
Te
ch

niques f
or

Cach
es i

n G
PUs

Günther Schindler
Seminar Talk 2015/16
Chair ASC

26.01.2016 2

Outline

Introduction

Methods

Conclusion

Discussion

1. Introduction
1.1 GPU vs. CPU
1.2 GPU Architecture
1.3 Caches in GPUs

2. Methods
2.1 Atomic Operations
2.2 Software Controlled Cache-Bypassing
2.3 Hardware Controlled Cache-Bypassing

3. Conclusion

4. Discussion

26.01.2016 3

GPU vs. CPU

Introduction

Methods

Conclusion

Discussion

DRAM

Cache

Cache Cache

Ctr
Alu

Alu
Ctrl

Alu

Alu

CPU
„Latency-oriented“

GPU
„Throughput-oriented“

Score
performance via
out-of-order
processing and
large Caches.

Low-overhead thread
scheduling and hide
memory latencies
via multi-threading.

GPU chips spend more die-space on ALUs and less on caches.GPU chips spend more die-space on ALUs and less on caches.
(1) http://www.7-cpu.com
(2) Michael Andersch, Jan Lucas, Mauricio Alvarez-Mesa, Ben Juurlink, “Analyzing GPGPU Pipeline
Latency”, Poter 2014.

Unit Intel i7-4770
(Haswell) [1]

Intel i7-6700
(Skylake) [1]

Tesla
GT200 [2]

Fermi
GF106 [2]

Kepler
GK104 [2]

Maxwell
GM107 [2]

L1 D$ (cycles) 4-5 4-5 X 45 30 X

L2 D$ (cycles) 12 12 X 310 175 194

L3 D$ (cycles) 36 42 X X X X

SMem (cycles) X X 38 50 33 28

RAM (cycles) 36 + 57ns 36 + 57ns 440 685 300 350

L1 D$ Size 32 KB 32 KB X 48 KB 48 KB 24 KB

L2 size 256 KB 256 KB X 768 KB 1536 KB 2048 KB

L3 size 8 MB 8 MB X X X X

16 KB L1$/Thread
(Intel Haswell)

24 B L1$/Thread
(Worst Case:
8 blocks per SM
Nvidia Kepler)

26.01.2016 4

GPU Architecture

Introduction

Methods

Conclusion

Discussion

SM 1

L1 $ / Shared Memory

SM 16

L1 $ / Shared Memory

Interconnection Network

L2 Cache L2 Cache L2 Cache

Mem. Controller
2

Mem. Controller
6

Mem. Controller
1

DRAMs DRAMs DRAMs

Ratio of L1/SM is
reconfigurable.

Shared Memory is
software controlled
cache.

L1 caches are
not coherent.

L2 cache is
partitioned into
several banks.

L2 is coherent.

Off-chip GDDR.

Memory Model

Last Recently Used (LRU) Policy

a0 a1
a0

a2
a1

a3
a2

Shared
Cache

DRAM
Access

store
a0

store
a1

store
a2

store
a3

WR: a0 WR: a1

MRU Most Recently Used

LRU Last Recently Used

26.01.2016 5

Caches in GPUs

Introduction

Methods

Conclusion

Discussion

Motivation

● Caches improve the performance of atomic operations.

● Shared cache in CPU-GPU heterogeneous processors improve
communication and save die space.

● Improves inter-block communication.

● Avoiding off-chip accesses and increasing bandwidth and save energy.

Limitations of existing cache management techniques

● Improvement in cache performance does not directly translate into improved
program performance (due to multi-threading).

● Unique GPU characteristics.

● Small cache size.

● Negative effect of caches on performance.

26.01.2016 6

Atomic
Operations

Introduction

Methods

Conclusion

Discussion

Motivation

● Slow atomic operations currently limit applicability.
● CPU atomic mechanisms require L1 coherence.
● Need cost-effective adaptation to improve atomics.
● Franey et al. restrict coherence to atomic data and implemented a ⁽⁰⁾

complexity-effective coherence mechanism.

