
ADVANCED SEMINAR "COMPUTER ENGINEERING", UNIVERSITY OF HEIDELBERG, WT14/15 1

High Performance Computing in Web Browsers
Henning Lohse

Abstract—Traditionally, High Performance Computing (HPC)
applications require parallelized processing to handle input data
and runtimes. Heterogenous systems for specialized computations
are advantegeous. Today’s consumer electronics are heterogenous
multiprocessor systems equipped with web browsers. The latter
provide portability for applications. This work analyzes the
current state of web browser technologies for portable HPC
purposes.

asm.js allows optimized JavaScript execution. HTML5 Web
Workers are threads communicating via message passing allow-
ing intra-node processing. WebRTC DataChannel is a config-
urable peer-to-peer socket for inter-node processing. WebCL and
OpenGL Compute Shaders are GPU computing candidates.

Index Terms—HPC, JavaScript, asm.js, HTML5, Web Work-
ers, WebRTC, DataChannel, WebCL, WebGL, Compute Shaders

I. INTRODUCTION

TODAY’S computational applications originate from broad
interdisciplinary fields. These include meteorology, astro

physics and molecular biology in scientific computing, as well
as fluid dynamics, crash tests and distributed databases in
commercial areas, or online games for consumers.

They share high demands to the computational platform.
Results are prefered to be achieved as fast, precise and energy
efficient as possible or required. Large data sets have to be
handled accordingly. Techniques to meet these demands have
been explored and aggregated in the field of High Performance
Computing. (HPC)

Runtime and storage requirements of HPC applications
traditionally exceed the capabilities of a single processor or
machine. Therefore, parallel computing became the major
factor for performance optimizations. Today, multiple hetero-
geneous processors can be used in interconnected machines.
When designing an HPC application, the following aspects as
illustrated in Figure 1 have to be considered:

• Processor. Determine which application parts should be
executed on a distinct processor. This can be a core of a
multicore CPU.

• Intra-node processing. A machine node might contain
multiple sockets for CPUs, where each CPU provides
multiple cores. The application design should benefit
from synergetic effects of caching, memory access pat-
terns and locality while minimizing communication over-
head. For programming, pthreads or OpenMP can be
used.

• Inter-node processing. Multiple nodes are usually con-
nected via network. Inter-node communication is orders
of magnitude slower then intra-node communication.
While synergetic effects to be considered here are sim-
ilar to intra-node processing, communication overhead

induces a more significant penalty. sockets or MPI can
be used for implementations.

• Coprocessors. Complementary processors like GPUs can
be used to improve performance for certain types of
computations. GPUs for example are highly optimized for
SIMD workloads with preferably short runtimes per data
point on a huge set of them. CUDA or other coprocessor-
dependent libraries can be utilized.

Fig. 1: HPC design aspects illustration

These aspects are tightly coupled. Designs considered for
each one are dependent on the others. Furthermore, when
implementing the HPC application, optimizations are usually
done for a specific platform or range of platforms. Appli-
cations come as compiled binaries. While these approaches
provide the best performance, portability is either not available
or time-consuming to achieve.

A. Motivation

Consumer electronics today are heterogeneous multipro-
cessor systems. Notebooks, Tablets and Smartphones are
equipped with multicore CPUs, GPUs and (wireless) network
technologies. While they run different and diverse operating
systems hindering portability of native applications, each plat-
form comes with a web browser.

Modern web browsers can be considered application plat-
forms. They provide GUI rendering, network communication,
user interaction and dynamic content control. The development
of HTML5 introduced several improvements and new features,
like threads or client-server sockets. Plenty of frameworks
allowing developers to connect the browser frontend with a
server backend exist. The JavaScript engines are constantly
improved for faster script execution. And all these features
work on virtually any platform with a modern web browser,
resulting in inherent application portability.

The topic of this work is to present the current state of
web browser technologies regarding HPC application design
aspects processor, intra-node and inter-node processing. As
coprocessors can be diverse and specialized, this work focuses
on GPUs.

