
ADVANCED SEMINAR ”‘COMPUTER ENGINEERING”’, UNIVERSITY OF HEIDELBERG WT14/15 1

Industry Standard Control Interfaces
for inter IC communication

Moritz Nöltner
University of Heidelberg, ZITI

Abstract—This paper gives a short overview of the
I2C (Inter-Integrated Circuit) and SPI (Serial Peripheral
Interface) bus systems and showcases a record of a typical
I2C transaction.

Index Terms—System buses, SPI, I2C, Two Wire Inter-
face.

I. INTRODUCTION

IN computer systems, different parts of the circuit will
need to exchange data and configuration information.

To facilitate this, a vast number of data link systems
have been used which are distinguishable in terms of
complexity, data throughput and whether they are point-
to-point connections or bus systems. Some notable ex-
amples of data link systems in roughly descending order
of complexity are:
− HyperTransport
− PATA, SATA
− PCI, PCI-Express
− AGP
− ISA
− CAN
− UART, USART
− SPI
− I2C, SMBus
− UNI/O
− 1-Wire

Along with USART (Universal [Asynchronous] Re-
ceiver Transmitter), SPI (Serial Peripheral Interface)
and I2C (Inter-Integrated Circuit) are probably the most
commonly used data links for low speed, low complexity
interfacing of integrated circuits (ICs). SPI and I2C are
special in that they are bus systems, which means that a
possibly large number of ICs can share the same signal
lines for communication.

II. SERIAL PERIPHERAL INTERFACE

The Serial Peripheral Interface was introduced by
Motorola for the 6800 series of processors, though Texas
Instruments introduced a similar system, Microwire[4].

It allows to communicate to external components by
using a simple, yet versatile 4-wire bus system with
dedicated chip select, clock and data lines. By now,
SPI has become a widely accepted de-facto standard
with microcontrollers, digital signal processors, FLASH
memories, ADCs and DACs and many sensors offering
an SPI interface.

A. Technical Description

The SPI connects one master and any number of
slaves. The master is the device that controls the transac-
tions and provides the clock signal. There are three signal
lines common to all participants. These are CLOCK,
MOSI and MISO and one line specific to each slave,
SS.
MOSI Master Out, Slave In

This line carries the serial data, the master
sends for the slave to receive with the most
significant bit first.

MISO Master in, Slave Out
This line carries the slave’s serial data to the
master, again with the most significant bit first.

CLOCKThe synchronisation clock the master sends to
synchronise with a slave. During each clock
cycle, one bit of information is sent by master
and slave each.

SS Slave Select
The master asserts this line for a slave prior to
starting a transaction with it by tieing it to a low
level. For all other slaves, this line has to be at a
logical high level, therefore deasserted. A slave,
whose slave select is active will configure it’s
MOSI pin as input and MISO pin as output.
All other slaves must disconnect themselves
from the bus. This means, these slaves must
not effect any changes on the bus lines and not
be affected by the ongoing transaction.

The basic part of an SPI device is a shift register with
an additional parallel access tap to write and read data.
The MOSI line is connected to the shift out of the masters

Fig. 1. A simple connection between a master and one slave.[3]

Fig. 2. An example timing diagram showcasing clock phase and
polarity.[2]

shift register and to the shift in of the selected slaves
shift register, and vice versa for the MISO line. The SS
will determine which slaves connects it’s shift register
to the bus. CLOCK controls the shifting. Depending on
the settings for clock polarity and clock phase, 4 modes
are possible, which differ in when data is applied on the
bus lines, and when it is sampled according to the clock
cycle. See figure 1 for details on the connections and
figure 2 for details on the clock signal.

B. Alternative Bus Topologies

There are a number of possible alternations of the SPI
connection:

Star All MOSI pins are tied together, all CLOCK pins
are tied together and all MISO pins are tied
together. The master controls the SS line of
each slave. This is the most typical topology.

Serial A master is connected to a number of slaves
which are daisy chained. All SS pins can be
tied together, or all the slaves SS pins can be
set to a low level.

