
ADVANCED SEMINAR COMPUTER ENGINEERING WS 2015/2016 1

Techniques for Caches in GPUs
Guenther Schindler,

University of Heidelberg, ZITI,
G.Schindler@stud.uni-heidelberg.de

Abstract—GPUs have now emerged as general purpose computing platforms for a wide range of applications. To address the
requirements of these applications, modern GPUs include sizable hardware-managed caches. However, several factors, such as
unique architecture of GPU, rise of CPU-GPU heterogeneous computing etc., demand effective management of caches to achieve
high performance and energy efficiency. In this paper, we analyze three recent proposals for managing and leveraging GPU caches.
The first proposal presents a mechanism for implementing low-cost coherence and speculative acquisition of atomic data on the GPU.
The second proposal introduces two cache management schemes: write-buffering and read- bypassing. The write buffering technique
tries to utilize the shared cache for inter-block communication, and thereby reduces the DRAM accesses as much as the capacity of
the cache. The read-bypassing scheme prevents the shared cache from being polluted by streamed data that are consumed only
within a thread-block. The last proposal introduces a cache management policy of CPU-GPU heterogeneous computing systems.

Index Terms—GPU, GPGPU, cache memory, energy efficiency, cache replacement decision, off-chip memory traffic, Atomic
Operations, cache bypassing, heterogeneous architecture.

F

1 INTRODUCTION

G RAPHICS PROCESSING UNITS (GPUs), the coprocessor
originally designed predominantly for graphic render-

ing, nowadays has been proven unexpectedly successful in
the domain of general-purpose applications (GPGPU). The
demands of new application domains have motivated novel
changes in GPU design and architecture. Traditionally GPUs
only provided software-managed local memories, however
as the application domain of GPU broadens, these memories
become insufficient in fulfilling the need of applications
running on GPUs. To address this challenge, state-of-the-art
GPUs provide hardware-managed multi-level caches. While
CPU cache management has been studied over years, GPU
cache management is a relatively new research field.

In this paper, we present and analyze three recent pro-
posals of techniques for managing and leveraging GPU
caches. The first one is motivated by parallel workloads
that utilize atomic operations to update globally shared
data, particularly those that utilize these updates to per-
form coarse, global synchronization. Modern GPUs do not
efficiently support synchronization outside of very local
work units. There is no direct support for synchronizing
threads across computational blocks. GPGPU application
have had to rely exclusively on atomic operations to global
data. While this is a common technique utilized in general
purpose CPUs, the lack of L1 cache coherence in GPUs make
these operations significantly slower.

The second technique is motivated by the fact that
GPGPUs demand a very high external memory bandwidth.
Raising the off-chip memory bandwidth by the increased
clock frequency or pin count is considered very difficult
because of the energy wall problem and the package limita-
tion. As a result, the off-chip memory bandwidth becomes a
critical performance limiting factor and a significant source
of energy and power consumption as well. One solution
to this growing problem is to reduce the number of off-
chip memory accesses by using on-chip memory or cache.

Selective cache management schemes control the placement
of data in the shared L2 cache to reduce the memory traffic
as much as possible when executing GPGPU programs.

The last proposal introduces a cache management policy
of CPU-GPU heterogeneous computing systems. Based on
the fact that on-chip heterogeneous architectures have be-
come a new trend. In particular, combining CPUs and GPUs
is one of the major trends. In these architectures, various
resources are shared between CPUs and GPUs, such as
the last-level cache, on-chip interconnection, memory con-
trollers, and off-chip DRAM memory. The last-level cache
(LLC) is one of the most important shared resources in chip
multi-processors. Managing the LLC significantly affects
the performance of each application as well as the overall
system throughput.

The remainder of the paper is organized as follows.
Section 2 provides a brief overview of the GPU architecture
and a comparision between GPU and CPU caches. Section
3 introduces mechanisms to improve atomic operations in
GPUs. Section 4 presents a scheme to avoid off-chip ac-
cesses for inter-block communication. Section 5 shows two
examples for cache bypassing in CPU-GPU heterogeneous
systems. Finally section 6 presents the conclusion.