ADVANCED SEMINAR "COMPUTER ENGINEERING", UNIVERSITY OF HEIDELBERG, WT14/15 2

B. Section Overview

Section II gives a brief overview of the JavaScript language
used in HTML scripts. Important concepts and constructs
for further sections are discussed. The following section III
introduces asm.js as an annotation-based JavaScript subset for
performance optimizations. Intra-node processing capabilities
come with HTML5 Web Workers in section IV. Section V
presents WebRTC DataChannel and its inter-node processing
capabilities. The state of GPUs as coprocessors using WebCL
and OpenGL Compute Shaders is shown in section VI. Finally,
a summary is presented and a conclusion is drawn in sections
VII and VIII respectively.

II. JAVASCRIPT

JavaScript is the programming language used for scripting
in HTML documents. Code written in JavaScript resides in
the script block of the HTML Domain Object Model (DOM),
as seen in figure 2. This language’s purpose is amongst others
to allow dynamic reload of content on events, like clicks, to
reduce bandwidth and allow user interactions. Input can also
be verified and the document’s design can be altered. These
operations can be done by manipulating the DOM tree, yet
arbitrary computations can also be done. JavaScript is a just-
in-time compiled language.

Fig. 2: HTML Domain Object Model [kirupa.com]

A. Type System

When looking at arbitrary computations, it is important to
note the key characteristics of JavaScript’s type system:

• Dynamically typed. Types of objects are resolved at run-
time; static checks are not done. This means operations
like late binding or downcasting are performed during
execution. This allows developers to write code faster,
but operations might fail at runtime due to e.g. missing
operators.

• Object-oriented. As noted before, JavaScript utilizes ob-
jects. It is important to note that even CPU native
types, like a 32 bit integer, are wrapped into JavaScript
primitive type objects. While this simplifies development

by adding utility functions, addtitional overhead occurs
during runtime.

• Classless. Objects are not instantiations of pre-defined
classes. They are defined as key-value pairs inside curly
brackets, as seen in listing 1. This notation is refered to as
the JavaScript Object Notation. (JSON) It allows arbitrary
hierarchical nesting of data structures, like additional
objects or arrays.

• Prototypes. As JavaScript is classless, prototypes are
used. If multiple objects with the same members are
desired, a prototype object is created and copied. These
copies can again be arbitrarily modified.

Listing 1: JavaScript type system and JSON example
v a r p r o t o t y p e = {

" P u b l i s h e r " : "Xema " ,
" ID " : "1234−5678−9012−3456" ,
" Owner " : {

"Name " : "Max " ,
" male " : t r u e ,
" Hobbys " : [" R id in g " , " Gol f "] ,
" Age " : 42 ,

}
} ;

v a r copy = p r o t o t y p e ;
copy [" Cur rency "] = "EURO" ;
copy [" Owner "] [" Hobbys "] . push (" Reading ") ;

B. Memory Management

JavaScript does not support explicit memory management.
Functions like malloc or free, new or delete are not available.
The web browser must provide a Garbage Collection mech-
anism. Its purpose is to automatically remove unused objects
from memory. This makes development easier, as object
ownership has not to be considered, and prevents memory
leaks. Implementations in current web browsers are based on
the mark-and-sweep algorithm. Basically, unreferenced, in the
sense of unreachable, objects are to be removed.

Applications though may suffer from badly timed garbage
collecting. JavaScript and current web browsers provide no
interface to control the time a garbage collection occurs.
Today’s implementations are highly optimized. Still, real-
time and memory intensive applications, like many HPC
applications, have to be implemented carefully. Creation of
too many objects should be avoided and patterns benefiting
garbage collection should be used. [1]

III. ASM.JS

As thoroughly explained in [2], memory access patterns
and caching effects are crucial for application performance.
Yet internally, JavaScript does not necessarily use CPU native
data types, but wrapper objects. While at some point execution
comes down to instructions on native data types, wrapping
functions induce overhead. Furthermore, when using JSON,
memory layout of data is implicit. Without special functions,
an e.g. fixed size array of 32 bit integers cannot be instantiated,
hindering cache optimizations.