Node A Node B

Interconnect

L2 Cache

Atom OP

Goal: Avoiding the latency of traversing the interconnect Goal: Avoiding the latency of traversing the interconnect (atomic operations must be (atomic operations must be
performed locally)performed locally)..

(0) S. Franey and M. Lipasti, “Accelerating atomic operations on GPGPUs,” in Seventh
IEEE/ACM International Symposium on Networks on Chip (NoCS), 2013, pp. 1–8.

State-of-the-art

● Executed like non-atomic instructions in the
shader core.

● Traverse the interconnect to the appropriate
L2 bank.

● Operation is ordered, data is acquired, and the
operation is performed.

● Response is sent back to the core containing
the previous value of the data.

26.01.2016 7

AtomNaive

Introduction

Methods

Conclusion

Discussion

Nodes that would
need to acquire
mutex (e.g. shader
core).

TRotating Token
(Modulo operation
on cycle count).

M

M M

M M

M M

M

M M M M

M M M M

Mutex-Status-
Tables (state of
mutexes, '0' or
'1').

ACQ
UpdateAcquire Mutex:

-> Wait for Token.
-> Mark it.
-> Update other
 nodes.

„Busy-Wire“ to
indicate to nodes
when an update is in
flight ('0' or '1').

+ Ensures acquisition correctness+ Ensures acquisition correctness
- Long latency to acquire token- Long latency to acquire token
- Additional latency for updates- Additional latency for updates

Approach: Restrict coherence to atomic data with Mutex.Approach: Restrict coherence to atomic data with Mutex.

26.01.2016 8

AtomDir

Introduction

Methods

Conclusion

Discussion

Approach: Adapting techniques used in directory-based cache Approach: Adapting techniques used in directory-based cache
coherence.coherence.

O

ACQ

Request
Replace token
rotation with
request
communication.

Remove updates
by unique home
nodes.

Round-trip
communication with
the owner.

+ Ensures acquisition correctness+ Ensures acquisition correctness
- Round-trip latency- Round-trip latency
- Minimal performance improvement- Minimal performance improvement

26.01.2016 9

Hybrid
Topology

Introduction

Methods

Conclusion

Discussion

T

AtomDir: AtomDir: Δx + Δy latency Δx + Δy latency
(round-trip)(round-trip)

AtomNaive:AtomNaive: Δx/2 latency Δx/2 latency
(one-way trip)(one-way trip)

Hybrid: Hybrid: Δx/2 + Δy latencyΔx/2 + Δy latency

T

T

T

Ring 1

Ring 2

Ring 3

Ring 4

AtomDir: Mutex state is
distributed across some number of
logical rings
(request communication).

y

x

AtomNaive: Replicated
mutex status tables with
„Busy-Wire“ and Token
(update communication).

Approach: Effectively finding a middle point between the AtomNaive and Approach: Effectively finding a middle point between the AtomNaive and
AtomDir configurations.AtomDir configurations.

O

ACQ
Req.

- Mutex acquisition delays fetch- Mutex acquisition delays fetch
+ Issue fetch in parallel with mutex acquisition.+ Issue fetch in parallel with mutex acquisition.

26.01.2016 10

Evaluation

Introduction

Methods

Conclusion

Discussion

Performance

● „AtomDir” shows the benefit of being able to cache atomic data.
● „Topology” shows the benefit of distributing ownership.
● “SpecFetch” shows the advantage of issuing speculative memory

fetches along with mutex acquisition.

Summary

● Proposed mechanisms show good performance improvements.
● High overhead for control logic and storage.
● Needs resources (wires) from the underlying interconnection network.
● L2 cache latency has reduced since Fermi (Fermi 310 cycles, Maxwell 194 cycles).

Sean Franey, ”Accelerating Atomic
Operations on GPGPUs”, talk 2013.

Hybrid

26.01.2016 11

Communication
Through Caches

Introduction

Methods

Conclusion

Discussion

Motivation

● GPU applications suffer from the lack of an efficient inter-block synchronization
mechanism.

