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Abstract—In the paper MOUSETRAP by M. Singh and S. M.
Nowick in 2001 the authors stated that the MOUSETRAP has
developed and in this paper information was given about
MOUSETRAP, which has the highest throughput and lowest
energy consumption. Initial pre-layout HSPICE simulations of a
10 stage FIFO on a 16 bit wide data path indicate throughput of
3.51 GHz in 250 nm TSMC CMOS, using a conservative process.
In the next step, Post-layout SPICE simulations of a ten-stage
pipeline with a 4 bit and 16 bit wide data path indicate throughputs
of 2.1-2.4 GHz in an 180 nm TSMC CMOS process. In this study
there is a research about asynchronous pipeline logic
MOUSETRAP. Some sentences which describe this subject well
cite in different references.
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I. INTRODUCTION

MOUSETRAP [1] was introduced in 2007 for high speed
applications. This application proposed MOUSETRAP as a
latch-based implementation for two phase handshake protocols.
These latches are similar to the D latches.

Asynchronous circuits have some opportunity like high
performance, low power, improved noise and electromagnetic
compatibility (EMC) properties, and a natural match with
heterogeneous system timing than synchronous circuits [2].
Asynchronous circuits have a natural elasticity, therefore the
size of data and speed of external interfaces can vary
dynamically. This system can be facilitating modular and
reusable design. According to the results asynchronous pipelines
have very high throughput. Besides, asynchronous pipelines
consume less energy than synchronous pipelines.

In a new asynchronous pipeline which is MOUSETRAP
pipeline the data path uses standard small and fast transparent
latches. The asynchronous control consist of a single gate per
pipeline stage for a basic linear pipeline. Per pipeline stages
relate only with immediate neighbour pipeline stages. The
timing constraints are all local, simple and one-sided [1].

There are various stages of general FIFO MOUSETRAP.
With Clocked CMOS dual-rail XNOR and various speed-up
experiments using, the faster and more energy efficient pipeline
MOUSETRAP has been tried to be created. Initially,
MOUSETRAP pipeline created as linear pipeline, with Fork and
Join phase it has become non-linear pipeline. To accomplish this

operation, Miiller C-element was utilized. Two key measures of
the performance of the pipeline are discussed: forward latency
and cycle time and also for Non-linear MOUSETRAP
pipelining fork and join calculations was displayed.

II. PIPELINING

A. Asynchronous & Synronous Pipelines

Fig.1 shows a synchronous pipeline and an asynchronous
pipeline. The focus is simply on the local stage communication.
Each asynchronous stage including both data and control links.
Communication is usually single-rail that transfers the data to
one direction on only way, and is implemented by a handshaking
protocol: data is sent from left to right, and an acknowledgement
control signal is sent from right to left.

Synchronous and asynchronous pipeline have differences
which shown in Fig 1. In synchronous pipelines, the clock drives
the all system in clock step: every data item moves to the next
stage on the active clock edge. Hence, the pipeline acts as a form
of synchronous shift register with computation blocks. Also,
each stage’s critical-path delay must be less than the fixed clock
period. As a result, all stages typically have balanced delays.
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Fig.1. (a) synchronous pipelines, (b) asynchronous pipelines [3].

Asynchronous pipelines have no main clock. The advance of
data items is stage controlled. Typically, a stage N can accept a
new data item if two conditions hold: its left neighbour, stage V-
1, is providing new data; and its right neighbour, stage N+, has
stored (Capture Protocol) the previous data item.