Mozilla identified these problems and defined asm.js to
improve JavaScript performance. asm.js utilizes annotations

ADVANCED SEMINAR "COMPUTER ENGINEERING", UNIVERSITY OF HEIDELBERG, WT14/15 3

on data that do not alter JavaScript semantics, but can be
detected by the browser to use CPU native data types. The
JavaScript implementation in listing 2 assigns the number
2 to the variable p, whereas the asm.js implementation in
listing 3 assigns (2|0) to p. While semantically identical, an
asm.js-compatible web browser will interpret (2|0) as a 32 bit
integer of value 2. This allows the browser to deploy ahead-
of-time optimization strategies for the following just-in-time
compilation by not using wrapper objects. Several annotations
for different data types exist. [3]

For additional optimizations, data structures like arrays can
be created from functions like Int32Array. This allows the web
browser to allocate an efficiently accessible array.

Listing 2: JavaScript find prime numbers implementation
v a r p r ime s = [] ;

f o r (v a r p = 2 ; p <= max ; p ++) {
v a r i s _ p r i m e = t r u e ;

f o r (v a r i = 2 ; i <= max_sqr t ; i ++)
i f (p % i == 0 && p != i) {

i s _ p r i m e = f a l s e ;
b r e a k ;

}

p r im es [p] = i s _ p r i m e ;
}

Listing 3: asm.js find prime numbers implementation
v a r p r ime s = new I n t 3 2 A r r a y (max) ;

f o r (v a r p = (2 | 0) ; p <= max ; p ++) {
v a r i s _ p r i m e = (1 | 0) ;

f o r (v a r i = (2 | 0) ; i <= (max_sqr t | 0) ; i ++)
i f (p % i == (0 | 0) && p != i) {

i s _ p r i m e = (0 | 0) ;
b r e a k ;

}

p r im es [p] = i s _ p r i m e ;
}

A. Performance Comparison

The vision of asm.js is to provide near-native application
execution speed. The implementations in figures 2 and 3 have
been compared to a C implementation compiled with GCC
and -O3. The average runtimes on the machine used for this
work in ms for finding prime numbers in the range of 2 to
10,000,000 are:

• C: 12,198 (1x)
• JavaScript: 15,080 (1.236x)
• asm.js: 12,244 (1.004x)

Performance is highly dependent on the application’s under-
lying algorithms. For this example, annotating integer values
and using an Int32Array reduced to slowdown from 1.236x
to 1.004x. In general, Mozilla states that Firefox is able to
execute arbitrary asm.js code with a slowdown of 1.5x to 2x
compared to a native binary compiled with clang. [3] [4]

B. Emscripten

Utilizing the asm.js annotations correctly must be done care-
fully. Additionally, controlling garbage collection and using
(cache) efficient memory accesses is difficult in a language
like JavaScript not intended for such actions. Mozilla started
the Emscripten project to compile C/C++ code to asm.js. This
allows development of highly optimized JavaScript-compatible
asm.js applications for experienced C/C++ developers.

For this to work, Emscripten uses the clang compiler
toolchain to generate an LLVM intermediate representation
(IR) of C/C++ code. LLVM, Low Level Virtual Machine, is a
virtual machine with an instruction set optimized for cross
compilation purposes. Given this IR, Emscripten generates
asm.js code from it.

