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DRAM

Cache

Cache Cache

Ctr
Alu

Alu
Ctrl

Alu

Alu

CPU
„Latency-oriented“

GPU
„Throughput-oriented“

Score
performance via 
out-of-order 
processing and 
large Caches.

Low-overhead thread 
scheduling and hide 
memory latencies
via multi-threading.

GPU chips spend more die-space on ALUs and less on caches.GPU chips spend more die-space on ALUs and less on caches.
(1) http://www.7-cpu.com
(2) Michael Andersch, Jan Lucas, Mauricio Alvarez-Mesa, Ben Juurlink, “Analyzing GPGPU Pipeline 
Latency”, Poter 2014.

Unit Intel i7-4770 
(Haswell) [1]

Intel i7-6700 
(Skylake) [1]

Tesla 
GT200 [2]

Fermi
GF106 [2]

Kepler 
GK104 [2]

Maxwell 
GM107 [2]

L1 D$ (cycles) 4-5 4-5 X 45 30 X

L2 D$ (cycles) 12 12 X 310 175 194

L3 D$ (cycles) 36 42 X X X X

SMem (cycles) X X 38 50 33 28

RAM (cycles) 36 + 57ns 36 + 57ns 440 685 300 350

L1 D$ Size 32 KB 32 KB X 48 KB 48 KB 24 KB

L2 size 256 KB 256 KB X 768 KB 1536 KB 2048 KB

L3 size 8 MB 8 MB X X X X

16 KB L1$/Thread
(Intel Haswell)

24 B L1$/Thread
(Worst Case: 
8 blocks per SM
Nvidia Kepler)
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SM 1

L1 $ / Shared Memory

SM 16

L1 $ / Shared Memory

Interconnection Network

L2 Cache L2 Cache L2 Cache

Mem. Controller
2

Mem. Controller
6

Mem. Controller
1

DRAMs DRAMs DRAMs

Ratio of L1/SM is 
reconfigurable.

Shared Memory is 
software controlled 
cache.

L1 caches are 
not coherent.

L2 cache is 
partitioned into 
several banks.

L2 is coherent.

Off-chip GDDR.

Memory Model

Last Recently Used (LRU) Policy

a0 a1
a0

a2
a1

a3
a2

Shared 
Cache

DRAM 
Access

store
a0

store
a1

store
a2

store
a3

WR: a0 WR: a1

MRU Most Recently Used

LRU Last Recently Used
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Motivation

● Caches improve the performance of atomic operations.

● Shared cache in CPU-GPU heterogeneous processors improve 
communication and save die space.

● Improves inter-block communication.

● Avoiding off-chip accesses and increasing bandwidth and save energy.

Limitations of existing cache management techniques

● Improvement in cache performance does not directly translate into improved 
program performance (due to multi-threading).

● Unique GPU characteristics.

● Small cache size.

● Negative effect of caches on performance.
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Motivation

● Slow atomic operations currently limit applicability.
● CPU atomic mechanisms require L1 coherence.
● Need cost-effective adaptation to improve atomics.
● Franey et al.  restrict coherence to atomic data and implemented a ⁽⁰⁾

complexity-effective coherence mechanism.

Node A Node B

Interconnect

L2 Cache

Atom OP

Goal: Avoiding the latency of traversing the interconnect Goal: Avoiding the latency of traversing the interconnect (atomic operations must be (atomic operations must be 
performed locally)performed locally)..

(0) S. Franey and M. Lipasti, “Accelerating atomic operations on GPGPUs,” in Seventh
IEEE/ACM International Symposium on Networks on Chip (NoCS), 2013, pp. 1–8.

State-of-the-art

● Executed like non-atomic instructions in the 
shader core.

● Traverse the interconnect to the appropriate 
L2 bank.

● Operation is ordered, data is acquired, and the 
operation is performed.

● Response is sent back to the core containing 
the previous value of the data.
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Nodes that would 
need to acquire 
mutex (e.g. shader 
core).

TRotating Token 
(Modulo operation 
on cycle count).

M

M M

M M

M M

M

M M M M

M M M M

Mutex-Status-
Tables (state of 
mutexes, '0' or 
'1').

ACQ
UpdateAcquire Mutex:

-> Wait for Token.
-> Mark it.
-> Update other    
 nodes.

„Busy-Wire“ to 
indicate to nodes 
when an update is in 
flight ('0' or '1'). 