Ref [3] gives an introduction about four important features
of asynchronous approach: “First, stages need not have equal
delays. In most synchronous systems, the worst-case stage delay
must be less than the clock period. In contrast, in an
asynchronous system, although balanced stages tend to provide
the highest system performance, this balance is not a
requirement for correct operation. Consequently, stages of
widely different static delays can be concatenated to form a
working system. In addition, in some asynchronous pipeline
styles, each stage may have a dynamically varying delay. Hence,
this per-stage variability can naturally be exploited to improve
average system latency and throughput. Second, asynchronous
pipelines inherently provide elasticity. If there is no congestion,
data items are widely spaced in the pipeline and travel rapidly
through. If input rates are higher, spacing becomes tighter
between items. In the extreme case, with a slow or stalled output
environment, data items become bunched or stalled at close
intervals. In all cases, there is no wait for a clock edge. Hence,
the token spacing and the throughput rate are determined
dynamically. Third, asynchronous pipelines automatically
provide flow control. In contrast, synchronous pipelines by
default include no flow control. Synchronous flow control is
typically supported using complex decoupled latch control. A
wait signal, used for back pressure, must also be synchronized
to the clock at every stage. Fourth, asynchronous pipelines
consume dynamic power only on demand. That is, switching
activity occurs only when data items are being processed.
Furthermore, asynchronous pipelines inherently obviate the
need for global clock distribution power”.
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Fig.2. (a) 2-phase protocol, (b) 4-phase protocol [4].

B. Two-Phase and Four-Phase Handshaking

In two-phase handshaking a single request transition from
the sender starts a transaction, which is followed by a single
acknowledgement transition from the receiver. The protocol
requires only one round-trip communication per transaction [3].
Ref [4] gives an introduction for two and four-phase
handshaking: “In 2-phase protocol, req and ack are identified at
a transition of the control signals either from low-to-high or
high-to-low, and the levels of control signals have no
significance. As shown in Fig. 2(a), a whole reg-ack cycle is
completed when both signals make the same transition.
MOUSETRAP, a simple and robust linear pipeline controller, is
based on 2-phase protocol. In four-phase handshaking as shown
in Fig. 2(b), a given cycle working phase and resetting phase.
From the rising-edge of req to the rising-edge of ack is the
working phase where a request is handled and completion is
notified. The return-to-zero of both req and ack signals occurs
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the resetting phase [4]. 4-phase handshaking also causes more
delay than 2-phase handshaking.”
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Fig.3. MOUSETRAP Pipeline [3].

III. THE MOUSETRAP PIPELINE

MOUSETRAP developed at Columbia University to be a
high-performance pipeline that supports the use of a standard
cell methodology. It wuses capture-pass protocol like
micropipelines, it has less complex signalling and far lower
overhead, and it uses simpler XNOR-controller and data latches.
Fig. 3 shows a basic MOUSETRAP pipeline. MOUSETRAP
Pipeline uses a 2-phase protocol. XNOR provides local control
for each stage [3]. In simple FIFO MOUSETAP used D-latches
to Data capture protocol.

Ref [3] gives an introduction about the MOUSETRAP
pipelining and how to use latchs and controller for doing
signalling: “In MOUSETRAP, suppose all regN and ackN
signals are at 0, and local latch controls at 1. All data latches are
therefore transparent, forming a flow-through combinational
system. Once data arrives at the left channel, it passes directly
through the entire series of data latches to the right channel. At
each stage, after the data arrives and passes through its latches,
the corresponding regN bundling signal toggles from O to 1. As
a result, the stage’s XNOR?2 control output toggles from 1 to 0
and captures the data, thereby protecting it from being
overwritten by any new data item from the left neighbour. At the
same time, when data is about to be captured at any stage n, the
stage requests the next data item from its left neighbour. In
particular, stage N signals to its predecessor, stage N-1, through
a transition on its ackN output from O to 1. This enables the pass
operation of stage N-1, thereby causing the latches of stage n-1
to become transparent. This backward synchronization
effectively indicates that stage N is in the process of safely
storing the current data item, and informs stage N-1 that its
output will no longer be needed and can be overwritten.
Likewise, stage N itself enters its pass phase when stage N+1
indicates its data is being stored. Subsequently, when the next
data item enters the pipeline, the same two-phase protocol is
repeated, but with the bundling signal at each stage toggling in
reverse from 1 to 0.”