This code profits amongst others from ahead-of-time op-
timizable instructions on native CPU data types and cache
efficient data memory layouts. Even thread usage is supported.
Furthermore, no garbage collection occurs. This is done by
allocating an array used as a virtual heap where all objects
are created and removed from. Memory management is done
manually on this array by Emscripten. [3]

In March 2014, Mozilla showed a demo of the Unreal
Engine 4 video game engine compiled to asm.js using Em-
scripten. It was running in Firefox at 67% native speed. [5]

C. Compatibility

Current versions of Firefox, Chrome and Internet Explorer
support optimized execution of asm.js-compatible JavaScript.
There are significant performance differences, with Firefox
and Chrome around twice as fast as Internet Explorer. It is
important to note that while Chrome does support asm.js,
Google still prefers developers to use their Native Client. It
allows developers to compile from C/C++ for performant web
applications, too. Safari does currently not detect asm.js code.
[4]

IV. HTML5 WEB WORKERS

For efficient machine utilization and speedups, HPC ap-
plications must make use of all available CPU cores by
designing the application with respect to intra-node processing
capabilities. Traditionally, this is realized by using multiple
threads in a process. While each thread may allocate its own
memory, currently common shared memory systems allow
direct access of shared memory between all threads.

Until the release of HTML5, an HTML document’s
JavaScript script was always executed in a single thread. To
allow threaded execution, HTML5 specified Web Workers.
The main thread can spawn Web Workers and assign a script
file to them, as seen in listing 4. This script file can contain
arbitrary code to be executed in its own thread, asynchronously
from the main thread. See listing 5. One constraint for Web
Workers is that they cannot access and manipulate the HTML
document’s DOM; only the main thread is able to do that.

ADVANCED SEMINAR "COMPUTER ENGINEERING", UNIVERSITY OF HEIDELBERG, WT14/15 4

Listing 4: Main thread spawns Web Worker
v a r worker = new Worker (" w o r k e r _ s c r i p t . j s ") ;

worker . a d d E v e n t L i s t e n e r (" message " , f u n c t i o n (e) {
c o n s o l e . l o g (e . d a t a) ;

} , f a l s e) ;

worker . pos tMessage (" H e l l o ! ") ;

Listing 5: Web Worker script
s e l f . a d d E v e n t L i s t e n e r (" message " , f u n c t i o n (e) {

/ / Async c o m p u t a t i o n s go h e r e
s e l f . pos tMessage (e . d a t a) ;

} , f a l s e) ;

A. Message Passing

Another constraint for Web Workers is that shared memory
is not possible. Memory allocated in the main thread or in a
Web Worker is never accessible by others. Communication
is based on message passing. This is done by using the
postMessage function. One has to differentiate between two
use cases of this function.

By simply handing an object to postMessage, a structured
cloning on this object is performed to create a copy. This
copy is made available to the Web Worker; direct access to
the original is not possible. Structured cloning is the way
to systematically copy JSON objects, which can be hierar-
chically nested. Copying such data structeres is detrimental
for achieved bandwidth. On the machine used for this work,
postMessage structured cloning of a simple array caps at
around 1 GB/s, as seen in figure 3. As arrays are continously
stored in memory, this actually represents the upper limit.
Compared to traditional shared memory accesses, this is hardly
acceptable for HPC applications.

Additional issues may arise from sending messages of
several MBs in size too fast. The garbage collector might po-
tentially not be fast enough in freeing unused copied messages.
Results might be huge or spiked memory consumption, or even
an application crash if memory is exhausted.

Fig. 3: postMessage structured cloning bandwidth of an array

Alternatively, transferable objects can be send via postMes-
sage. Transferable objects are simple data structures like
arrays, which need no structured cloning. The syntax used
is shown in listing 6. It is important to note that sent data
switch contexts. After the call to postMessage, the sender has

no longer access to the data; the variable evaluates to null.
Only the receiver has access now. This is realized internally by
simple pointer exchanges, making bandwidth measurements
obsolete. The latency for this operation on the machine used
for this work is 53us. HPC applications should structure their
Web Workers communication using this approach.

Listing 6: Sending a transferable object array
v a r a r r a y = new A r r a y B u f f e r (1 0 2 4) ; / / 1kB
worker . pos tMessage (a r r a y . b u f f e r , [a r r a y . b u f f e r]) ;

B. Compatibility

Web Workers are basically supported in all modern
web browser. Unfortunately, sending transferable objects via
postMessage is not part of the HTML5 specification. Cur-
rently, Internet Explorer does not support transferable objects
via postMessage.

