
1

Automata Processor
Tobias Markus

Computer Architecture Group, University of Heidelberg

Abstract—This paper gives a brief overview over non-
deterministic automata and the Automata Processor an archi-
tecture implemented by Micron inside their DDR3 SDRAM
technology to directly map NFA designs. The Automata Processor
can be programmed via Regular Expressions or the Automata
Network Markup Language (ANML) an XML-like language to
describe an automaton. Big data search and analysis are problems
which are a good fit for the Automata Processor.

I. INTRODUCTION

In the past, the performance of traditional CPUs have
increased by frequency scaling. Frequency scaling stopped
because of the heat wall since the power in CMOS devices
increases linear to the frequency P = C ∗ V 2 ∗ f . With the
heat wall in mind, the new goal is to increase performance with
holding the power consumption constant in each generation.

According to Moore’s law, the technology complexity is
doubling regularly. Moore’s law is not a physical law. It is
more an observation, nonetheless industry is following this
trend. This means we are able to use more transistors since
with decreasing gate capacity the power drops. To increase
performance in modern architectures, parallel systems and
concepts are the solution.

Massive parallel systems like GPUs or CPU clusters are
a good fit to work on structured data. But there are some
problem loads like random access, graph problems and pattern
matching which are not fitted for these common architectures.

Some of these difficult problem loads can be directly
mapped into NFAs. The Micron Automata Processor is an
approach in this direction trying to implement a RegEx engine
or rather a NFA engine.

This paper gives an introduction in the Automata Processor.
The paper begins with an introduction in automaton theory in
section 2. In section 3, the basic elements of the Automata
Processor are described. The Automata Processor can be
programmed with regular expressions or with ANML an XML
based language. This two workflows are described in section 4.
In section 5, different application areas are given as examples
and are examined. In the last section, a conclusion with an
evaluation and opinions are given.

II. AUTOMATON THEORY

In general, there are two types of automata. One is the
deterministic finite automaton (DFA) and the other the non-
deterministic finite automaton (NFA). The main difference
between these two is that the DFA can only have one active
transition in each state. There is a transition function. The
NFA does not have this limitation. Each state can have many
transitions to a set of other states. This is realized by a
transition relation and not a transition function.

The NFA has some advantages compared to the DFA.
Complex tasks can often be implemented with less states and
less transitions. In some cases, the number of states of a DFA
can increase exponentially in comparision with an equivialent
NFA.

To examine the NFA further, we need to define a math-
ematical model. The NFA can be described with a 5-tuple
< Q,Σ, δ, q0, F > where Q is the set of automaton states,
Σ is the input alphabet, δ is the transition relation, q0 is the
start state, and F is the set of the final states. The transition
relation depends on the current state q and the input symbol
α δ(q, α), and defines which states can be reached next.

The automaton accepts a word w when each character
results in a new state or a set of states and the last character get
matched with an active final state. The following conditions
must be met for accepting the word w:

• r0 = q0
• ri+1 ∈ δ(ri, ai+1), i = 0, ..., n− 1
• rn ∈ F
All the strings (w) accepted by the automaton (M ) are called

the accepted language (L(M)). We can define L(M) as the set
of w where the intersections of the set of transition relations
and the set of fineal states is not empty.

L(M) = {w | δ∗(q0, w) ∩ F 6= ∅} (1)

Another important definition is the ε-transition. An ε-
transition allows the automaton to do an transition without
consuming an input.

An example of a NFA which accepts binary strings ending
with ”01” with the example input ”00101”:

q0start q1 q2

0,1

0 1

Fig. 1. NFA example detecting binary strings ending with ”01”

• δ∗(q0, 0) = {q0, q1}
• δ∗(q0, 00) = δ(q0, 0)∪ δ(q1, 0) = {q0, q1}∪∅ = {q0, q1}
• δ∗(q0, 001) = δ(q0, 1)∪δ(q1, 1) = {q0}∪{q2} = {q0, q2}
• δ∗(q0, 0010) = δ(q0, 0) ∪ δ(q2, 0) = {q0, q1} ∪ ∅ =
{q0, q1}

• δ∗(q0, 00101) = δ(q0, 1) ∪ δ(q1, 1) = {q0} ∪ {q2} =
{q0, q2}

In this example the current state set for each new input
character is calculated incrementally, with the knowledge of
the states activated in the step before. The transition relation
can be directly taken from the graph.



2

More detailed information about automaton theory can be
found in [2], [1] and [3].

