Y. Zou et. al.. Deep learning platform and its applications. Proceedings of the VLDB Endowment. 2014.

38

http://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/cs11/report.html#WhatisaNeuralNetwork
http://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/cs11/report.html#WhatisaNeuralNetwork
http://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/cs11/report.html#WhatisaNeuralNetwork