V. WEBRTC DATACHANNEL

In the World Wide Web, communication between web
browsers and servers is traditionally handled by the HTTP
protocol. This protocol works stateless. This means that a
request can be send to the server, which will replay a response,
as seen in figure 4. But no state is saved on the server side and
the web browser will not be remembered for future requests.
Request data can only be send e.g. in the request’s body to a
specific server service defined by the URL.

As certain services like online shops are difficult to realize
that way, cookies have been introduced. These are special
data tokens assigned by the server to the web browser. The
latter must send the cookie with each request to be identified,
allowing the server to realize progress of a service.

Fig. 4: HTTP communication [developer.mozilla.org]

Applications dependent on low latency and high bandwidth
suffer from this approach. Therefore, HTML5 specified Web-
Sockets. These allow the web browser to open a native, TCP-
based socket connection to the server. Client-server architec-
tures as seen in figure 5, can be realized this way.

TCP is limited to realiable, ordered communication. Appli-
cations like online games do not require this for e.g. player
movements. Real-time applications like voice or video chats
can tolerate paket loss up to a certain degree. UDP’s unreliable,
unordered communication with less paket overhead would be
benefitial, but can not be used with WebSockets. Addition-
ally, the latter do not support peer-to-peer connections, only
client-server architectures. For HPC applications, peer-to-peer
communication is essential.

ADVANCED SEMINAR "COMPUTER ENGINEERING", UNIVERSITY OF HEIDELBERG, WT14/15 5

Fig. 5: Client-server architecture [cs.montana.edu]

A. Basics

To solve these issues, Google implemented an early working
version of the now standardized WebRTC protocol. (Web
Real-Time Communication) The idea is to allow arbitrary
communication between web browsers and servers. Peer-to-
peer communication as well as client-server architectures with
configurable transmission properties are supported. Addition-
ally, features like congestion control, audio and video codecs
are part of WebRTC. The vision is to realize transportation of
media between web browsers fully integrated, plugin-free and
flexible.

The DataChannel of WebRTC provides a configurable peer-
to-peer socket to transport arbitrary data. Separate socket types
to transport e.g. video data exist. For security reasons, a
web browser cannot establish a DataChannel connection to
an arbitrary address. The process to estbalish a connection is
depicted in figure 6.

A so-called signalling server is required. Each web browser
participant requests access to a certain service, like video
chat or a DataChannel. This service is represented by an
identifier. It can be the name of a chat room for video chats,
or the name and some instance number of an HPC application
using DataChannels. The signalling server gathers requests
and, amongst other information, their source IP addresses.
New participants can be provided with all IP addresses of
already participating web browsers via session descriptions.
The latter allow them to open peer-to-peer DataChannel socket
connections.

B. Compatibility

No web browser currently implements all features of We-
bRTC. But Chrome and Firefox do already support DataChan-
nels and most other features. Microsoft aims at supporting
WebRTC in the future and e.g. wants to adapt Skype to
browsers that way. [6] [7]

VI. GPUS AS COPROCESSORS

GPUs have established themselves as efficient coprocessors
for workloads requiring massively parallel SIMD computa-
tions. These workloads are part of many HPC applications.
Yet, there is no native web browser support for doing arbitrary

Fig. 6: WebRTC overview [html5rocks.org]

computations on GPUs. Possible candidates are discussed in
the following subsections.

A. WebCL

WebCL is derived from OpenCL. The latter allows compu-
tations to be done on any OpenCL-compatible processor, like
CPUs or GPUs. It is intended for heterogeneous computing
purposes, but is commonly used for GPU computing where
CUDA for Nvidia GPUs is no option. WebCL is in the
process of specification and aims to bring an OpenCL subset
to JavaScript.