Star topology: To address a slave and start a trans-
action, the master only has to pull that slave’s SS line
low and start sending. After the frame is transmitted,
master and slaves have exchanged the contents of their
shift registers.

Serial topology: The master’s MOSI pin is con-
nected to the first slaves MOSI pin, the first slaves MISO

pin is connected to the second slaves MOSI pin, whose
MISO pin is connected to the third’s MOSI pin and so on
up to the last slave, whose MISO pin is connected to the
master’s MISO pin. The data sent over the bus will have
to contain some address information and slaves which
are not addressed by a data packet will have to pass it on
through their MISO pin in the next frame. So, to address
the n-th slave, the master will have to send a data packet
for the n-th slave, and then n-1 more packets. During the
transmission time of the n-1 packets, the data is passed
on to the n-th slave. Then, to receive the response from
the n-th slave, the master will have to continue sending
until the response is passed through the remaining slaves.
E.g. if there are a total of N slaves, the master will have
to send N-n more packets.

Despite the obvious drawbacks, this topology provides
two distinctive advantages over star topology:

1) The master does not need to control all the pos-
sibly quite many SS lines individually, therefore
saving pins in i/o-pin restrained environments.

2) If there are only two devices whose SS pins
are tied together, a multi-master communication
becomes possible, because a master, whose SS
pin is pulled low, must switch to slave mode if
supported.

III. INTER-INTEGRATED CIRCUIT

The Inter-Integrated Circuit bus is a simple “snap-in”
architecture developed by Philips, though some other
companies use the name TWI for Two Wire Interface
to avoid trademark conflicts pertaining to I2C [9][10].
Devices can be added to or removed from the bus without
the need to change anything else. The bus consists of just
two wires and a pair of external pull-up resistors. The
bus is designed for multi-master operation with collision
detection being an integral part of the protocol. As with
SPI, there are numerous devices of all kinds offering
an I2C interface. On top of this, a number of other bus
systems are compatible with devices prepared to operate
in either system. Such bus systems include the System
Management Bus (SMBus)[7] found in modern personal
computers, Power Management Bus (PMbus)[7] and
CBUS as stated in the I2C standard [6]. Figure 4 shows
a (complex) setup of an I2C system. For a simpler setup,
consider only the rightmost part of the figure with the
two F/S-mode devices, SDA and SCL lines, their pull-
ups and VDD2.

A. Technical Description

The I2C bus connects a number of devices, of which
any can become master to begin a transaction. Because

2

I2C is a half-duplex bus, meaning only one device can
send data at a time, there are not only the roles of
master, which will iniate a transaction, and slave, which
has to respond to it, but also transmitter and receiver.
A transmitter is the device sending data, a receiver
receives it. All four combinations of master/slave and
transmitter/receiver are possible. The two signal lines
are called SDA and SCL. Each device should have an
open-drain connection to those lines, as these, together
with their pull-up resistors perform a wired-AND. The
function of those lines is as follows:
SCL Serial Clock Line

The master applies it’s clock to this line to
synchronise with a slave. The slave can pull
this line low to stretch the clock.

SDA Serial Data Line
This line carries the data between master and
slave and is used for handshaking.

A transaction involves a device becoming master,
addressing a slave, setting the read/write bit, receiving or
sending some data and ending the transaction. A device
receiving data may use so called CLOCK STRETCHING
to slow down the transmitter.

Becoming master of the bus: In order to become
master, the bus has to be free, then a device can issue
a START condition to the bus. This means creating a
negative-going edge on the bus.

Sending an address or data: During a transaction,
the transmitter will put it’s data onto the bus during
the low part of the clock cycle, the receiver will latch
this data during the high phase of the clock cycle. After
eight bits, the transmitter will leave the SDA line floating
and the receiver has to pull it low to acknowledge the
reception. If there was an acknowledge, the transmitter
will sent the next byte of data, if the receiver fails
to pull the data line low, this means there was a not-
acknowledge (NACK) and the master will issue either a
STOP condition, meaning a positive-going edge, become
a slave again and free up the bus or issue a repeated
START condition and start another transaction. See fig-
ure 3 for an example.