2 BACKGROUND

In this section, we first briefly introduce the most important
features of the GPU architecture as well as the execution
model. We then describe the differences between GPU
caches and CPU caches. Although we focus on NVIDIA
GPUs and use CUDA terminology in the paper, the concepts
also apply to AMD GPUs.

2.1 GPU Architecture
Based on SIMD, the execution model of GPUs is named
single-instruction-multiple-threads or SIMT [7]. A kernel,



ADVANCED SEMINAR COMPUTER ENGINEERING WS 2015/2016 2

Fig. 1. Memory hierarchy of Fermi architecture.

which is a function that runs on the GPU, includes thou-
sands of threads that are grouped into multiple thread
blocks (cooperative thread arrays (CTAs)). This CTAs will be
mapped to several streaming multiprocessors (SMs) when
a kernel launch occurs. Threads inside a CTA are further
organized in groups of 16 or 32, called warps. In an SM, a
warp is the basic unit in terms of scheduling, executing and
accessing memory. If a warp is obstructed by a long latency
operation the warp scheduler will switch to another ready
warp instantly with no cost [7].

The GPU memory architecture contains registers, L1
cache, read-only data cache, interconnection network, L2
cache and global memory. Registers are private to threads.
The L1 and read-only caches are shared by all CTAs in an
SM. The L1 cache is not coherent. Furthermore, the L1 cache
shares the same on-chip storage with the shared memory
(or Scratch Pad) of an SM. Their relative sizes are reconfig-
urable. Scratch Pad is a software controlled cache which is
explicitly controlled by the programmer. SMs are connected
to a unified L2 cache by an interconnection network. The L2
cache is generally partitioned into several banks (Figure 1),
each of them being a buffer for GDDR memory channels.
This partitioning makes the L2 cache implicitly coherent.

One of the most important facts about GPU memory is
coalescing. Simultaneous memory request from threads in
the same warp are usually combined as a group request for
a cache-line sized chunk before accessing L1 cache. Non-
coalesce memory accesses will end up in a significant loss
of bandwidth.

The L1 cache line is 128B and caches global memory read
accesses. The L2 cache is much larger with a smaller cache
line size of 32B and serves all types of memory accesses. [7]

2.2 GPU Caches vs. CPU Caches
GPU chips spend more die-space on ALUs and less on
caches whereas CPU chips have huge caches and just a few
ALUs. For example, Intel’s Itanium 9560 CPU uses 32MB
last level cache (LLC) [3]. In contrast, the GT200 architecture
GPUs did not feature an L2 cache, the Fermi GPU has 768KB
LLC and the Kepler GPU has 1536KB LLC [4]. Furthermore,
the per-thread cache share for GPUs is much smaller than
for CPUs, which indicates that the useful data fetched by
one thread is very likely to be evicted by other threads
before actual re-usage. For example, Intel’s Haswell has
16KB L1 cache per thread. Nvidia’s Fermi has only 32B

and and Kepler 24B L1 cache per thread [5]. Thus, caches
in GPUs can take advantage of spatial locality but not of
temporal locality. Instead of seeking performance via out-
of-order processing and large caches, GPUs make use of
low-overhead thread scheduling and hide memory latencies
via multi-threading. CPUs are low latency low throughput
processors whereas GPUs are high latency high throughput
processors.

Unlike CPU architectures from Intel and AMD, the L1
caches in CUDA capable cards are not coherent. This means
that if two different SMs are reading and writing to the same
memory location, there is no guarantee that one SM will
immediately see the changes from the other SM.