The advantages of using WebCL in a web browser are:
• Like OpenCL. Developers confortable with OpenCL can

immediately work with WebCL.
• Hardware exposure. WebCL does not hide hardware

details behind abstractions. The developer has full ac-
cess to the device’s capabilites. Benefitial effects like
memory access coalescing or avoiding bank conflicts can
efficiently be implemented. This allows the best possible
performance.

• IEEE 754 float. Floating point computations are conform
to the IEEE 754 standard. This is especially important
for scientific applications where a certain precision is
mandatory. But other applications might also profit from
non-irregular rounding effects, which are hard to debug
or circumvent if arisen.

Disadvantegeous for adaption of WebCL is the way it
operates. Like with OpenCL, the code to be run by the device,
the so-called kernel, is provided as a string of characters. This
gets passed to the OpenCL driver for just-in-time compilation
and execution on the device. This requires a driver for every
platform. Yet today, not even all available desktop GPUs have
access to OpenCL drivers, like the HD 3000 integrated GPU
in Intel’s Sandy Bridge processors. This state if even worse
for mobile platforms.

Additionally, WebCL would operate separately from the
graphics pipeline. If an application utilized WebGL for render-
ing using the GPU, adding some WebCL execution efficiently
is difficult. This separation and the fact that few developers are
comfortable with GPU computing is the reason Mozilla does
not plan to implement WebCL in Firefox. Other web browser

ADVANCED SEMINAR "COMPUTER ENGINEERING", UNIVERSITY OF HEIDELBERG, WT14/15 6

developers have made no announcements. Currently, WebCL
can only be used with plugins for Firefox or Chrome. [8]

B. OpenGL Compute Shaders

Since version 4.3 (3.1 for embedded systems, ES), OpenGL
supports Compute Shaders. These are shader programs written
in OpenGLs shader language GLSL allowing arbitrary com-
putations. Every platform supporting the mentioned versions
is capable of using Compute Shaders. Web browsers do not
use OpenGL directly, but a derived subset called WebGL. Un-
fortunately, Compute Shaders are not part of WebGL version
1.0 and will not be part of version 2.0. It is not foreseeable
when a web browser might utilize them.

Nevertheless, Compute Shaders might be adopted by devel-
opers once available. Advantegeous is that they are written in
GLSL like graphics code, which developers may be familiar
with. Integration into the graphics pipeline is implicit. Yet this
may be the reason for problems, as e.g. graphics data types
like textures have to be used for computations. The device’s
hardware is not fully exposed, capabilities are abstracted
away. The resulting implementation can not force maximum
optimizations. Additionally, floating point computations might
not conform to IEEE 754. [9]

VII. SUMMARY

HPC application design aspects have all been regarded by
today’s web browser technologies. Yet performance, complete-
ness and support is different for each one.

Web-browser-based HPC applications have to be written
in JavaScript. This work presented JavaScript as a flexible
language for developers. Regarding performance, the type
system and memory handling is essential. Benchmarks show
performance deficits, as JavaScript is dynamically typed and
wraps even CPU native data types.

Mozilla tackles performance issues with asm.js. By anno-
tating data, a web browser can interpret the data as certain
CPU native data types. This allows the use of performance
optimized routines internally instead of regular dynamic type
resolution. Furthermore, Emscripten compiles C/C++ applica-
tions to asm.js. To circumvent Garbage Collection, a single ar-
ray is used as a virtual heaps for all objects. Benchmarks show
significant performance improvements to regular JavaScript.
Firefox, Chrome and Internet Explorer detect asm.js.

Regarding intra-node processing, HTML5 Web Workers
can be used for asynchronous computations using threads.
Message passing has to be used for communication; shared
memory is not possible. As structured cloning of complex
objects is slow, transferable objects like arrays should be
preferred for communication. Still, sender and receiver share
no data. A sent message is only available to the receiver.
Web Workers are supported by all web browsers, but Internet
Explorer does unfortunately not support transferable objects
communication.