The latching action by a pipeline stage is analogous to the
operation of a household MOUSETRAP: latches remain
transparent before data arrives; they are closed as soon as data
passes through. It is important to note that this behaviour is very
different from that of most synchronous, and many



asynchronous, pipelines in which latches are opened only after
new data arrives.
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matched delays are used, this approach has two advantages over
synchronous design: different pipeline stages (different delays)
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Fig.4. MOUSETRAP Pipeline and timechart [5].

As shown in Fig.4, MOUSETRAP tested by a test pattern. A
Timing chart for this test are given just under the
MOUSETRAP. In this display, the output request signal req0
from the first stage is delayed by the delay element whose delay
value matches to the critical path delay of the corresponding
combinational circuit CCO. CCO data arrives the next stage with
approximately delayed_reqO [5].

A. General Pipeline Implementation

Only pipelines without logic processing simple FIFOs, have
been considered. Fig. 3 shows how basic logic processing can
be added to the asynchronous pipeline. Blocks of combinational
logic and matching delay elements are simply inserted between
pipeline stages.

The standard asynchronous bundled data scheme is used:
regN must arrive at stage N after the data inputs to that stage
have stabilized. Therefore, the latency of the delay element must
match the worst-case delay through the combinational block. A
benefit of this approach is that the data path itself can use
standard single-rail blocks. Moreover, even when worst-case

and local delay (not by a global clock) [1].

B. Gate-Level Piepelines Using C°MOS

To target extremely high throughput, as a special case, gate
level pipelines can be used. As an additional benefit, the absence
of latches also translates into savings of chip area and power
consumption. Fig. 5 shows the structure of a general clocked
CMOS gate. The clock input En directly controls the gate
through two transistors. When En is asserted, the gate is enabled
and a new output is produced. When En is deasserted, the gate
holds its output value with a Keeper logic. clocked CMOS has
been proposed as a synchronous technique, but it can be
naturally adapted to very high-speed asynchronous pipelines
using local handshake signals to replace the clock [1].

C. Dual-Rail XNOR Optimization

To eliminate gate delays from the critical path Dual-Rail
XNOR optimization developed. Since many transparent latches
as well as clocked CMOS gates require both true and
complemented enables, a useful optimization for both of the
proposed pipeline schemes is to implement the XNOR as a dual-
rail gate, providing both XOR and XNOR outputs. In dual-rail



XNOR as shown in Fig. 6, has two acknowledgement and two
done signals [1]. With this method dual-rail XNOR shows only
one logical delay. A single rail XNOR showed that has a
minimum 2 logic delay.
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Fig.6. Dual-Rail XNOR.

D. Pipeline Performance and Timing Constraints

1. Performance: The pipelining method has two
performance measurements: forward latency and cycle
time.

Forward latency is the time it takes a data item to pass
through an firstly empty pipeline. Since, in an empty
pipeline, all the latches are transparent, the pipeline
latency per stage L is simply the stage’s latch delay +
logic delay.

L = TLatch + TLogic (D)

Cycle time is the time between successive data items

from the pipeline when the pipeline is operating at
maximum speed.

L = 2.TLatch + TLogic + TXNOR? 2)

For the special case of C2MOS pipelines, there are

no explicit latches. If the delay through a C*MOS

gate is denoted by TC>MOS , the latency and cycle

time are given by

Lc2MOS = TC?MOS 3)

4
TcMos = 2.TCMOS + TXNOR? @)

2. Timing Constraints: Setup and hold time is calculated
on the Ref[1]. There are two simple one-sided timing
constraints: setup time and hold time, which must be
satisfied for the correct operation of the pipeline.

Setup Time: Once a latch is enabled and receives new
data at its inputs, it must remain transparent long
enough for data to pass through. “XNOR switching
low”(Treq to En) must be longer than the setup time.
This constraint is usually easily satisfied because the
delay from regN to doneN typically exceeds the setup
time.

