
ADVANCED SEMINAR COMPUTER ENGINEERING, WINTER TERM 2015/2016 1

Energy efficient calculation of simple functions
Abdulhamid Han

Abstract—Energy efficiency depends also from the algorithm.
For example for sorting you can use bubble sort or quick sort
but the complexity of the two algorithm varies enormously. The
complexity of the bubble sort is O(n2) and the complexity of the
quick sort is O(n · log(n)). For n = 106 the relative deviation is
about 105. It means one need for the same result more calculation
steps and so more power.

Index Terms—Fast inverse square root, Median without sort-
ing, Bit counting

I. INTRODUCTION

TO accelerate the calculation time one needs efficient
algorithms which do the same work in a shorter time with

an acceptable accuracy. In this paper I will introduce energy
efficient algorithms to get the inverse square root, median and
the bit counting faster.

March 20, 2016

II. FAST INVERSE SQUARE ROOT [1]

In video games the inverse square root is necessary for
lighting and reflection calculations. The inverse square root in
this case is used to normalization of vectors. Often the speed
is more importantly than the accuracy. So that one is satisfied
with an accuracy of 1%. The main idea of this algorithm
is to calculate approximately the inverse square root in one
calculation step.

Fig. 1. Relative error of inverse square root as a function of the argument x for two different magic numbers 0x5f3759df and 0x5f34ff59 calculated with Code 1
without newton’s method

Consider a floating point number y like in IEEE 754 Single
precision format which is introduced in Appendix B and call
it i. One can calculate the inverse square root approximately
with equation 1.

i = 0x5f3759df − (i >> 1) (1)

Note that equation 1 should be calculated bitwise. Let’s
call 0x5f3759df the magic number. In figure 1 one can see
the relative error in % (blue line). One can see also that the
maximum relative error is below 4 %. To get a more accurate
result one can use Newton’s Method. If the initial guess is
very close to the zero so the newton step will provide a more
accurate solution. Together with the approximately value one
can get a better result. To get a more accurate solution one
can do more newton steps.

A. Newton’s method

An appropriate formula to calculate the inverse square root
is

f(y) =
1

y2
− x (2)

By inserting this formula in Newton’s method (equation 3)
one gets equation 4.

yn+1 = yn −
f(yn)

f ′(yn)
n ≥ 0 (3)

yn+1 =
1

2
yn(3− xy2n) (4)

ADVANCED SEMINAR COMPUTER ENGINEERING, WINTER TERM 2015/2016 2

With Code 1 one can calculate the inverse square root faster
with a maximum relative error < 1% by using of only shift,
addition, subtraction and multiplication operators.

Code 1. C Code to calculate the inverse square
1 f l o a t InvSqr t (f l o a t number) {
2 long i ;
3 f l o a t x2 , y ;
4 const f l o a t t h r e e h a l f s = 1.5F ;
5 x2 = number ∗ 0.5F ;
6 y = number ;
7 i = ∗ (long ∗) &y ;
8 / / s to re f l o a t i n g−po in t b i t s i n long
9 i = 0x5f3759df − (i >> 1) ;

10 / / i n i t i a l guess f o r Newton ’ s method
11 y = ∗ (f l o a t ∗) & i ;
12 / / conver t new b i t s i n t o f l o a t
13 y = y ∗ (t h r e e h a l f s − (x2 ∗ y ∗ y)) ;
14 / / 1 s t i t e r a t i o n
15 r e t u r n y ;
16 }

With the command in line 8 the number is stored as IEEE
754 single precision format . In the next line one calculates a
initial value with the magic number 0x5f3759df . In the next
step one converts it back in a floating number. In line 14 one
calculates one newton step (see also equation 4).