III. IMPLEMENTATION

The Micron Automata Processor (AP) is implemented in
Microns standard DDR3 SDRAM memory array technology.
The AP is capable of processing 8 bit input symbols at a
rate of 1Gbps. The row address is used as the input symbol
for the AP and with that given to the memory array. The
AP than invokes operations with its State Transition Elements
(STE) and the routing matrix, see figure 2. This architecture
can directly implement an NFA in a parallel manner. In this
section, each element in the architecture will be explained in
detail. Most informations from this section are taken from [8]
and [9].

Fig. 2. Automata Processor Memory Array

A. State Transition Element

The State Transition Element (STE) is the basic element
of the AP. It consists of a state memory which gets the
input symbol as row address. The state memory contains the
matching character class and the state transitions logic to
determine when the state is active and when an output is given.

The state memory is basically a look up table which is
programmed to recognize a character or a character class. As
mentioned before, the input signal addresses the 256 Bits of
state memory. The one bit output indicates if a match happened
and is forwarded to the STE logic. This concept allows it
to do every match on a single character with only one STE
independent from complexity. For example to match with the
character ”a” which is 0x61, we have to set the memory bit
at address 0x61 to one and every other memory bit to zero.
The other case is that we want to match a character class. In
this case, we have to set every matching case to one and every
other case to zero. The matching characters are for example
”0”-”9” (0x30 - 0x39). The memory bits from address 0x30
to address 0x39 have to be set to one and every other memory
bit to zero.

The additional logic contains the state bit which indicates
whether the state is active ”1” or inactive ”0”. There are

Fig. 3. State Transition Element

16 state enable inputs coming from other STEs which are
forwarded to a logical OR. The output of the OR determines
if the state bit is set or reset. The state output is set when the
state bit is set and the output of the state memory is one. An
important feature is that every state bit can be preloaded. This
allows every state to be a start state. Multiple start states allow
the implemention of multiple independent automata inside the
AP. But it also allows the implemention of ε-NFAs since with
multiple start states we are capable of rewriting them to a
normal NFA. See the example in figure 4. Here the ε-transition
activates the state q1 before any input is consumed. When there
is an ”a” as input character q1 and q0 get activated again. This
can be rewritten to an NFA with two start states an slightly
other transitions.

B. Counter

The counter element in the AP is a 12 bit counter. A count
enable signal lets the counter count up by one when it is
asserted. If the counter equals the target value, an output is
set. The counter has some additional features. Up to four
counters can be cascaded, a synchronous reset function and
the ability to choose different row signal inputs for count or
reset functions.

The counter element can simplify the automaton. Typical
use cases are if subexpressions need to be counted or for
regular expressions with other quantifications. Counters in
automata offer the abilities to implement a subset of pushdown
automata. Furthermore, it is possible to implement Turing
machines.



3

q0start

q1

q2

ε

b
a a,b

a

q0start

q1start

q2
b

a

a

a,b

a

Fig. 4. ε-NFA conversion to NFA

One practical example for the utilization of counters is the
use as an one shot timer to run through a circled NFA only
once.

C. Boolean Element

The boolean element is a combinatorial element which can
be programmed as OR, AND, NAND, NOR, sum of products
or product of sums. They have no state in contrast to counter
elements or STEs. Like counter elements this elements are also
used to simplify the designs. To implement the evaluation at
the end of data, boolean elements can be used. These are often
used in regular expressions (rigth-anchored expressions).

This feature allows the AP to implement functions beyond
the formal definition of an NFA.

D. Routing Matrix

To implement an NFA, there must be programmable connec-
tions between the programmable operations of the STEs. This
is implemented as a programmable routing matrix connecting
the Elements within the AP. The routing matrix consists
of programmable switches, buffers, routing lines and cross
point connections. In the formal NFA model, the state can
be connected to each other element. Due to the performance
issues regarding clock speed, power, and propagation delay, a
trade-off is made.

The routing matrix is implemented hierarchically. Various
AP elements are grouped to a row and rows then are grouped
into blocks. The blocks are implemented in a grid of block
rows and block columns, see figure 5.

A signal can be routed from any given point to several other
points of the nearby hierarchy.

E. Reconfigurability and Inter Rank Bus

The AP is a programmable device. The operations of the
element arrays and their connections can be programmed. An-
other feature of the AP is that it is partially reconfigurable. The
operation of the elements can be reprogrammed at runtime. To
reprogramm the connections between the elements, a place and
route step has to be done. But it is possible to load a structure
incrementally inside the AP.

Fig. 5. routing matrix hierarchy

The scalability of the AP is important to work on huge
datasets. To achieve scalability, an inter rank bus is available
which allows input symbols to be distributed over several APs.
This increases the amount of states and the throughput.