● Exit the current kernel and re-launch the successive kernel after a global
synchronization by the host.

● L2 cache can be used to provide a buffer for inter-block communication.

a0 a1
a0

a2
a1

a3
a2

a0
a3

a1
a0

a2
a1

Shared
Cache

DRAM
Access

a3
a2

store
a0

store
a1

store
a2

store
a3

load
a1

load
a2

load
a3

load
a0

global synchronization

WR: a0 WR: a1
LD: a0
WR: a2

LD: a1
WR: a3

LD: a2
WR: a0

LD: a3
WR: a1

miss miss miss miss

Amount of off-chip memory accesses is the same, whether there is L2 cache or Amount of off-chip memory accesses is the same, whether there is L2 cache or
not.not.

Kernel Launch

Kernel Launch

26.01.2016 12

Write-buffering
(for inter-block communication)

Introduction

Methods

Conclusion

Discussion

Approach

● L2 cache works as a FIFO (LRU replacement policy).
● Choi et al. prevent this by modifying the cache management scheme.⁽⁰⁾

a0 a1
a0

a1
a0

a1
a0

a1 a2Shared
Cache

DRAM
Access

a3
a2

store
a0

store
a1

store
a2

store
a3

load
a1

load
a2

load
a3

load
a0

global synchronization

WR: a2 WR: a3
LD: a2 LD: a3

hit hit miss miss

(0) H. Choi, J. Ahn, and W. Sung, “Reducing off-chip memory traffic by selective cache management scheme in GPGPUs,”
in 5th Annual Workshop on General Purpose Processing with Graphics Processing Units. ACM, 2012, pp. 110–119.

1 1
1

1
1

1
1

1 0 0
0

C

1-bit status flag (C)
is added to every
cache line.

Write miss [C=0]:
Cache line is
allocated and C is
set.

Write miss [C=1]:
Line is not selected
for replacement.

Every C is set:
Bypass L2 cache
to off-chip memory.

Two writes and two reads for a0 and a1 are reduced when compared
with the LRU policy.

a0 a1
a0

a2
a1

a3
a2

a0
a3

a1
a0

a2
a1

Shared
Cache

DRAM
Access

a3
a2

store
a0

store
a1

store
a2

store
a3

load
a1

load
a2

load
a3

load
a0

global synchronization

WR: a0 WR: a1
LD: a0
WR: a2

LD: a2
WR: a0

LD: a3
WR: a1

miss miss miss miss

26.01.2016 13

Write-buffering
(for inter-block communication)

Introduction

Methods

Conclusion

Discussion

Issue

● With only the write-buffering, the shared cache may not retain the data until they are
read in the successive kernel.

a0 a1
a0

a1
a0

a1
a0

a1 a2Shared
Cache

DRAM
Access

a3
a2

store
a0

store
a1

store
a2

store
a3

load
a1

load
a2

load
a3

load
a0

global synchronization

WR: a2 WR: a3
LD: a2 LD: a3

hit hit miss miss
1 1

1
1
1

1
1

1 0 0
0

C

a1
a0

b0
a1

b1
b0

b2
b1

b3
b2

a0
b3

a1
a0

a2
a1

Shared
Cache

DRAM
Access

a3
a2

load
b0

load
b1

load
b2

load
b3

load
a1

load
a2

load
a3

load
a0

LD: a2 LD: a3

miss miss
1
1

0
1

0
0

0
0

0
0

0
0

0
0

0
1

0
0

C missmissmissmissmissmiss

LD: b0
WR: a0

LD: b1
WR: a1

LD: b2 LD: b3 LD: a0 LD: a1

No benefit of
Write-buffering.

Load operations
may evict cache lines
due to conflict or
capacity misses.

The number of off-chip memory access is the same with that of the pure LRU
replacement policy.