B. 0x5f3759df

A floating number in IEEE 754 format can be writ-
ten as x = (1 +m) · 2e. Where m is the Mantissa and
e = Exponent− 127. The corresponding integer interpreta-
tion is M+LE. For 32 bit floats L is 1023 and B is 127. By
the following derivation the sign will be omitted.

y = x−
1
2 (5)

log2 y = −1

2
log2 x (6)

log2((1 +my)2
ey) = −1

2
log2((1 +mx)2

ex) (7)

log2(1 +my) + ey = −1

2
[log2(1 +mx) + ex] (8)

log2(1 +m) ≈ m+ σ,m ∈ [0, 1), σ small (9)

→ my + σ + ey = −1

2
(mx + σ + ex) (10)

Integer view:

My

L
+ σ + Ey −B = −1

2
(
Mx

L
+ σ + Ex −B) (11)

My

L
+ Ey = −1

2
(
Mx

L
+ σ + Ex −B) +B − σ

(12)
My

L
+ Ey = −1

2
(
Mx

L
+ Ex) +

3

2
B − 3

2
σ (13)

→My + EyL =
3

2
L(B − σ)− 1

2
(Mx + LEx) (14)

Integer representation:

→ Iy =
3

2
L(B − σ)− 1

2
Ix (15)

It follows:

i = K − (i >> 1) (16)

with a constant K and − 1
2Ix can be calculated with

−(i >> 1). Equation 16 is identical to line 10 in C Code.Now
one have to choose a good value for σ which is introduce in
equation 9. In the original implementation σ is 0.0450465 and
so one get:

3

2
L(B − σ) = 3

2
223(127− 0.0450465) (17)

= 1597463007 (18)
= 0x5f3759df (19)

C. Own magic number

In 9 there are an approximation with a small number σ.
The mantissa is ∈ [0, 1) and with the assumption that all
possible values for m equally distributed so one can say that
with equation 20 the statistical error is 0.

∫ 1

0

[log2(1 + x)− x− σ]dx = 0 (20)

→ σ =

∫ 1

0

[log2(1 + x)− x]dx (21)

σ ≈ 0.057305 (22)

So my own magic number is:

3

2
L(B − σ) = 3

2
223(127− 0.0.057305) (23)

= 1597308761 (24)
= 0x5f34ff59 (25)

In figure 1 one can see the relative errors with this magic
numbers. One can see that the maximum relative error of the
original implementation is slightly better.

D. Magic number for another exponents

Consider the function f(x) = xp

For p = 0.5 (square root) you can use

i = 0x1fbd1df5 + (i >> 1) (26)

There is also a general formula for −1 ≤ p ≤ 1

i = (1− p) · 0x3f7a3bea+ (p · i) (27)

In figure 2 one can see the relative error in % calculated with
equation 27 with p = 1

3 . One can see also that the maximum
relative error is below 3 %.

III. FINDING THE MEDIAN WITHOUT SORTING [2]

One can determine the median for example with sorting.
As the best sorting algorithm has a average complexity of
O(n · log(n)), determine the median with sorting has a com-
plexity of O(n · log(n)). In the following an algorithm to
determine the median with a linear complexity is introduced.

ADVANCED SEMINAR COMPUTER ENGINEERING, WINTER TERM 2015/2016 3

A. A simple algorithm to find the median

A recursive algorithm to find the median is explained in
Algorithm 1. The main idea is to pick an arbitrary pivot
element to partition the input array in 3 sections which contain
elements less, equal and greater than the pivot element. This
recursive algorithm is repeated until the median is choosen
randomly as pivot element or the returned section contains
only one element.

Algorithm 1: A simple algorithm to find the median
Input : Array a0, a1, . . . , an−1 with length n
Output: median am

1 1. If n = 1
2 return a0
3 else
4 2. Choose an arbitrary element x
5 3. Partition the array in three sections
6 a0, . . . , aq−1 with elements less than x
7 aq , . . . , ag−1 with elements equal x
8 ag , . . . , an−1 with elements greater than x
9 4. If k < q

10 return am in first section
11 If k < g
12 return x
13 else
14 return am in third section

The overall complexity depends from the pivot element. In
the best case the partitioned sections are of equal length and
the overall complexity is:

n+
n

3
+
n

9
+ . . . = O(n)

In the worst case the returned section is smaller by 1 for exam-
ple by choosing the minimum or the maximum as pivotelement

Fig. 2. Relative error of inverse cubic root which is calculated with equation 27 for p = 1
3

without newton’s method

and so the overall complexity is:

n+ (n− 1) + (n− 2) + . . . = O(n2)

Therefore the pivot element should choosen carefully.

