Energy Efficient Content-Addressable Memory

Advanced Seminar Computer Engineering

Institute of Computer Engineering

Heidelberg University

Fabian Finkeldey

Table of Contents

- Introduction
- Standard Circuit Design
- Energy Efficient Design
- Simulation
- Implementation
- Conclusion

Introduction

Use-Cases and basic design of content-addressable memory

Example: Looking up a phone number

- Problem: Find a name to a given phone number
- Linear Search:
 - Looking up every entry in a phone book takes a lot of time...
- A phonebook that can deliver a name to a given number is needed

Example II: Translation Lookaside Buffer

- TLB: Cache for address translation
 - Typical size ~1024 entries
 - Faster than page table access

- Needs to be searched:
 - Search-key: Virtual Address
 - Search-result: Physical Address

Basic concept of a CAM

Standard Circuit Design

A conventional CAM

Conventional CAM Cell

- M is a standard SRAM-Cell
- D is the stored Data value
- Search-Data is applied to SL
- ML indicates match-state

CAM Cell – search operation 1

• Assume:

Ref. 1

CAM Cell – search operation 1

1. SL = 0 and \overline{SL} = 0

 \rightarrow M₁ and M₂ are switched off

CAM Cell – search operation 2

- 1. SL = 0 and $\overline{SL} = 0$
- 2. ML is precharged to $V_{DD} \rightarrow ML = 1$ M₁ and M₂ are switched off
 - -> No path ML to GND

CAM Cell – search operation 3 (match)

- 1. SL = 0 and $\overline{SL} = 0$
- 2. ML is precharged to $V_{DD} \rightarrow ML = 1$
- 3. Assume $SL = 1 \rightarrow \overline{SL} = 0$

 M_2 and M_3 are switched off

-> No path ML to GND

```
ML stays at VDD -> ML = 1, match!
```


CAM Cell – search operation 3 (mismatch)

- 1. SL = 0 and $\overline{SL} = 0$
- 2. ML is precharged to $V_{DD} \rightarrow ML = 1$
- 3. Assume $SL = 0 \rightarrow \overline{SL} = 1$

 M_2 and M_4 are switched on

-> Path ML to GND

```
ML discharges -> ML = 0, no match
```


Power consumption

Matchlines:

- Long Lines with high capacitance:
 - Wire capacitance
 - Diffusion capacitance of the pull-down
 Transistors
- Assumption: Miss in most cases
- ML is precharged and discharged in every cycle

• Searchlines:

- Long Lines with high capacitance:
 - Wire capacitance
 - Gate capacitance of the match-

Transistors

- SL and SL are pulled to GND in every cycle
- Either SL or \overline{SL} is charged to V_{DD}

Energy Efficient Design

Reducing the power consumption

1. Pipelining the match line

Non-pipelined

Pipelined

1. Pipelining the match-line

- Breaking up the long ML in stages
- In case of match, the following stage is activated
- In most cases, the ML is only partly precharged
 - -> Reduced power consumption

2. Hierarchical search-lines

- Global-search-lines
 - Not directly connected to CAMcells
 - To reduce capacitance
 - Driven in every cycle
- Local-search-lines
 - Short, connected to a few CAMcells
 - enabled, if match-line-segment is activated

2. Hierarchical search-lines

- SL power consumption: $P_{sl} = C_{sl} * V_{sl}^2$
- Usually: $V_{sl} = V_{DD}$
- Lower voltage reduces power consumption
 - Lower Gate-Overdrive -> Decreased Speed
- Solution:
 - Lower voltage V_{DDLow} on global-search-lines
 - Amplifier to drive local-search-lines with V_{DD}

3. ML-Precharge low

- ML-Precharge high requires to precharge SL low
 - Contributes to SL power consumption
- Precharge low:
 - 1. Discharge all ML to GND
 - 2. Apply Data to SL
 - 3. Drive fixed current I_{ML} to all ML
 - 4. In match state there is no path to GND
 - -> Voltage will rise

3. ML-Precharge low

- Low Swing on match-line
 - Match-line-sense-amplifier triggered at V_{Th} < V_{DD}
 => No need to charge ML to V_{DD}
- No need to precharge SL low
 - No problem with path to GND in cells in mismatch state

Simulation

Simulation Setup

- 1024 x 144 Bit Cam
- 1x 8Bit, 4x 34Bit Segments
- 180nm Cmos
- 1,8V VDD
- Typical Workload:
 - Populated with random data
 - 1 Match per search

Schematic vs. Waveform

Ref. 1

Simulation: Pipelined Matchlines

- Assumption:
 - Most ML segments miss in the first 8 Bit
- Expectation:
 - Power consumption reduced by 136/144 or 95%
- Result:
 - 1,59/3,64 or 56%
- Explanation:
 - Overhead of clocking the additional ML-Flip-Flops and repeated circuitry

Simulation: Total power consumption

- Adding hierarchical searchlines:
 - 63% Reduction in SL power consumption

 Total power consumption reduced by 60%

Implementation

A real-world Test chip

Test Chip

- VDD: 1,8V
- Process: 180nm
- Size: 2,3 x 2,1mm
- Cycle Time: 7ns
- 256 x 144 Bit CAM
 - 1x 8Bit, 4x 34Bit Segments
- Only two segments use hierarchical SL
 - Allows Direct Comparison of power consumption

Simulation vs. Implementation

Conclusion

Conclusion

- Presented Techniques to reduce power consumption:
 - 1. Pipelined matchlines
 - 2. Hierarchical searchlines
 - 3. Precharge low scheme
- Expected reduction of power consumption: ~60%
- Slightly increased area needs: ~6%
- Similar cycle times to conventional designs
- Pipelined architecture introduces additional latency
- Reduced Noise Immunity

References

- This Talk is based on:
 - 1. K. Pagiamtzis, A. Sheikholeslami, "A low-power content-addressable memory (CAM) using pipelined hierarchical search-scheme", IEEE Journal of solid-state Circuits, 2004
 - 2. K. Pagiamtzis, A. Sheikholeslami, "Content-Addressable Memory (CAM) Circuits and Architectures: A Tutorial and Survey", IEEE Journal of solid-state Circuits, 2006
- Figures and graphics:
 - 3. Android, incoming call, 2016 http://i.stack.imgur.com/5eHW2.png