+ Ensures acquisition correctness+ Ensures acquisition correctness
- Long latency to acquire token- Long latency to acquire token
- Additional latency for updates- Additional latency for updates

Approach: Restrict coherence to atomic data with Mutex.Approach: Restrict coherence to atomic data with Mutex.
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Approach: Adapting techniques used in directory-based cache Approach: Adapting techniques used in directory-based cache 
coherence.coherence.

O

ACQ

Request
Replace token 
rotation with 
request 
communication.

Remove updates 
by unique home 
nodes.

Round-trip
communication with
the owner.

+ Ensures acquisition correctness+ Ensures acquisition correctness
-  Round-trip latency-  Round-trip latency
-  Minimal performance improvement-  Minimal performance improvement
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T

AtomDir: AtomDir: Δx + Δy latency Δx + Δy latency 
(round-trip)(round-trip)

AtomNaive:AtomNaive: Δx/2 latency Δx/2 latency 
(one-way trip)(one-way trip)

Hybrid: Hybrid: Δx/2 + Δy latencyΔx/2 + Δy latency

T

T

T

Ring 1

Ring 2

Ring 3

Ring 4

AtomDir: Mutex state is 
distributed across some number of
logical rings
(request communication).

y

x

AtomNaive: Replicated 
mutex status tables with 
„Busy-Wire“ and Token 
(update communication).

Approach: Effectively finding a middle point between the AtomNaive and Approach: Effectively finding a middle point between the AtomNaive and 
AtomDir configurations.AtomDir configurations.

O

ACQ
Req.

-  Mutex acquisition delays fetch-  Mutex acquisition delays fetch
+ Issue fetch in parallel with mutex acquisition.+ Issue fetch in parallel with mutex acquisition.
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Performance

● „AtomDir” shows the benefit of being able to cache atomic data.
● „Topology” shows the benefit of distributing ownership.
● “SpecFetch” shows the advantage of issuing speculative memory 

fetches along with mutex acquisition.

Summary

● Proposed mechanisms show good performance improvements.
● High overhead for control logic and storage.
● Needs resources (wires) from the underlying interconnection network.
● L2 cache latency has reduced since Fermi (Fermi 310 cycles, Maxwell 194 cycles).

Sean Franey, ”Accelerating Atomic 
Operations on GPGPUs”, talk 2013.

Hybrid
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Through Caches
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Motivation

● GPU applications suffer from the lack of an efficient inter-block synchronization 
mechanism.

● Exit the current kernel and re-launch the successive kernel after a global 
synchronization by the host.

● L2 cache can be used to provide a buffer for inter-block communication.

a0 a1
a0

a2
a1

a3
a2

a0
a3

a1
a0

a2
a1

Shared 
Cache

DRAM 
Access

a3
a2

store
a0

store
a1

store
a2

store
a3

load
a1

load
a2

load
a3

load
a0

global synchronization

WR: a0 WR: a1
LD:  a0
WR: a2

LD:  a1
WR: a3

LD:  a2
WR: a0

LD:  a3
WR: a1

miss miss miss miss

Amount of off-chip memory accesses is the same, whether there is L2 cache or Amount of off-chip memory accesses is the same, whether there is L2 cache or 
not.not.

Kernel Launch

Kernel Launch
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Write-buffering
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Approach

● L2 cache works as a FIFO (LRU replacement policy).
● Choi et al.  prevent this by modifying the cache management scheme.⁽⁰⁾

a0 a1
a0

a1
a0

a1
a0

a1 a2Shared 
Cache

DRAM 
Access

a3
a2

store
a0

store
a1

store
a2

store
a3

load
a1

load
a2

load
a3

load
a0

global synchronization

WR: a2 WR: a3
LD:  a2 LD:  a3

hit hit miss miss

(0) H. Choi, J. Ahn, and W. Sung, “Reducing off-chip memory traffic by selective cache management scheme in GPGPUs,” 
in 5th Annual Workshop on General Purpose Processing with Graphics Processing Units. ACM, 2012, pp. 110–119.

1 1
1

1
1

1
1

1 0 0
0

C

1-bit status flag (C) 
is added to every 
cache line.

Write miss [C=0]:
Cache line is
allocated and C is
set.

Write miss [C=1]:
Line is not selected
for replacement.

Every C is set:
Bypass L2 cache
to off-chip memory.