B. Improved version

The choice of the pivot element in the improved version
(Algorithm 2) is done more carefully.

Algorithm 2: An improved algorithm to find the median
Input : Array a0, a1, . . . , an−1 with length n
Output: median am

1 1. If n < 15
2 sort the array and return ak
3 else
4 2. Partition the array in n

5 sections with 5 elements
and calculate their median

5 3. Calculate recursively the median m’ of this medians
6 4. Partition the array in three sections
7 a0, . . . , aq−1 with elements less than m’
8 aq , . . . , ag−1 with elements equal m’
9 ag , . . . , an−1 with elements greater than m’

10 5. If k < q
11 return am in first section
12 If k < g
13 return m’
14 else
15 return am in third section

If n < 15 this extra effort is not worth it and so the median
can be calculated by sorting. Otherwise a good pivot element is
found by partitioning the array in n

5 sections and calculate their
median for example by sorting. In the next step one calculates
the median of this medians. This value is used as the pivot
element. This is illustrated in the figure 3.

ADVANCED SEMINAR COMPUTER ENGINEERING, WINTER TERM 2015/2016 4

The green circle in the middle represent the median of
medians m’. The numbers in the green box are less than m’
and the numbers in the red box are greater than m’. Therefore
at least 25% of the array is less or greater than m’. One can
also say that maximum 75% of the array is less or greater than
m’. In consequence the returned array was at most 75%size
of the remaining array and so overall complexity is linear.

Fig. 3. n
5

sections with 5 elements with up to 4 additional elements, if n is
not divisible by 5. In the third line the medians of all sections are stored. The
green circle in the middle represent the median of medians m’. The numbers
in the green box are less than m’ and the numbers in the red box are greater
than m’

The complexity of first step is constant. Step 2 to 4 can
also calculated with linear complexity. As explained above
the worst case complexity of last step is

n+
3

4
n+

32

42
n+ . . . = O(n)

Therefore the overall complexity of the improved version is
linear.

In the next two sections implementations will be introduced.

C. Sorting

In the 3rd line of Algortihm 2 one has to determine the
median of n

5 sections with 5 elements with up to 4 additional
elements. This can be done for example with insertion sort
(Code 2) which is well suited for small amounts of data.

Code 2. Insertion sort to determine the median
1 vo id so r t5 (i n t lo , i n t n)
2 {
3 i n t i , j , h , t ;
4 h=n / 5 ;
5 f o r (i = l o +h ; i<l o +n ; i ++)
6 {
7 j = i ;
8 t =a [j] ;
9 whi le (j>=l o +h && a [j−h]> t)

10 {
11 a [j]=a [j−h] ;
12 j = j−h ;
13 }
14 a [j]= t ;
15 }
16 }

D. Partitioning

In the partition algorithm one distinguishes 4 cases. As
in figure 4 first 3 cases are sections which is less(orange) ,
equal(green) and greater(blue) than x. The last one contains
untreated numbers (white).

Fig. 4. In the partition algorithm one distinguishes 4 cases. The first 3 cases
are sections which is less(orange) , equal(green) and greater(blue) than x. The
last one contains untreated numbers (white)

In each iteration one considers an element from the un-
treated section. If this element is greater than x so one have
to increment index i (see also figure 5).

Fig. 5. If the new element is greater than x so one have to increment index i

In case that the new element is equal to x so one has to
exchange the indices g and i and increment g (see also figure
6).

Fig. 6. If the new element is equal x so one have to first exchange the indices
g and i and increment g

If the new element is smaller than x so one have to exchange
the indices g and i and increment g (see also figure 7). In
the next step one have to exchange the indices (g-1) and i and
increment q.