3 ATOMIC OPERATIONS

As new applications are explored and highly parallel algo-
rithms are adapted to GPUs, the demand for new features is
growing. A large portion of applications are still not suited
for GPUs due to their high utilization of atomic operations,
particularly as global synchronization mechanism. There is
no direct support for synchronizing threads across CTAs.
Unlike the sophisticated synchronization mechanisms in
CPUs or cluster-systems, GPU applications must rely on
slow atomic operations on shared data. CPUs, for example,
take advantage of coherent L1 caches to efficiently imple-
ment atomic operations. These traditional implementations
are not possible on GPUs due to the lack of L1 cache
coherency. Implementing coherency on GPUs seems to be
impossible because of the high design and verification costs,
coupled with the fact that the primary use of GPUs -
rendering of graphics - does not benefit from it. Therefore, it
is inevitable to implement inexpensive mechanisms which
fulfill this demands.

In this section, we first analyze the current state-of-
the-art regarding atomic operations on the GPU. We then
present mechanisms to provide high speed atomic opera-
tions to applications on the GPU, published by Franey et al.
[12].

3.1 Present Atomic Operations
In order to understand solutions for atomic operations, one
must have an understanding of the current implementation
on GPUs. Unfortunately implementation of atomic opera-
tions on GPUs have not been publicly described but Franey
et al. assume that atomic instructions are executed like non-
atomic instructions in the shader core. According to that,
an atomic operation is generated in the shader core and
traverses the interconnect to the appropriate L2 bank. Once
at the L2 bank, the operation is ordered, data is acquired,
and the operation is performed. The new data is written
back and a response is sent back to the core containing the
previous value of the data. [12]

In order to avoid the latency of traversing the intercon-
nect, the atomic operations must be performed locally with
local data.

3.2 AtomDir
The first mechanism is a simple adaption of Atomic Co-
herence [13] that allows the GPU to implement L1 cache



ADVANCED SEMINAR COMPUTER ENGINEERING WS 2015/2016 3

coherence on atomic data. Atomic Coherence prevents race
condition by mimicking a traditional blocking bus. This is
originally realized by leveraging a nanophotonic ring that
is unique to the system it is evaluated on [13]. The ring
topology must connect all nodes that would need to acquire
mutexes. Implemented by a rotating token this ring need
not to be a physical set of wires. This token can be realized
by a modulo operation on the cycle count. A node knows
that is the holder of the token based on how many time-
steps have occurred. If a node acquires a mutex it simply
has to wait for the token, can then (assuming the mutex is
available) acquire the mutex and mark the it unavailable
for subsequent requesters. Releasing the mutex follows the
same scheme.

Regarding this implementation it is necessary to add a
structure to each node to track the state of the mutexes and
buffers to hold requests until the token arrives. Franey et
al. introduced a mechanisms called ”busy wire” to indicate
to nodes when an update is in flight. The busy wire is a
point-to-point wire using the underlying interconnect and
is conceptually running along with the data links. When
the busy wire signals an update all mutex acquisitions are
stalled. If it signals no update acquisitions are allowed to
occur. Each node is responsible for keeping the busy wire
asserted until that node indicates it no longer needs to be
asserted. The state of the busy wire then propagates through
the system at a rate at least equal to the rotating token to
ensure no mutexes are acquired until the update completes.
It is also necessary to add more than one busy wire in order
to reduce false conflict problems. The amount of additional
wires is a design decision based on how many mutexes
should be available in the system.

However, this mechanism called AtomNaive performed
not much better than the current state-of-the-art approach
and much worse for certain applications. This is due to the
long latency to acquire the token and the additional latency
for updates.

In order to improve this performance Franey et al. re-
placed the token by adapting techniques used in directory-
based cache coherence. By replacing the token by a ”owner”
directory and remove the updates by unique home nodes
the overall latency should be reduced. When a node acquires
a mutex, it simply requests the mutex from the owner
instead of waiting for the token. If the mutex is available,
the owner then responds it back to the requester. This
mechanism, called AtomDir, replaces the waiting for the
token with a round-trip communication with the owner.