Two writes and two reads for a0 and a1 are reduced when compared 
with the LRU policy.

a0 a1
a0

a2
a1

a3
a2

a0
a3

a1
a0

a2
a1

Shared 
Cache

DRAM 
Access

a3
a2

store
a0

store
a1

store
a2

store
a3

load
a1

load
a2

load
a3

load
a0

global synchronization

WR: a0 WR: a1
LD:  a0
WR: a2

LD:  a2
WR: a0

LD:  a3
WR: a1

miss miss miss miss
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Write-buffering
(for inter-block communication)
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Issue

● With only the write-buffering, the shared cache may not retain the data until they are 
read in the successive kernel.

a0 a1
a0

a1
a0

a1
a0

a1 a2Shared 
Cache

DRAM 
Access

a3
a2

store
a0

store
a1

store
a2

store
a3

load
a1

load
a2

load
a3

load
a0

global synchronization

WR: a2 WR: a3
LD:  a2 LD:  a3

hit hit miss miss
1 1

1
1
1

1
1

1 0 0
0

C

a1
a0

b0
a1

b1
b0

b2
b1

b3
b2

a0
b3

a1
a0

a2
a1

Shared 
Cache

DRAM 
Access

a3
a2

load
b0

load
b1

load
b2

load
b3

load
a1

load
a2

load
a3

load
a0

LD:  a2 LD:  a3

miss miss
1
1

0
1

0
0

0
0

0
0

0
0

0
0

0
1

0
0

C missmissmissmissmissmiss

LD:  b0
WR: a0

LD:  b1
WR: a1

LD:  b2 LD:  b3 LD:  a0 LD:  a1

No benefit of
Write-buffering.

Load operations
may evict cache lines
due to conflict or
capacity misses.

The number of off-chip memory access is the same with that of the pure LRU 
replacement policy.
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Read-Bypassing
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Approach

● Private data load operations, simply bypasses L2 cache to upper-level memory.

(0) H. Choi, J. Ahn, and W. Sung, “Reducing off-chip memory traffic by selective cache management scheme in GPGPUs,” 
in 5th Annual Workshop on General Purpose Processing with Graphics Processing Units. ACM, 2012, pp. 110–119.

a1
a0

a0
a1

a0
a1

a0
a1

a0
a1

a1 a2Shared 
Cache

DRAM 
Access

a3
a2

load
b0

load
b1

load
b2

load
b3

load
a1

load
a2

load
a3

load
a0

LD:  a2 LD:  a3

miss miss

1
1

1
1

1
1

1
1

1
1

1 0 0
0

C hithitmissmissmissmiss

LD:  b0 LD:  b1 LD:  b2 LD:  b3

● Proposed scheme is software-controlled.
(load and store instructions are marked with their respective scheme)

● Two additional cache operators are defined for PTX ISA.

Instruction Option Description

ld.global .cc Bypasses L2 cache.

st.global .cp Allocates cache line on a cache miss an sets the 
C bit for write-buffering.

Load operations
bypass to L1 cache
and do not allocate 
L2 cache lines.
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[0] H. Choi, J. Ahn, and W. Sung, “Reducing off-chip memory traffic by selective cache management scheme in GPGPUs,” 
in 5th Annual Workshop on General Purpose Processing with Graphics Processing Units. ACM, 2012, pp. 110–119.

Performance

● Workloads: FFT, HotSpot and SRAD.
● Proposed technique reduces the amount of write and read traffic to the off-chip 

memory.

Effect on the off-chip memory traffic reduction in FFT [0].
Summary

● Very low implementation costs.
● Good performance improvements.

● Larger L2 size also improves performance (Fermi 768KB, Maxwell 2048 KB).
● Faster L2 caches should further improve performance (Fermi 310 Cycles, Maxwell 194 

Cycles).
● High programming overhead.
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GPU-CPU 
Heterogeneous Architectures

Combining GPU cores with conventional CPUs is a trend.

● Various resources are shared between GPU and CPU cores.
(LLC, on-chip interconnect, memory controller and DRAM)

● Shared cache is one of the most important resources.

CPU and GPU cores have different characteristics.

● GPU cores have an order-of-magnitude more threads.
● GPUs have higher TLP (Thread-Level-Parallelism) than CPUs.
● TLP has significant impact on how caching affects performance of 

applications.

We need to directly monitor performance effect of cache.

J. Lee and H. Kim, "TLP 
Aware Cache Management 
Policy", Talk HPCA-18.

MPKI Misses Per Kilo   
Instruction

CPI Cycles Per 
Instruction
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TLP-Aware 
Cache Management Policy (TAP)

Lee et al. introduced TAP mechanism ⁽⁰⁾

● Bypass LLC.
● Core Sampling.
● Cache block lifetime normalization.
● TAP-UCP and TAP-RRIP.