Fig. 7. If the new element is smaller than x so one have to exchange the
indices g and i and increment g. In the next step one have to exchange the
indices (g-1) and i and increment q

In Code 3 one can see the summary of the above explained
steps.

This algorithm returns the indices q and g which seperate
sections which less, equal and greater than x. Further n
represents the length of the array and lo is the start index.

ADVANCED SEMINAR COMPUTER ENGINEERING, WINTER TERM 2015/2016 5

Code 3. Partition algorithm
1

2 Pai r p a r t i t i o n (i n t lo , i n t n , i n t x)
3 {
4 i n t q= lo , g= lo , i , y ;
5 f o r (i = l o ; i<l o +n ; i ++)
6 {
7 y=a [i] ;
8 i f (y<=x)
9 {

10 exchange (i , g ++) ;
11 i f (y<x)
12 exchange (g−1, q ++) ;
13 }
14 }
15 r e t u r n new Pa i r (q , g) ; }

IV. BIT COUNTING [3]
In the following several algorithms to bit counting are

introduced.

A. Simple solution

A simple algorithm in Code 4 checks in each step the
last significant bit and increments a counter if the bit at this
position is 1. By shifting v in line 4 one can compare all bits
in 32 steps.

Code 4. Simple solution
1 unsigned i n t c = 0 ;

/ / counter
2 f o r (unsigned i n t i b i t = 0 ; i b i t < 32; i b i t ++) {

/ / 32 loops !
3 c += v & 1;

/ / check LSB and increase c
i f v & 1 i s t r ue

4 v >>= 1; }
/ / s h i f t v

B. First improvement

In the first improvement one introduces a mask with an
initial value of 0x1. In each step one pushes the mask to the
left and increases the counter if at this position is a 1. By
introducing the mask one saves one instruction per loop.

Fig. 8. In this figure one can see CPU cycles for some processors. The first diagram shows the result of the elegant method (countBits).
Second diagram shows the average result of the third improvement (countBitsLoop). There are also result for 0, 16 and 32 set bits.
The last diagram shows the result for the simple algorithm which is also constant

Code 5. First improvement
1 unsigned i n t c = 0 ;
2 f o r (unsigned i n t mask = 0x1 ; mask ; mask<<=1) {

/ / 32 loops ! Repeat u n t i l mask == 0
3 i f (v & mask) c++; }

Both algorithms always need 32 loops independent of the
input vector always 32 loops.

C. Second improvement

In the second improvement one pushes the input vector v
to the right until v 6= 0 and increments the counter if there is
a 1 in the most significant bit. The algorithm stops when the
highest set bit has been found.

Code 6. Second improvement
1 unsigned i n t c ;
2 f o r (c = 0 ; v ; v >>= 1) {

/ / s h i f t wh i le v !=0
3 c+= v & 1; }

/ / increase counter

The disadvantage of this algorithm is that one needs as many
loops as the highest set bit. For example if v=0x1 one needs
one loop but for v=0x80000000 one needs 32 loops.

D. Third improvement

In the third improvement one compares v and (v-1).

v = . . . xyz10 . . . 0 (28)
v − 1 = . . . xyz01 . . . 1 (29)

→ v&(v − 1) = . . . xyz00 . . . 0 (30)

In equation 28 one can see the last set bit. By calculating
v&(v− 1) this bit gets eliminated. The position of the 1 isn’t
important.

Code 7. Third improvement
1 unsigned i n t c ;
2 f o r (c = 0 ; v ; c++) { / / repeat u n t i l v == 0
3 v &= v − 1; } / / de le te lowest set b i t

ADVANCED SEMINAR COMPUTER ENGINEERING, WINTER TERM 2015/2016 6

This algorithm needs as many loops as the number of ones.

