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Introduction 
What is Machine Learning?

• What is learning?
⚪ Defined as every active, effort demanding (mental 

and psychomotorical), confrontation of a human 
with any objects of experience. In doing so intern 
representations are created and modified which 
causes a relative and permanent change of skills 
and capabilities
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Source: http://35if8l37rcx617qr9x4es9ybri5.wpengine.netdna-cdn.com/wp-content/uploads/2014/01/Brain1.jpg

• What is Machine Learning
⚪ Attempt to imitate the human/animal learning process.
⚪ No explicitly defined functions on how to react to a specific input 

⇒ System has to “learn” the reaction.
• What is Deep Machine Learning?

⚪ Like ML but the structure of the system is closer to the human 
brain.

http://35if8l37rcx617qr9x4es9ybri5.wpengine.netdna-cdn.com/wp-content/uploads/2014/01/Brain1.jpg
http://35if8l37rcx617qr9x4es9ybri5.wpengine.netdna-cdn.com/wp-content/uploads/2014/01/Brain1.jpg


Introduction

• Origins are in the area of Artificial Intelligence (AI)
⚪ Today: Separate field
⚪ Parts of AI and probability theory

• A pioneer of machine learning once said:

“I discovered how the brain really works. 

   Once a year for the last 25 years.”        

Geoffrey Hinton

• We can rebuild the structure of the brain
⚪ We are able to train it to do what we want.
⚪ But we don’t really understand it!
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Introduction
History

6
Source: http://www.aboutdm.com/2013/04/history-of-machine-learning.html
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Introduction
History

• Support Vector Machines (SVMs)
⚪ SVMs superseded NNs in the 90th
⚪ They use hyperplanes to separate the classes
⚪ Only objects close to the hyperplane are important for learning
⚪ Classes need to be linear separable

★ Or an additional transformation is needed (higher dimension)
★ For image classification ≫ 100k dimensions (RGB image is 3D)

7Source: http://www.aboutdm.com/2013/04/history-of-machine-learning.html
Source: http://docs.opencv.org/doc/tutorials/ml/introduction_to_svm/introduction_to_svm.html

http://www.aboutdm.com/2013/04/history-of-machine-learning.html
http://docs.opencv.org/doc/tutorials/ml/introduction_to_svm/introduction_to_svm.html


Introduction
History

• Perceptrons
⚪ Predecessor of modern Neural Networks
⚪ Output either “0” or “1”
⚪ Only for simple tasks

• Neural Networks
⚪ Emulate the human brain
⚪ Explained in the next section

8
Source: http://www.aboutdm.com/2013/04/history-of-machine-learning.html
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• Image classification
⚪ What does the picture show

• Natural Language Processing
⚪ Speech to text conversion

• Optical Character Recognition
⚪ Convert handwritten text to text document

• Email Spam filter
⚪ Automatically send unwanted emails in Spam folder

• Google Translate
⚪ Translate a text without human intervention

• And of course, Big Data
⚪ Finding structure in unstructured data

9

Introduction
Application areas
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Neural Networks
What are Neural Networks?

• Neural Networks are a section of Machine Learning
⚪ Imitate structure of brain
⚪ Artificial neuron is basic building block

• Artificial neurons
⚪ Take n inputs x1 ... xn and calculate the output
⚪ Most NNs use Sigmoid or Tanh function

★ Sigmoid: not normalized; Tanh: normalized
★ Smooth transition between zero and one
★ Outputs show probability
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Neural Networks
How do they work? 

• How do they learn?
⚪ Supervised

★ Network learns from classified data
★ Network adjusts parameters to reduce cost function
★ Used for most tasks, e.g. object classification

⚪ Unsupervised
★ Network learns from unlabeled data
★ Find structure in the data

• Weights and biases are adjusted by Back-propagation
• Basics of Back-propagation

⚪ Process a labeled training object
⚪ Compare output to desired output  (cost function)
⚪ Calculate the share of each parameter to the error
⚪ Adjust the weights and biases to minimize error
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Neural Networks
How do they work? 