TreqN — doneN + TXNOR N| > Tsetup )

Hold Time: Once data enters a stage, it should be
securely captured before new data is produced by the
previous stage. Otherwise, stage N’s data will be
overwritten by new data. Therefore, since ackN-1 and
doneN are generated in parallel, the path from ackN-1
to stage N's data inputs must be longer than the time
to close N’s latch, plus a hold time. Eq. (7) shows the
Hold time is smaller than forward latency of previous
stage.

TXNOR N-11 + TLatch N-1 4+ TLogic N-1 > TXNOR| + Thold (6)
TXNOR N-11 ~TXNOR N}

TLatch N-1 + TLogic N-1 > Thold @)

E. Handling Wide Datapaths

In asynchronous pipelines a single control signal for a
pipeline stage must be broadcast across many latches. In
principle, such control distribution may introduce sizable delays
in the critical path. The most effective way to solve this is
“Control Kiting” per latch to use. Control kiting is buffer to
skewed Enable of Latch [1]. For each Data different size delay
element is used. This is necessary to reach at the same time data
in latch.
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Fig.7 (a) no waveform shaping, (b) waveform shaping: Reduce voltage swing [1].



F. Pipeline Speed-up
A circuit-level optimization can further improve the
pipeline’s performance under steady-state operation. The key
idea is to shape the output of the latch controllers through
transistor sizing, such that the critical cycle is further shortened
at the expense of some loss of timing margins.

There is a no waveform shaping in Fig. 7(a). It shows a
normal operation of XNOR gate. Voltage swing reduction as
shown in Fig. 7(b); if waveform shaping is applied beyond the
limiting case, the controller output no longer exhibits a full
voltage swing. It is under steady-state operation, the pipeline
latches are never fully disabled. The re-enabling of the latches
occurs even faster, hereby further shortening the cycle time and
improving the throughput.
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Fig.8 Nonlinear Pipelining: Fork and Join [1].

G. Nonlinear Pipelining

According to the Ref[1]: “In complex system architectures,
nonlinear pipelining is often needed. There are two simple
implementations "fork and join" of MOUSETRAP. Fig. 8 shows
Fork and Join phases in nonlinear pipelining. In a fork stage, the
data output and corresponding req are both simply forked to the
two or more destination stages. In turn, the two or more ack
signals are combined through a Miiller C-element. A symmetric
C-element makes a transition when all of its inputs change
exactly once. In a join stage, the ack is simply a forked wire
communicating with all sender stages, but there are multiple
req’s that must be combined. Once again an asymmetric C-
element can simply be used to combine the multiple requests,
and the result treated as a unified request that is fed into the
latch.”

For a fork stage as shown in Fig. 9(a), cycle time increase
from that in Eq. (3) by an amount equal to the latency of the C-
element (TC). As shown in Fig. 10, there are minimum 2 input
of C-element. If C-elements each input high or low at the same
time, output would be changed, otherwise the output keep in
memory previous value.

Ttfork = 2.TLatch + TLogic + TC + TXNOR? (8)

For a join stage as shown in Fig. 9(b), cycle time doesn’t
change much (TaC). This C-element was used instead of latch
element. Therefore there is less delay than Tfork delay. TaC
named as an asymmetric C-element. As shown in Fig. 11, there
are minimum 2 input of C-element. If C-elements each input
high or low and enable be high at the same time, output would
be changed, otherwise the output keep in memory previous
value.

Tjoin = TaC + TLogic + TLatch + TXNOR? )
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IV. EXPERIMENTIAL RESULTS

According to the Ref[1]: “Results of post-layout SPICE
simulation for basic MOUSETRAP pipelines are presented. A
simple 10-stage FIFO was simulated. The FIFO was laid out
using the Cadence tool suite in an 180 nm TSMC process. Two
versions of the pipeline were simulated: the “un-optimized”
pipeline style and an “optimized”: Voltage swing reduced. Both
a 4 bit FIFO and a 16 bit FIFO were simulated for the un-
optimized style. Identical control circuits were used in both the
cases, but control kiting was used for the 16 bit design. For the
optimized style, the waveform shaping optimization was
performed on the 4 bit FIFO to obtain further improvement in
throughput, though at the expense of some loss of timing
margins. A pass-gate implementation of a dual-rail XNOR/XOR
pair, and an eight-transistor dynamic D-latch.”