Core Sampling

● Samples GPU cores with different cache policies.
● Measures performance differences.

(0) J. Lee and H. Kim, “TAP: A TLP-aware cache management policy for a CPU-GPU heterogeneous architecture,” in 18th 
International Symposium on High Performance Computer Architecture (HPCA). IEEE, 2012, pp. 1–12.

Core-POL1

Core-POL2

Core-Follow

Core-Follow

Core-Follow

Core Sampling 
Controler (CSC)

Last-Level
Cache

Performance
Metric

Decision

Policy 1: e.g. LRU
Policy 2: e.g. MRU

Access

Calculate
Δ (IPC1, IPC2)Δ (IPC1, IPC2)

Δ < ThresholdΔ < Threshold

Cache
friendly

Not Cache
friendly

Yes No
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Cache block lifetime normalization

● GPU cores have an order-of-magnitude more cache accesses.
● Monitor cache access rate differences between CPU and GPU applications 

and periodically calculate ratio. 

GPU $ Access Counter

CPU $ Access Counter

Calculate
Ratio

r=
GPUCount
CPUCount

r > threshold

r < threshold

XRATIO = r

XRATIO = 1

TAP

Core Sampling

Lifetime 
normalization

To find cache-friendly applications.

To consider different degree of cache accesses.

TLP-Aware 
Cache Management Policy (TAP)
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TAP-Utility-Based Cache Partitioning (TAP-UCP)

● UCP is a dynamic cache partitioning mechanism for only CPU workloads.
● Allocate more cache space to applications that obtain the most benefit from 

more space.
TAP

Core Sampling

Lifetime 
normalization

UCP

GPU CPU1 CPU2 CPU3

LLC

TAP-Re-Reference Interval Prediction (TAP-RRIP)

● Dynamically adapts between two competing cache insertion policies, Static 
RRIP (SRRIP) and Bimodal-RRIP (BRRIP).

● Policy Selector (PSEL), keeps track of which policy incurs fewer cache misses 
and decides the winning policy.

TAP

Core Sampling

Lifetime 
normalization

RRIP

MRU LRU

Decision

LLC Write

TLP-Aware 
Cache Management Policy (TAP)
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Evaluation
Performance

● 152 heterogeneous workloads.
● Improve the performance by 5% and 10% compared to UCP and RRIP and 

11% and 12% to LRU.
● Higher benefits with more CPU applications.

J. Lee and H. Kim, "TLP Aware Cache 
Management Policy", Talk HPCA-18.

Summary

● LLC management is an important problem in future many-core-heterogeneous 
processors.

● TAP mechanism improves performance.
● High overhead for control logic and storage.
● Previous mechanisms don't consider GPGPU-specific characteristics in 

heterogeneous workloads.
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● Multi-level hardware-managed caches are recent addition to GPUs.

● Effective management of caches is very important to fully exploit their potential in 
boosting GPU performance and energy efficiency.

● Various proposals have been published the last years.

● In this talk:

● Low-latency mechanism for acquiring and releasing mutexes in a system.

● Reduce off-chip memory accesses by write-buffering and read-bypassing.

● Technique to profile a GPGPU application at run-time in heterogeneous architectures .

● More Literature: Sparsh Mittal, “A Survey of Techniques for Managing and Leveraging 
Caches in GPUs”, Journal of Circuits, Systems, and Computers 2014.
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Discussion

Introduction

Methods

Results

Discussion

Thank you!
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Speculative 
Fetch
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Mutex acquisition delays fetch. Issue fetch in parallel with mutex acquisition.Mutex acquisition delays fetch. Issue fetch in parallel with mutex acquisition.
Ensure correctness via epochs.Ensure correctness via epochs.
● Epoch consists of a fixed number of cycles.
● At the boundary of each epoch, all responders indicate that their mutex releases are 

mature and all requesters indicate that their outstanding mutex requests are stale.
● When the requester receives the mutex and both the release is mature and the 

request is not stale, the requesting node knows that no update could have occurred 
to the data.

Node A
(Requester)

Node B
(Responder) L2

Node C
(Releaser)

(1) Speculative Fetch
(2) Mutex Request
(3) Speculative Response
(4) Write Back + Realese
(5) Mutex Release
(6) Mutex Response

(1)

(2)

(3)

(4)

(5)(6)

Epoch 
Boundary
(Case 1)

Epoch 
Boundary
(Case 2)
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