• Neural Networks (NNs)
⚪ Simplest implementation
⚪ No hierarchical feature extraction

• Deep Neural Networks (DNNs)
⚪ Based on the structure of the human brain
⚪ All-to-all connection between layers
⚪ Millions of weights and biases

★ Nearly impossible to train with more than 3 layers

• Convolutional Neural Networks (CNNs)
⚪ Based on the human visual recognition system
⚪ No all-to-all connection
⚪ Shift invariance during feature extraction
⚪ Reduced amount of weights and biases

★ Can be trained with many layers (common are 7 layers)
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Neural Networks
How do they work? | Basic operations

• Convolution
⚪ Used for feature extraction
⚪ Reduces amount of weights and biases
⚪ Reduces feature map size when used with stride

• Pooling
⚪ Used to reduce the size of feature maps
⚪ Several different forms

★ MaxPooling (most common)
★ MedianPooling
★ AveragePooling

• SoftMax
⚪ Used at the output to scale the probabilities

★ All outputs sum up to “1”
★ All outputs lie between “0” and “1”

14Source: http://wiki.ldv.ei.tum.de/show_image.php?id=259
Source: http://www.songho.ca/dsp/convolution/files/conv2d_matrix.jpg

http://wiki.ldv.ei.tum.de/show_image.php?id=259
http://www.songho.ca/dsp/convolution/files/conv2d_matrix.jpg


Neural Networks
Example (simple version)
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• Simple Neural Network for handwritten digit recognition
⚪ Shallow NN (only one hidden layer)
⚪ Number of neurons: 810
⚪ Input images are all the same size and centered (MNIST dataset)
⚪ Error rate at ~ 5 %



Neural Networks
Example (simple version)

16

• Simple Neural Network for handwritten digit recognition
⚪ Shallow NN (only one hidden layer)
⚪ Number of neurons: 810
⚪ Input images are all the same size and centered (MNIST dataset)
⚪ Error rate at ~ 5 %

• Shallow architecture
⚪ Easy to implement and train
⚪ “Human understandable” weights and biases
⚪ Not accurate enough for most tasks

Source: http://nn.cs.utexas.edu/demos/digit-recognition/

http://nn.cs.utexas.edu/demos/digit-recognition/


Neural Networks
Example (advanced version)
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• Convolutional Neural Net for handwritten digit recognition
⚪ Number of neurons: 2989
⚪ Same input as in the first example (one pixel for padding)
⚪ Error rate at ~ 0.8 %



Tools for Neural Networks
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• Lots of frameworks and libraries are available
⚪ Caffe

★ Universal framework with good performance
★ CPU and GPU implementation

⚪ cuDNN
★ Highly optimized functions for NVidia GPUs

⚪ cuda-convnet2
★ Python library written in C++/CUDA-C
★ Multi GPU support

⚪ THEANO
★ Full Python implementation (CPU and GPU)

⚪ Microsoft Azure Machine Learning
★ Cloud based Neural Networks

⚪ MATLAB
★ Text based or graphical

19

Tools for Neural Networks
Available tools



Tools for Neural Networks
Caffe

• Open Source Project: BVLC
⚪ https://github.com/BVLC/Caffe

• No “real” programming needed
⚪ Structure defined by configuration files
⚪ Edit paths is predefined scripts

• Can run on CPU and GPU
⚪ determined by parameter

• Lots of examples included
⚪ Character recognition
⚪ Object classification

• Currently only single GPU support
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# Simple convolutional layer

layers {

    name: "conv1"

    type: CONVOLUTION

    bottom: "data"

    top: "conv1"

    convolution_param {

        num_output: 96

        kernel_size: 11

        weight_filler {

            type: "gaussian"

            std: 0.01

        }

        bias_filler {

            type: "constant"

            value: 0

        }

    }

}

https://github.com/BVLC/Caffe
https://github.com/BVLC/Caffe


Tools for Neural Networks
Caffe | Implementation

• How does Caffe work internally?
• Each function is implemented for CPU and GPU
• Uses cuBLAS library internally for most tasks
• Between each layer is a “blob” for the communication

⚪ Include forward and backward pass
⚪ Multi dimensional array (num, channels, height & width)
⚪ Syncs CPU and GPU memory automatically if needed

• Neuron Layer on GPU
⚪ Performed in two steps

★ Sum up all inputs with weights and biases (SAXPY + all-reduce)
★ Calculate output with corresponding activation function