Inter-node processing is restricted to TCP-based client-
server architectures using HTML5 WebSockets. Google started
WebRTC to allow arbitrary media transport between web
browsers. Part of WebRTC is the DataChannel. It provides

configurable reliability, delivery order and more. Additionally,
by using a signalling server, peer-to-peer connection between
web browsers are possible. Using WebRTC DataChannel,
arbitrary communication patterns can be realized. Currently,
DataChannels are only supported by Chrome and Firefox.

GPU computing is difficult with today’s web browsers.
Plugins for WebCL are available for Chrome and Firefox.
Developers kowing OpenCL can immediately start writing
kernels. But integration with a graphics pipeline of WebGL
is difficult. While OpenGL provides Compute Shaders for
GPU computing, they are not yet supported bei WebGL. If
they once will be, graphics pipeline integration is implicit.
But WebCL offers superior hardware eploitation for maximum
performance and conforms to IEEE 754 floating point com-
putations.

VIII. CONCLUSION

For performance critical code sections, asm.js generated
by Emscripten provides fast, portable applications. While
there are concurrent technologies, like Chrome’s Native Client
allowing compilation from C/C++, portability and profiting
from ever improving JavaScript engines are strong arguments.
But the toolchains to generate asm.js from C/C++ and integrate
it in a web application need to be improved for broad adaption.
This said, future shows if developers adapt to asm.js or rely
on JavaScript engine optimizations.

Regarding intra-node processing, Internet Explorer urgently
needs to adapt transferable objects for message passing.

WebRTC is not fully implemented by web browsers, but is
expected to be in the future. Current implementations are open
source and WebRTC is standardized. DataChannel is a reliable
option for current and future HPC applications. Other features
are going to allow the development of web applications hardly
imaginable right now.

As for GPU computing, history might repeat itself. Mozilla
wants to rely on OpenGL Compute Shaders of the graphics
pipeline, just like early desktop GPU computing applications
did. Still, standardization of WebCL is in progress. And once
more complex games are developed for web browsers, devel-
opers might be interested in WebCL support. But OpenCL
drivers must be available for all platforms for this to work,
which the author

Regarding performance and feature completeness, the au-
thor recommends using Chrome or Firefox whem implement-
ing web-browser-based HPC applications today.

REFERENCES

[1] Mozilla Foundation, Memory Management,
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Memory_Management
(05.01.2015)

[2] U. Drepper, What Every Programmer Should Know About Memory. Red
Hat, Inc., 2007.

[3] Mozilla Foundation, asm.js Working Draft, http://asmjs.org/spec/latest/
(05.01.2015)

[4] Mozilla Foundation, asm.js performance improvements in the latest
version of Firefox make games fly!,
https://hacks.mozilla.org/2014/05/asm-js-performance-improvements-in-
the-latest-version-of-firefox-make-games-fly/ (05.01.2015)

[5] Mozilla Foundation, Mozilla and Epic Preview Unreal Engine 4 Running
in Firefox,

ADVANCED SEMINAR "COMPUTER ENGINEERING", UNIVERSITY OF HEIDELBERG, WT14/15 7

https://blog.mozilla.org/blog/2014/03/12/mozilla-and-epic-preview-
unreal-engine-4-running-in-firefox/ (05.01.2015)

[6] &yet, Is WebRTC ready yet?, http://iswebrtcreadyyet.com/ (05.01.2015)
[7] VentureBeat, Microsoft nears bringing WebRTC to Internet Explorer, eyes

plugin-free Skype calls in the browser,
http://venturebeat.com/2014/10/27/microsoft-eyes-webrtc-for-plugin-free-
skype-calls-in-internet-explorer/ (09.01.2015)

[8] Mozilla Foundation, [WebCL] add openCL in gecko,
https://bugzilla.mozilla.org/show_bug.cgi?id=664147#c30 (05.01.2015)

[9] Khronos Group, ARB_shader_precision,
https://www.opengl.org/registry/specs/ARB/shader_precision.txt
(09.01.2015)