26.01.2016 14

Read-Bypassing
(for inter-block communication)

Introduction

Methods

Conclusion

Discussion

Approach

● Private data load operations, simply bypasses L2 cache to upper-level memory.

(0) H. Choi, J. Ahn, and W. Sung, “Reducing off-chip memory traffic by selective cache management scheme in GPGPUs,”
in 5th Annual Workshop on General Purpose Processing with Graphics Processing Units. ACM, 2012, pp. 110–119.

a1
a0

a0
a1

a0
a1

a0
a1

a0
a1

a1 a2Shared
Cache

DRAM
Access

a3
a2

load
b0

load
b1

load
b2

load
b3

load
a1

load
a2

load
a3

load
a0

LD: a2 LD: a3

miss miss

1
1

1
1

1
1

1
1

1
1

1 0 0
0

C hithitmissmissmissmiss

LD: b0 LD: b1 LD: b2 LD: b3

● Proposed scheme is software-controlled.
(load and store instructions are marked with their respective scheme)

● Two additional cache operators are defined for PTX ISA.

Instruction Option Description

ld.global .cc Bypasses L2 cache.

st.global .cp Allocates cache line on a cache miss an sets the
C bit for write-buffering.

Load operations
bypass to L1 cache
and do not allocate
L2 cache lines.

26.01.2016 15

Evaluation

Introduction

Methods

Conclusion

Discussion

[0] H. Choi, J. Ahn, and W. Sung, “Reducing off-chip memory traffic by selective cache management scheme in GPGPUs,”
in 5th Annual Workshop on General Purpose Processing with Graphics Processing Units. ACM, 2012, pp. 110–119.

Performance

● Workloads: FFT, HotSpot and SRAD.
● Proposed technique reduces the amount of write and read traffic to the off-chip

memory.

Effect on the off-chip memory traffic reduction in FFT [0].
Summary

● Very low implementation costs.
● Good performance improvements.

● Larger L2 size also improves performance (Fermi 768KB, Maxwell 2048 KB).
● Faster L2 caches should further improve performance (Fermi 310 Cycles, Maxwell 194

Cycles).
● High programming overhead.

26.01.2016 16

Introduction

Methods

Conclusion

Discussion

GPU-CPU
Heterogeneous Architectures

Combining GPU cores with conventional CPUs is a trend.

● Various resources are shared between GPU and CPU cores.
(LLC, on-chip interconnect, memory controller and DRAM)

● Shared cache is one of the most important resources.

CPU and GPU cores have different characteristics.

● GPU cores have an order-of-magnitude more threads.
● GPUs have higher TLP (Thread-Level-Parallelism) than CPUs.
● TLP has significant impact on how caching affects performance of

applications.

We need to directly monitor performance effect of cache.

J. Lee and H. Kim, "TLP
Aware Cache Management
Policy", Talk HPCA-18.

MPKI Misses Per Kilo
Instruction

CPI Cycles Per
Instruction

26.01.2016 17

Introduction

Methods

Conclusion

Discussion

TLP-Aware
Cache Management Policy (TAP)

Lee et al. introduced TAP mechanism ⁽⁰⁾

● Bypass LLC.
● Core Sampling.
● Cache block lifetime normalization.
● TAP-UCP and TAP-RRIP.

Core Sampling

● Samples GPU cores with different cache policies.
● Measures performance differences.

(0) J. Lee and H. Kim, “TAP: A TLP-aware cache management policy for a CPU-GPU heterogeneous architecture,” in 18th
International Symposium on High Performance Computer Architecture (HPCA). IEEE, 2012, pp. 1–12.

Core-POL1

Core-POL2

Core-Follow

Core-Follow

Core-Follow

Core Sampling
Controler (CSC)

Last-Level
Cache

Performance
Metric

Decision

Policy 1: e.g. LRU
Policy 2: e.g. MRU

Access

Calculate
Δ (IPC1, IPC2)Δ (IPC1, IPC2)

Δ < ThresholdΔ < Threshold

Cache
friendly

Not Cache
friendly

Yes No

26.01.2016 18

Introduction

Methods

Conclusion

Discussion

Cache block lifetime normalization

● GPU cores have an order-of-magnitude more cache accesses.
● Monitor cache access rate differences between CPU and GPU applications

and periodically calculate ratio.