3.3 Hybrid Topology

Further, Franey et al. extend the previous described mecha-
nisms to improve latency motivated by the fact that latency
is optimal when a node is able to satisfy its own mutex
requests in the same cycle the requests are generated (self-
satisfied request). In the AtomDir case, this occurs only
when the requester happens to also be the owner of the
mutex. In AtomNaive, this occurs whenever the talking
stick is present at the requester on the same cycle of the re-
quest. Therefore, we attempt to increase the number of self-
satisfied mutex requests - that is maximized in AtomNaive -
without imposing the severe latency overhead of the token.

This is done by implementing a system that is hybrid of the
single owner directory of AtomDir and the fully-distributed
directory in AtomNaive. Here, the mutex state is distributed
across different logical rings, where each member of a ring
maintains and responds to requests for the same mutexes
and nodes in different rings maintain different mutexes.

This hybrid implementation can reduce the latency be-
cause it replaces the ∆x plus ∆y latency to transmit a
request to an owner with the token latency in one dimension
(∆x, nominally). This is beneficial because average token
latency is half ∆x since it is alway a one-way trip while ∆x
is a round-trip communication.

3.4 Speculative Fetches

In the state-of-the-art implementation of atomic operations
they simply traverse the interconnect to the L2 and are
immediately satisfied, while in the mechanisms, presented
by Franey et al., they incur the additional mutex acquisition
penalty. Therefor, they introduced a final optimization to
support speculative fetches which allows to fetch memory
in parallel with a mutex request. To ensure correctness of
the fetched data they use a method called epochs in order to
differentiate mature in immature events in the system. An
epoch consists of a fixed number of cycles. At the boundary
of each epoch, all responders indicate that their mutex
releases (i.e., available mutexes in the mutex status table)
are mature and all requesters indicate that their outstanding
mutex requests are stale. Therefore when a responder sends
a mutex to a requester, it indicates whether the last release
was mature or not. When the requester receives the mutex,
if it is mature, it checks whether or not its request is stale.
If both the release is mature and the request is not stale, the
requesting node knows that no update could have occurred
to the data associated with a mutex between its speculative
fetch and mutex acquisition (i.e., both conditions of the
release being done in a previous epoch and the request being
made in the current epoch are satisfied).

3.5 Evaluation

In order to evaluate the contribution of the different mech-
anisms (AtomDir, Topology and Speculative Fetch), Franey
et al. simulated the system, building features on top of one
another.

As in Figure 8 can be seen, AtomDir shows the benefit
of being able to cache atomic data, Topology shows the
benefit of distributing ownership, and SpecFetch shows the
advantage of issuing speculative memory fetches along with
mutex acquisition.

4 COMMUNICATION THROUGH CACHES

Since Fermi the L2 cache is used to provide a buffer for
inter-block communication. Some GPU applications suffer
from the lack of an efficient inter-block synchronization
mechanism. A widely used solution to this problem is to
exit the current kernel and re-launch the successive kernel
after a global synchronization by the host.

In this section we analyze the current communication
scheme, identify its problems and limitations, and present a



ADVANCED SEMINAR COMPUTER ENGINEERING WS 2015/2016 4

Fig. 2. Contributions to Performance. [12]

Fig. 3. The worst case usage of the LRU replacement policy during inter-
block communication.

mechanism, introduced by Choi et al. [6], which improves
inter-block communication.

A inter-block communication can be performed by load
and store instructions without demanding off-chip memory
transactions when the cache size is large enough to hold
all of the data involved. However, when the cache size is
smaller than the working set, the L2 cache with a simple
management scheme can not reduce the number of po-
tentially unnecessary off-chip memory accesses during the
inter-block communication.

Figure 3 shows an extreme case of the LRU replacement
policy, where the shared L2 cache does not help reducing
the off-chip memory traffic for inter-block communication.