• Convolutional Layer on GPU
⚪ Performed in four steps

★ Rearrange data (im2col())
★ Perform convolution (cublasSgemm())
★ Add bias to results
★ Calculate final value with activation function 21



Tools for Neural Networks
cuDNN

• Library for CUDA capable GPUs from NVidia

⚪ GPU optimized functions for DNNs
⚪ Including forward and backward operations
⚪ Not open source, but freely available at NVidia https://developer.

nvidia.com/cuDNN
• Will be included in Caffe 1.0 (not yet released)

⚪ Speedup of ~ 13 % compared to normal implementation
★ 7 days training ⇒ 6 days training

• Measurements done with cuDNN RC1
⚪ CUDA 7 brings new version with

improved performance

22

https://developer.nvidia.com/cuDNN
https://developer.nvidia.com/cuDNN
https://developer.nvidia.com/cuDNN


Tools for Neural Networks
cuda-convnet2

• Open source project hosted at

https://code.google.com/p/cuda-convnet2/

• Python library written in C++ and CUDA-C
• Fastest implementation so far
• Supports multiple GPUs with different 

parallelism approaches1

• Network is defined by configuration file 
(like Caffe)

• Written for ILSVRC-2012
⚪ One node with two GPUs
⚪ Winning system with 17 % error rate 

(second best: 27 %)
• 6.25x Speedup on 8 GPUs

23
1. See Alex Krizhevsky, One weird trick for parallelizing convolutional neural networks, eprint arXiv:1404.5997, 2014

# Simple convolutional layer

[conv32]

  type = conv

  inputs = data

  channels = 3

  filters = 32

  padding = 4

  stride = 1

  filterSize = 9

  neuron = logistic

  initW = 0.00001

  initB = 0.5

  sharedBiases = true

  sumWidth = 4

https://code.google.com/p/cuda-convnet2/
https://code.google.com/p/cuda-convnet2/


DNN on GPUs
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• Number of competitors in the ImageNet challenge.
⚪ 2012 ⇒ One system, won with 10% lead (mostly CPU-based SVMs)
⚪ 2014 ⇒ 90 % use GPUs

• Networks can get more complex due to high computational power
⚪ Only limited by GPU memory

25

DNN on GPUs

Source: http://devblogs.nvidia.com/parallelforall/accelerate-machine-learning-cudnn-deep-neural-network-library/

http://devblogs.nvidia.com/parallelforall/accelerate-machine-learning-cudnn-deep-neural-network-library/


DNN on GPUs
GPU | What’s that?

• Extension card for PCs
⚪ Optimized for graphics processing
⚪ Recent GPUs capable of general purpose computations (GPGPU)
⚪ Special GPUs without video output

• Used as an accelerator
⚪ Can increase the performance of special workloads
⚪ Different architecture and execution model than a CPU

26
Source: NVidia



DNN on GPUs
GPU | Basic architecture

• CPU: Multicore ⇔ GPU: Manycore
⚪ CPU has few complex cores
⚪ GPU has many simple cores

• Basic building block Streaming Multiprocessor (SM)
⚪ SMs contain many ALUs for calculation
⚪ Each ALU in an SM performs same operation on 

different memory ⇒ SIMT
• Context switch every clock cycle

⚪ Lots of outstanding loads
⇒ Memory latency can be tolerated

• High memory bandwidth
• User controlled cache (SharedMemory)

27
Source: NVidia



DNN on GPUs
GPU | Execution model

• Execution described by “Bulk Synchronous 
Parallel” model
⚪ Execution is done in supersteps

★ Computation
★ Communication
★ Barrier

⚪ More tasks than resources to overcome 
parallel slackness

• Memory loads and stores should be coalesced
• Task is split into several blocks

⚪ Block indices have three dimensional ID
⚪ On block runs on one SM
⚪ No safe synchronization between blocks 

possible

28



• Execution model optimal for NNs
⚪ Compute one layer 
⚪ Perform memory operations 
⚪ Synchronize

• High computational power of GPUs can be utilized
⚪ Caffe on GPU is 11x faster than on CPU (14x with cuDNN)
⚪ cuDNN achieves 2.5 TFLOPS on a GTX 980 (51 % of peak perf.)