IV. PROGRAMMING THE AP
The AP can be configured via Perl Compatible Regular

Expressions (PCRE) or via an XML-based language called
the Automata Network Markup Language (ANML).
include <ap_compile.h>

ap_automaton_t CreateAutomaton(void)
{

ap_automaton_t amton;
ap_exprdb_t db;

// Create an expression database
db = AP_CreateExpressionDB();

// Add an expression with PCRE delimiters
// and set the i PCRE modifier (caseless).
// The expression identifier is set to 1
AP_AddExpression(db, NULL, "/a(b|c)*[de]/i", 1,

0, AP_GRAMMAR_PCRE_DELIMITED);

// Add an expression without PCRE delimiters
// and set to caseless matching
// The expression identifier is set to 1
AP_AddExpression(db, NULL, "x.*yz", 1,

AP_MOD_CASELESS, AP_GRAMMAR_PCRE);

// Compile the expression database
// into a automaton
AP_Compile(db, &amton, 0, NULL, 0,

DEVICE_FAMILY_FRIO);

// Clean up
AP_DestroyExpressionDB(db);

return amton;
}

Listing 1. PCRE implementation and compelition as Automata



4

ANML is developed by Micron to describe automata. In this
section, both variants are introduced. Micron offers an AP
SDK in which both tools for compiling regular expressions and
tools to create and compile ANML descriptions into automaton
are available. The SDK for example offers C libraries for
compiling regular expressions and ANML or even for creating
ANML from C. The SDK also includes the AP Workbench,
a development environment to visually create NFAs, compile
and simulate them. For this section more detailed information
can be found in the SDK User Guide [5] and the ANML User
Guide [4]

A. Definition by Regular Expressions

Perl Compatible Regular Expressions (PCRE) are compat-
ible to the AP. Because not every expression can be directly
implemented as an NFA, software post-processing is needed
for some constructs. Even with the counter and boolean
elements, there are some restrictions on how to implement this
constructs in order to assure hardware performance. Regular
expressions can be defined within a C/C++ description of
the automaton. Listing 1 shows an example that implements
the regular expressions /a(b—c)*[de]/i and /x.*yz/i. And then
compiles it into an automaton with AP Compile.

B. Definition by ANML

Fig. 6. Example automata in the AP Workbench simulation

With ANML an XML-based language, it is possible to
directly describe and implement automaton structures inside
the AP hardware. A possible workflow is to write the automa-
ton design directly in ANML then read it into a C program
in which we compile the automaton using the in the SDK
provided libraries. But there are other ways to implement an
atomaton using ANML. The libraries provided by the SDK
offer the possibility to implement an atomaton within the C
code and than generate an ANML out of it.

The other way to develop an ANML automaton is to
use the AP Workbench to implement the NFA graphically.
The AP Workbench then generates automatically the ANML
representation of the graph and can also compile and simulate
the design. A detailed documentation of the AP Workbench
can be found at [6].

Figure 6 shows an example of an NFA which matches the
string ”Tobi” either with uppercase or lowercase ”T” and with

Fig. 7. Example rule to detect buffer overflows in Apache webservers

”i” or ”y” at the end within the AP Workbench. The automaton
is graphically implemented with the Automata Workbench.
The first state is matched when there is an uppercase or
lowercase ”T” and gets every input symbol as indicated by
the infinity symbol in the upper left. The next states detect
”o”, then ”b” and the last symbol detects an ”i” or a ”y” and
reports when it is active as indicated by the R in the lower
right corner. After the implementation step, the automaton
is compiled and than simulated with the stimuli seen in the
figure. The simulation tools offer to step through the stimuli
and visually see how the automaton behaves. A green state
means an active state that has a match, a red state means it
is active but does not match the current input, a gray state is
inactive and blue means the state is reporting.

V. APPLICATIONS

The APs applications are mainly in the fields of big data
research and analysis. The main areas for the AP are Bioin-
formatics, Network Security, Sigint and Crypto and Finance
applications. In this section, we will introduce the fields
Network Security and Bioinformatics and examine which task
could be efficiently solved with the AP. Informations about
every application field can be found in [7].



5

A. Network Security

The AP is a perfect match for signature-based detection
systems which can examine for example network packets for
known malware patterns. This method is effective against
known malware. An easy approach from the attacker side
is to modify or encrypt parts of their code to hide from
simple signature-based detection. To detect this modified vari-
ants, generic signatures are used. This generic signatures are
checking for many variations in known malware patterns. With
wild carded regular expressions, even malware with extra,
rearranged and partially encrypted data can be detected. The
compute load for this many variants is higher than simple
pattern matching and network speeds are increasing. The main
advantage of the AP for this application is that it can handle
complex regular expressions at high bandwidth throughput.
Allowing to even try matching possible obfuscated portions
themselves.