CLOCK STRETCHING: If a slave cannot handle
the transmission speed, it may slow down the transmis-
sion by prolonging the low phase of the SCL line. The
master will notice that the clock line did not rise to a high
level when it turned of it’s transistor pulling the line low,
and will wait until the receiver releases the line before
starting the next clock cycle and latching the next bit of
data as receiver, or applying the next bit of data upon
the bus as transmitter. Therefore CLOCK STRETCHING
enables devices of different speed grades to communicate
with each other at the highest speed supported by both

devices, but also allows a receiver which is “distracted”,
e.g. because it is serving an interrupt for a short time, to
suspend a transaction. However, if a receiver is not able
to accept new data, because a buffer is full, or some time-
consuming calculations have to be done, it should NACK
the reception of a byte of data, to tell the transmitter to
abort the transaction and free the bus.

B. Collision Detection and bus arbitration

Collision detection and arbitration is implemented
using the wired-AND functionality of the bus. Devices
operating as masters have to probe the SDA line while
transmitting. If two devices try to become master of the
bus, both will issue a start condition and then begin to
drive the clock line and send the address of the slave
they want to access followed by the read/write bit and
possibly their own data in case of a write. While both
masters send exactly the same bit sequence, both will
be masters. However, if one master sends a “1” while
the other sends a “0”, the master sending the “1” will
recognise that the data line is also driven by another
master (because the data line is at a logic low due to the
wired-AND) therefore lose the arbitration and silently
become a slave for the rest of the transaction. Data
integrity is ensured because the losing master became
a slave before any race condition could occur.

C. 10-bit Addressing

The original specification of I2C had 7 bits of address
information and one bit specifying whether a read or
write was to be performed. This was to be the first byte
sent. With 16 addresses reserved for various reasons
listed in figure I, this left a total of 112 distinguishable
addresses. When I2C gained popular acceptance, a need
for further addresses arose, and thus 10-bit addressing
was introduced. While there will seldom be that many
devices on one bus, address clashes can occur with just a
few devices, because the addresses are hardcoded, even
though some devices allow programing one or two bits
by tying pins to ground or Vcc. Figure 5 shows the pattern
of 10-bit addressing.

To retain downward compatibility, 10-bit addressing
uses a concatenation of 11110 + the first 2 bits of the
10-bit address + the R/W-bit as the first transmitted byte,
with the remaining 8 bits of the address being the second
transmitted byte. 11110XX were reserved addresses, to
which no device was allowed to respond. A device which
utilises 10-bit addressing will acknowledge the reception
of the first byte, if the first two bits of the match. If
later on, the rest of the address matches, too, it will
acknowledge the second byte as well and be addressed,

3

Fig. 3. An example of an I2C read access.

Fig. 4. Mixing High-Speed and Full-Speed/Standard-Speed I2C devices.[5]

Fig. 5. Structure of a transaction with 10-bit addressing.
Adapted from [6]

else it will not acknowledge the second byte and retreat
from the transaction.

D. Higher Communication Speeds
In Standard-Mode, communication at up to 100 kbit/s

is possible, Fast-Mode provides 400 kbit/s and Fast-
Mode Plus allows up to 1 Mbit/s. To achieve this increase
in speed, some timing restraints were loosened and for
the Fast-Mode Plus, the drive strength of the devices
was increases up to tenfold, but the protocol remained
unchanged except for the increased speed.

The next speed step is at 3.4 Mbit/s and is called High-
Speed Mode. This mode is not backwards compatible,
the changes include:

TABLE I
RESERVED I2C ADDRESSES.[6]

Address R/W-Bit Description

0000 000 0 general call address
0000 000 1 START byte
0000 001 X CBUS address
0000 010 X reserved for different bus format
0000 011 X reserved for future purposes
0000 1XX X Hs-mode master code
1111 1XX 1 device ID
1111 0XX X 10-bit slave addressing

− A pull-up current source for the signal lines in each
master to reduce the signal rise time.

− Spike suppression and schmitt triggers have been
added to the inputs.