GPU $ Access Counter

CPU $ Access Counter

Calculate
Ratio

r=
GPUCount
CPUCount

r > threshold

r < threshold

XRATIO = r

XRATIO = 1

TAP

Core Sampling

Lifetime
normalization

To find cache-friendly applications.

To consider different degree of cache accesses.

TLP-Aware
Cache Management Policy (TAP)

26.01.2016 19

Introduction

Methods

Conclusion

Discussion

TAP-Utility-Based Cache Partitioning (TAP-UCP)

● UCP is a dynamic cache partitioning mechanism for only CPU workloads.
● Allocate more cache space to applications that obtain the most benefit from

more space.
TAP

Core Sampling

Lifetime
normalization

UCP

GPU CPU1 CPU2 CPU3

LLC

TAP-Re-Reference Interval Prediction (TAP-RRIP)

● Dynamically adapts between two competing cache insertion policies, Static
RRIP (SRRIP) and Bimodal-RRIP (BRRIP).

● Policy Selector (PSEL), keeps track of which policy incurs fewer cache misses
and decides the winning policy.

TAP

Core Sampling

Lifetime
normalization

RRIP

MRU LRU

Decision

LLC Write

TLP-Aware
Cache Management Policy (TAP)

26.01.2016 20

Introduction

Methods

Conclusion

Discussion

Evaluation
Performance

● 152 heterogeneous workloads.
● Improve the performance by 5% and 10% compared to UCP and RRIP and

11% and 12% to LRU.
● Higher benefits with more CPU applications.

J. Lee and H. Kim, "TLP Aware Cache
Management Policy", Talk HPCA-18.

Summary

● LLC management is an important problem in future many-core-heterogeneous
processors.

● TAP mechanism improves performance.
● High overhead for control logic and storage.
● Previous mechanisms don't consider GPGPU-specific characteristics in

heterogeneous workloads.

26.01.2016 21

Conclusion

Introduction

Methods

Conclusion

Discussion

● Multi-level hardware-managed caches are recent addition to GPUs.

● Effective management of caches is very important to fully exploit their potential in
boosting GPU performance and energy efficiency.

● Various proposals have been published the last years.

● In this talk:

● Low-latency mechanism for acquiring and releasing mutexes in a system.

● Reduce off-chip memory accesses by write-buffering and read-bypassing.

● Technique to profile a GPGPU application at run-time in heterogeneous architectures .

● More Literature: Sparsh Mittal, “A Survey of Techniques for Managing and Leveraging
Caches in GPUs”, Journal of Circuits, Systems, and Computers 2014.

26.01.2016 22

Discussion

Introduction

Methods

Results

Discussion

Thank you!

26.01.2016 23

Speculative
Fetch

Introduction

Methods

Conclusion

Discussion

Mutex acquisition delays fetch. Issue fetch in parallel with mutex acquisition.Mutex acquisition delays fetch. Issue fetch in parallel with mutex acquisition.
Ensure correctness via epochs.Ensure correctness via epochs.
● Epoch consists of a fixed number of cycles.
● At the boundary of each epoch, all responders indicate that their mutex releases are

mature and all requesters indicate that their outstanding mutex requests are stale.
● When the requester receives the mutex and both the release is mature and the

request is not stale, the requesting node knows that no update could have occurred
to the data.

Node A
(Requester)

Node B
(Responder) L2

Node C
(Releaser)

(1) Speculative Fetch
(2) Mutex Request
(3) Speculative Response
(4) Write Back + Realese
(5) Mutex Release
(6) Mutex Response

(1)

(2)

(3)

(4)

(5)(6)

Epoch
Boundary
(Case 1)

Epoch
Boundary
(Case 2)

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23