There were several rulesets taken and simulated for the AP.
One specific rule was taken from SNORT and the PCRE was
converted to an automaton and simulated. This specific rule
shown in figure 7 is used to capture buffer overflow attacks
against Apache webservers.

B. Bioinformatics

There are several Bioinformatic calculations and problems
in which the AP fits in. Sequencing of DNA is one of this
problem fields. Modern sequencing needs a reassemble step
where overlapping sequences have to be matched. Finding
patterns in the DNA is an ideal task for the AP. Figure 8
depicts a modern sequencing workflow.

Fig. 8. DNA sequencing workflow

Another task in Bioinformatics is the search for motifs
which are sequences across multiple DNA or protein se-
quences. Motifs give biological informations of the given
sequence. Discovering motifs helps in finding variants and
cause of genetic diseases, identifying elements in a sequence
and their function and in helping to suggest therapeutic drug
targets.

In the example shown in figure 9 we want to find the motif
of N-Glycosylation, an attachment of the sugar molecule. The

pattern matching rule for the motif is NˆP[ST]ˆP. For this, we
need 4 states. We first match the ”N” than not ”P” then we
match ”S” or ”T” and in the last state not ”P” again. The last
state also reports that the motif was found.

Fig. 9. Automata to match Motif pattern of N-Glycosylation

VI. CONCLUSION

The Automata Processor is an interesting new architecture
which offers a very efficient solution for pattern matching
and NFA tasks. A huge problem is that the applications
for the Atomata Processor are very specialized, for example
in Bioinformatics, network security and finance. For other
fields, the Automata Processor does often not offer a complete
solution but might accelerate post processing steps or subtasks.
On the other hand, it is difficult to estimate which problems
fit into the AP. The counters and boolean elements allow the
implemention of complex NFA like systems.

The possibility to have a defined description language for
automaton like ANML is practical but due to its complexity
it is not a format for designing. Despite that it is a good
format for interfacing between programs. It could be that most
automata will be created from the graphical interface of AP
Workbench. It has to be shown that the graphical creation of
complex automaton is feasible but there is also the possibility
to create ANML out of C or Python code with the libraries
offered in the SDK .

The logic for the Automata Processor is implemented into
SDRAM technology. The advantage of this is that the process
is cheap and a process which is well understood by Micron.
So for them, it is a good solution. The disadvantage of
implementing the logic inside the SDRAM process is that there
are only few routing layers available. Another way would be
to implement SDRAM into a normal ASIC. The advantage is
that there are a lot of routing layers available and with this a
better routing matrix would be possible. The disadvantage of
implementing SDRAM into a normal ASIC process is that the
SDRAM needs more space and it is not as cheap in production.

All in all, the use of a non von Neumann processor which
can directly implement NFAs will fit good into the current
accelerators for high performance computing but it may only
be a solution for very specialized fields. The other question
is whether the first implementation from Micron will be a
good one. And what the comprehension with modern FPGA
solutions will be.



6

REFERENCES

[1] Andrew Tolmach Andrew P.Black. Nondeterministic finite state automata.
CS311 Computational Structures, 2003.

[2] Mirian Halfeld-Ferrari. Finite automata. Automata Theory, Languages
and Computation, 2003.

[3] Wing-Kai Hon. Lecture 4: Automata theory 2. CS5371 Theory of
Computation, 2007.

[4] Micron. Anml documentation. http://www.micronautomata.com/
documentation/anml documentation.

[5] Micron. Ap sdk user manual. http://www.micronautomata.com/
documentation/ap sdk/index.html.

[6] Micron. Ap workbench manual. http://www.micronautomata.com/
documentation/ap workbench documentation.

[7] Micron. Automata applications. http://www.micronautomata.com/#applications.
[8] Paul Glendenning Michael Leventhal Harold Noyes Paul Dlugosch,

Dave Brown. An efficient and scalable semiconductor architecture for
parallel automata processing. IEEE TRANSACTIONS ON PARALLEL
AND DISTRIBUTED SYSTEMS, 25:11, 2014.

[9] Paul Glendenning Michael Leventhal Harold Noyes Paul Dlugosch,
Dave Brown. Supplementary material for an efficient and scalable
semicosemicon architectur for parallel automata processing. IEEE
TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 25:5,
2014.