− Clock stretching may only occur after the ACK bit,
during a transfer, the slaves may not interfere with
the clock signal.

4

Fig. 6. Block diagram of the I2C test setup.

− To initiate a High-Speed Mode transaction, the
master will first have to transmit a master code
while operating in Fast-Mode. This code, which
is 0000 1XX, will tell the other devices that the
master would like to start a High-Speed-Mode
transfer.

− No bus arbitration is possible while in High-Speed-
Mode. Arbitration happens exclusivly during the
Fast-Mode-transmission of the master code, whose
last three digits can be chosen by the system
designer. This way, up to 7 high-speed masters can
operate on the bus and complete arbitration within
the transmission of the first byte.

To increase the speed even further, there is an Ultra-
Fast-Mode with up to 5 Mbit/s. Although the bus pro-
tocol remains the same as with the other modes, only
unidirectional communication is supported, and Ultra-
Fast-Mode devices use push-pull output stages, making
them incompatible with other I2C-standards.

IV. RECORDING I2C

As a practical example, an I2C transaction was mea-
sured with an oscilloscope. For this, a test board with
a temperature sensor was attached to a raspberry pi
running a fresh install of the Raspbian Linux distribution.
On this board, a bus multiplexer is attached between
the raspberry pi and the sensor. See figure 6 for a
connection scheme. To use the I2C bus, the appropriate
kernel modules (i2c-bcm2708 and i2c-dev) need
to be started and the package i2c-tools needs to be
installed. Then, the following session was started, and
the last transfer was recorded with an oscilloscope.
Tell the multiplexer to connect the
correct bus to the pi.

pi@raspberrypi ˜ $ i2cset 1 73 3 64
WARNING! This program can confuse your
I2C bus, cause data loss and worse!
I will write to device file
/dev/i2c-1, chip address 0x49, data
address 0x03, data 0x40, mode byte.
Continue? [Y/n] y
Read the temperature sensor.
pi@raspberrypi ˜ $ i2cget -y 1 76 0
0x1b
A thumb was placed on the sensor
to warm it up a little
pi2@raspberrypi ˜ $ i2cget -y 1 76 0
0x1d

Figure 7 shows the merged screenshots from the
oscilloscope, annotated with the bus actions. The read
transfer is broken down into two consecutive parts: First,
the master writes the address it wants to read to the
slave, which will then, after a repeated start and a read
command, write the desired data on the bus.

V. COMPARISON OF SPI AND I2C
Please refer to figure 8 for an illustration of the com-

parison. To compare things, categories of comparison are
needed. There are the six categories considered in this
comparison:

Speed: When it comes to speed, SPI is a clear
winner with some devices communicating at up to 60
Mbit/s.

Simplicity of use: To communicate with a device
attached to the I2C bus, only it’s address is needed. For
SPI, the maximum clock speed, polarity and phase of
the clock signal need to be known. So, in this category,
I2C is a winner.

Simplicity at chip-level: I2C requires a compara-
tively complex logic setup for bus arbitration and clock
stretching. On the other hand, to implement an SPI-
device, not much more than a shift register is needed.

Simplicity at Board Level: I2C and SPI will not
need much space on a PCB, with I2C using 2 wires and
2 resistors and SPI using 3 lines and one more for each
slave. The difference is marginal, but I2C wins in this
category.

Versatility: Both SPI and I2C are used in a great
number of applications. I2C allows easier attachment of
components to the bus, while SPI is easier to compre-
hend and debug. Depending on the point of view, both
buses could win, so this is a draw.

Robustness: Neither of the bus systems implement
error checking or correction at protocol level. Further,
with I2C, the signal lines are only driven by a relatively
weak pull-up resistor during the high phase, making
them more susceptible to noise, while signal lines are
always actively driven with SPI.

5

Fig. 7. An I2C read access measured with an oscilloscope. The upper curve represents the SCL line, the lower curve shows the SDA line.

Speed

Simplicity
of use

Simplicity
at Chip

Simplicity
at Board

Versatility Robustness

Fig. 8. Comparison of the buses. Filled: I2C, Thick line: SPI.