Pipeline latch delay XNDOR delay

Design tLatch (PS) | txnort (PS) | tanar] (PS)
MOUSETRAP 188 102 115
MOUSETRAP,,, 179 63 131

Pipeline Cycle Time, T’ Throughput
Design Analytical Formula ‘ (ps) || (GigaHenz)
MOUSETRAP 2 - tratch + fxnort 477 2.10
MOUSETRAP,,; | 2 fraech + txnort 421 2.38

Table.1 Performans of Moustrap FIFO 180 nm TSMC Technologie [1].

In Table 1 the simulation results summarized. The overall
pipeline cycle time T is given. The latch delay and Controller
gate delays are also given. First row is for 4 bit and 16 bit FIFOs
without the optimization. Second rows shows an optimized
performance of MOUSETRAP pipeline with 4 bit data wide.
Un-optimized MOUSETRAP has 2.1 GHz throughput but
Optimized MOUSETRAP pipeline has 2.38 GHz throughput
(13% improvement.).

According to the Ref[3]: “These speeds compare with
IPMOS style of Schuster. Their results have 3.3-4.5 GHz for
High-Performance IBM 180 nm process. But IBM 180 nm
technologies are faster than the TSMC process.

Different pipeline styles reviewed and represent different
trade-offs between performance, power, and ease of design. Of
the three static pipelines, the GasP (designed by Ivan Sutherland
and Scott Fairbanks in Sun Microsystems Laboratories, USA)
approach offers the highest performance, although it involves
significant design effort because of its complex circuit structure
and operation, as well as its stringent timing constraints, and is
therefore more difficult to use with automated synthesis flows.
The MOUSETRAP approach is next in performance, and has the
added benefit of an entirely standard cell implementation; it is
therefore well-suited for automation. Of the three dynamic
pipelines, PSO is the simplest to implement, but it offers the
lowest throughput. The HC style has the highest throughput and
lowest energy consumption of the three, but it requires matching
of bundling delays. PCHB uses quasi-delay-insensitive (QDI)
control logic and DI (delay-insensitive) coding of the data path,
and hence is highly robust to variability.”

In MOUSETRAP operation only active state exhibit
switching activity, but in synchronous pipeline all stage have
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switching activity. Table 2 shows a result for power and energy
consumption.

Pipeline Power Energy/item/stage
Design (mW) (ph)
MOUSETRAP 30.8 1.49
PSO 26.3 5.20

Table.2 Power and Energy Consumption of 10-stage FIFOs [1].

In particular, MOUSETRAP consumes 17% higher power than
PSO (designed by Williams and Horowitz in 1986-1991). This
higher power consumption in MOUSETRAP is solely because
of its significantly higher throughput (2.1 GHz), i.e., it performs
more “work™ per second than the PSO pipeline (0.51 GHz).
MOUSETRAP consumes 71% lower energy per item per stage.

V. CONCLUSION

In the paper it can be seen that the MOUSETRAP is a great
step towards energy efficiency. The paper did show, that the
MOUSETRAP could be used as a high performance system.
Logic and Circuit level optimizations are showed, to improve
throughput. CMOS optimization resulting in a style that is
particularly well-suited for gate-level pipelining. Dual-Rail
optimization removes critical inverter delays from the cycle time
by implementing the control circuits in dual rail. Finally, a
circuit-level optimization further speeds up critical events
through a “waveform shaping” (reduce voltage swing)
approach. In steady-state operation, the pipeline performance is
comparable to that of wave pipelines.
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