E. An elegant method

It’s possible to count bits in a constant time. Consider 32
bits as 16 times 2 bits ab. Now define c as number of ones in
ab.

a b c ab-0a
0 0 00 00
0 1 01 01
1 0 01 01
1 1 10 10

It’s possible to the number of set bits in the pattern ab
as ab − 0a. The corresponding code is v = v − ((v >>
1)&0x55555555).
Now one sum up two neighboring 2 bits to a 4 bit. There is
no carry because the maximum possible number is 4 and there
are 4 bits to store them. First one masks the right 2 bits with
v&0x33333333. After that one pushes the left one to the right
and masks again the right 2 bits. This calculation can be done
with (v&0x33333333) + ((v >> 2)&0x33333333).
Similarly to the last calculation one sums up 2 neighbor 4 bits
to 8 bit with (v + (v >> 4))&0x0F0F0F0F .
Now one has to sum up this 4 times 8 bits which we call
A,B,C and D. By calculation of v · 0x01010101 one gets
D000+CD00+BCD0+ABCD. As you can see the required
sum is stored in the first 8 bit and there is still no carry. To
get the result one has to calculate (v · 0x01010101) >> 24.
This result provides the set bits. Code 8 contains the summary
of the above introduced codes.

Code 8. An elegant method
1 v = v − ((v >> 1) & 0x55555555) ;

/ / count b i t s i n two groups
2 v = (v & 0x33333333) + ((v >> 2) & 0x33333333) ;

/ / Add 2 groups−> 4 groups
3 v = (v + (v >> 4)) ;

/ / Add 4 groups−> 8 groups
4 v &= 0x0F0F0F0F ; / / de le te useless b i t s
5 c = (v \cdot 0x01010101) >> 24;

/ / Add the 4 8 groups

In figure 8 one can see CPU cycles for some processors.
The first diagram shows the result of the elegant method
(countBits). As one can see the result is independent of the
input vector. Second diagram shows the average result of the
third improvement (countBitsLoop). There are also result for
0, 16 and 32 set bits. As you can see the third improvement is
the fast one for 0 set bits. But on average the elegant method
is the best algorithm. The last diagram shows the result for
the simple algorithm which is also constant.

V. CONCLUSION

In this paper i introduced methods to get the inverse square
root, median and the bit counting faster. Inverse sqaure root
can be calculated 4 times faster with an accuracy of < 1%.
In addition there is a method to get the median with linear
complexity. Finally i show methods to do bit counting faster.
There is also an elegant which do this calculation in a constant
time independent of the input vector.

APPENDIX A
NEWTON’S METHOD

Newton’s method is used to get a zero of a function. This
algorithm needs an initial value. This value is used to create
a tangent at this point. In the next iteration one calculates the
zero of the tangent and at this point one creates again a tangent
and so on. This algorithm will end if the zero of the tangent
is close enough to the zero of the function. The convergence
of this algorithm depends also from the initial value. Newton
step can be calculated with the equation 31.

yn+1 = yn −
f(yn)

f ′(yn)
, n ≥ 0 (31)

Fig. 9. Newton’s Method [4]

APPENDIX B
IEEE 754 SINGLE PRECISION FORMAT

Single precision floating numbers are stored as 32 bit
numbers

Fig. 10. IEEE 754 single precision format

The stored number is

x = (−1)sign · (1.Mantissa) · 2Exponent−127 (32)

REFERENCES

[1] http://h14s.p5r.org/2012/09/0x5f3759df.html
[2] http://www.iti.fh-flensburg.de/lang/algorithmen/sortieren/median.htm
[3] http://wiki.kip.uni-heidelberg.de/ti/Informatik-

Vorkurs/index.php/TippsAndTricks
[4] http://tutorial.math.lamar.edu/Classes/CalcI/NewtonsMethod files/image001.gif

	Introduction
	Fast inverse square root magicnumberherleitung
	Newton's method
	0x5f3759df
	Own magic number
	Magic number for another exponents

	Finding the median without sorting bibmedian
	A simple algorithm to find the median
	Improved version
	Sorting
	Partitioning

	Bit counting bibbitcouting
	Simple solution
	First improvement
	Second improvement
	Third improvement
	An elegant method

	Conclusion
	Appendix A: Newton's method
	Appendix B: IEEE 754 single precision format
	References