As demonstrated, both bus systems have strengths
and weaknesses. There can be no definite answer telling
which bus is better as both buses were designed for dif-
ferent requirements. SPI is mostly used to transfer data
to and from peripheral devices, I2C is prevalently used
for more configuration centric communication. Systems,
which can tolerate the lower communication speeds
profit by the slightly smaller complexity of I2C, whereas
systems requiring a higher data throughput or which rely
on a guaranteed maximum time until a message has been
sent, will probably prefer SPI.

VI. CONCLUSION

Both I2C and SPI are very mature, while still up-
to-date bus systems for low-speed, low-complexity in-
terconnection of integrated circuits. With their wide
acceptance and when used as intended, both I2C and
SPI are recommendable and reliable bus systems.

REFERENCES

[1] Datasheet of the Motorola MC68HC11A8 microcontroller
describing the SPI bus.
Last downloaded 2014-01-10
http://cache.freescale.com/files/microcontrollers/doc/data sheet/
MC68HC11A8.pdf

[2] Datasheet of the Motorola MC68HCP11A1VP microcontroller
Last downloaded 2014-01-10
http://pdf.datasheetcatalog.com/datasheet/motorola/
MC68HCP11A1VP.pdf

[3] SPI Block Guide V03.06
Last downloaded 2014-01-10
http://www.ee.nmt.edu/∼teare/ee308l/datasheets/S12SPIV3.pdf

[4] Datasheet detailing Microwire
Last downloaded 2014-01-11
http://www.ti.com/lit/an/snoa743/snoa743.pdf

[5] Phillips Semiconductors: The I2C-Bus Specification, 2000
Last downloaded 2014-01-10
http://www.cs.unc.edu/Research/stc/FAQs/Interfaces/
I2C-BusSpec-V2.1.pdf

[6] NXP Semiconductors: UM10204 I2C-bus specification and user
manual
Last downloaded 2014-01-10
http://www.nxp.com/documents/user manual/UM10204.pdf

[7] Homepage for PMBus, detailing it’s connection to I2C
Last visited 2014-01-11
http://pmbus.org/about/pmbusancestry

[8] Specification of SMBus
Last downloaded 2014-01-11
http://smbus.org/specs/smbus20.pdf

[9] Homepage about I2C detailing TWI
Last visited 2014-01-11
http://www.i2c-bus.org/twi-bus

[10] Example of a datasheet using the term “Two Wire Interface”
instead of I2C
Last downloaded 2014-01-11
http://www.atmel.com/Images/2466S.pdf

6

http://cache.freescale.com/files/microcontrollers/doc/data_sheet/MC68HC11A8.pdf
http://cache.freescale.com/files/microcontrollers/doc/data_sheet/MC68HC11A8.pdf
http://pdf.datasheetcatalog.com/datasheet/motorola/MC68HCP11A1VP.pdf
http://pdf.datasheetcatalog.com/datasheet/motorola/MC68HCP11A1VP.pdf
http://www.ee.nmt.edu/~teare/ee308l/datasheets/S12SPIV3.pdf
http://www.ti.com/lit/an/snoa743/snoa743.pdf
http://www.cs.unc.edu/Research/stc/FAQs/Interfaces/I2C-BusSpec-V2.1.pdf
http://www.cs.unc.edu/Research/stc/FAQs/Interfaces/I2C-BusSpec-V2.1.pdf
http://www.nxp.com/documents/user_manual/UM10204.pdf
http://pmbus.org/about/pmbusancestry
http://smbus.org/specs/smbus20.pdf
http://www.i2c-bus.org/twi-bus
http://www.atmel.com/Images/2466S.pdf

	Introduction
	Serial Peripheral Interface
	Technical Description
	Alternative Bus Topologies

	Inter-Integrated Circuit
	Technical Description
	Collision Detection and bus arbitration
	10-bit Addressing
	Higher Communication Speeds

	Recording I2C
	Comparison of SPI and I2C
	Conclusion
	References