• No data dependencies in layers
⚪ Relatively easy to implement

29

DNN on GPUs
Performance

GPU: NVidia K40
CPU: 24-core Intel E5-2697v2 CPU @ 2.4GHz running Caffe with Intel MKL  11.1.3



• Important Factor: Does it scale?
⚪ Several multi GPU implementations
⚪ All have good linear speedup

• Only the training has to be split
⚪ Each node broadcasts changes in

weights and biases
• GPU memory is very limited

⚪ Limits size of networks
⚪ Limits mini-batch size

⇒ Multiple GPUs increase the possible size
• CNNs reduce amount of communication dramatically

⚪ CNNs can be designed to fit network topology
• Only tested and documented with 8 GPUs in one node and 16 nodes 

with 4 GPUs each
30

DNN on GPUs
Scalability evaluation

Number of GPUs



• Winning system of the ILSVRC-2012 
⚪ 1,000 classes and 1,400,000 images

• Specs: 
⚪ Network split to two GPUs (NVidia GTX 580)
⚪ 650.000 neurons
⚪ 60.000.000 weights and biases 

• P2P access limited to two cards
⚪ Have to be connected to same PCIe root complex 31

DNN on GPUs
Example

Source: A. Krizhevsky, I. Sutskever and G. E. Hinton, ImageNet Classification with Deep Convolutional Neural Networks. NIPS. 2012.



• Google build a “Brain” to find two most common 
images in the internet (2006 - 2011)
⚪ 1,000 nodes (2,000 CPUs, 16,000 cores)
⚪ ~ 600 kW energy consumption (IDLE)
⚪ $5,000,000 system costs
⚪ 10,000,000,000 connections

★ Complexity comparable to a bee
• First GPU-based challenger (2014)

⚪ 3 nodes with (3 Tesla K20 each)
⚪ 4 kW energy consumption
⚪ $33,000 system costs

• Second GPU-based challenger (2014)
⚪ 1 node (3 GeForce Titan Z / 6 GPUs)
⚪ 2 kW energy consumption
⚪ $12,000 system costs

32

DNN on GPUs
Example | System level

Source: http://hilaryschenker.files.wordpress.com/2011/08/googlebrain2.jpg

http://hilaryschenker.files.wordpress.com/2011/08/googlebrain2.jpg
http://hilaryschenker.files.wordpress.com/2011/08/googlebrain2.jpg


What can we expect?

• Robot learning how to cook by watching YouTube videos
• Two CNNs for:

⚪ Object recognition
★ Which ingredient is next

⚪ Grasping type
★ Which tool and which operation

⚪ Precisions: 
Object 79 %; Grasping type 91 %; Action 83 %

• Predefined set of tools and ingredients
⚪ Can not learn new tools or ingredients

33Source: http://images.gizmag.com/hero/youtube-robot-7.jpg
Source: Y. Yang et. al.. Robot Learning Manipulation Action Plans by “Watching” Unconstrained Videos from the World Wide Web. AAAI-15. 2015.

http://images.gizmag.com/hero/youtube-robot-7.jpg


Outlook
 

• GPU memory and performance increased over the last years
⇒ Stacked Memory
⚪ Bigger networks
⚪ Less copy operations

• Faster Host-GPU connection
⇒ NVlink
⚪ Biggest bottleneck at the moment

• Focus of most NN architects/researchers lies on GPUs
⇒ A lot of research at the moment
⚪ Better accuracy of DNNs
⚪ Better performance on GPUs
⚪ Better communication strategies for clusters

34
Source: http://cdn.wccftech.com/wp-content/uploads/2014/03/NVIDIA-Pascal-GPU-Chip-Module.jpg

http://cdn.wccftech.com/wp-content/uploads/2014/03/NVIDIA-Pascal-GPU-Chip-Module.jpg


• DNNs offer an unified way to realise ML systems
⚪ A lot of frameworks available
⚪ Basic functions are the same for different tasks

• High amount of parallelism with few data dependencies
⚪ Fits the BSP model
⚪ Optimal task for GPUs

• CNNs reduce amount of communication
⚪ Can be trained with lots of layers

★ Complex networks can be realized
★ High accuracy if trained well

⚪ Can be designed to match a network topology
★ Increased performance on cluster level

35

Conclusion
 



The End
 

Questions?
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