In this example, four addresses, denoted as a0-a3, are
accessed for store and load operations in two consecutive
kernels, respectively. It is assumed that the shared cache
has only single set of two ways for simplification, where
the lower box means the LRU position. As shown in figure
3, the cache lines allocated by write operations are evicted
by other write operations of the same kernel before the
global synchronization. Some of the cache lines allocated
for write operations may remain at the kernel completion,
but they will be evicted completely by read operations of
the successive kernel. As a result, the amount of off-chip
memory accesses is the same, whether there is L2 cache or
not.

4.1 Write-buffering for inter-block communication

With the LRU replacement policy, the L2 cache works as
a FIFO (First-In First-Out). Choi et al. [6] prevent this by
modifying the cache management scheme. For that purpose,

Fig. 4. An example of write-buffering.

Fig. 5. Write-buffering without read-bypassing.

Fig. 6. Write-buffering with read-bypassing.

a 1-bit status flag, denoted as C, is added to every cache
line. On a write miss, if the write operation is directed to the
write-buffering, a cache line is allocated and C is set. During
the allocation, if the C flag of a cache line is set, the line is
not selected for replacement. If the flag for every cache line
is set, then the write reference bypasses the L2 cache and
is forwarded to off-chip memory without allocation. The
reason is that the L2 cache otherwise works as a FIFO. When
a read hit occurs for the line with which the C flag is set,
the line is invalidated immediately to make it available for
replacement without any off-chip memory access.

As can be seen in figure 4, the write-buffering prevents
the cache lines for a0 and a1 from being replaced by a2 or
a3. Since they are retained until being read after the global
synchronization, the number of DRAM accesses is reduced.

4.2 Read-bypassing for private data
Figure 5 shows a negative example of write-buffering. If
load operations are made for b0-b3, they may evict the cache
lines for a0 and a1 due to conflict or capacity misses. Thus
there is no benefit of applying the write-buffering and the
number of off-chip memory access is the same with that of
the pure LRU replacement policy.

Choi et al. [6] proposed another cache management
scheme, named read-bypassing. If the read-bypassing is
applied to private data load operations for b0-b3, the shared
cache simply bypasses them to upper-level memory and
does not allocate the cache lines for them. Figure 6 shows
that the cache lines allocated for a0-a1 with the write-
buffering can be retained until they are read.

The proposed scheme is software-controlled where load
and store instructions are marked with their respective



ADVANCED SEMINAR COMPUTER ENGINEERING WS 2015/2016 5

scheme. Global load and store instructions can be annotated
with cache operators which control the L2 cache behavior
[7]. Currently, the cache operators are applied to all of the
load/store instructions in a program by the PTX assembler
options. Two additional cache operators, named .cc and
.cp, are defined for write-buffering and read-bypassing. The
load instruction directed with .cp bypasses L2 cache. For
a store instruction directed with either .cc, a cache line
is allocated on a cache miss an the C bit is set for write
buffering.

4.2.1 Performance Evaluation
Choi et al. [6] used FFT, HotSpot and SRAD as workloads,
which all show inter-block communication, as workloads.
The performance of the proposed technique is showed in
figure 7 using the example of FFT.

As a result of the proposed technique, the amount of
write traffic to the off-chip memory is reduced. The number
of off-chip read accesses is also reduced since the cache lines
allocated for the write-buffering serve the read accesses of
the successive kernel.

5 CACHE BYPASSING

Combining CPUs and GPUs on the same chip has become
a popular architectural trend, as can be seen from Intels
recent Sandy Bridge, AMDs Fusion, and NVIDIAs Denver.
In these architectures, various resources are shared between
CPUs and GPUs, such as the last-level cache (LLC), on-chip
interconnection, memory controllers, and off-chip DRAM
memory. However, such heterogeneous architectures put
more pressure on shared resource management. In partic-
ular, managing the LLC is very critical to performance.

Under the LRU approximations, widely used in modern
caches, applications that have high cache demand acquire
more cache space. The easiest example of such an applica-
tion is a streaming application. Even though a streaming
application does not require caching due to the lack of
data reuse, data from such an application will occupy the
entire cache space under LRU when it is running with a
non-streaming application. Thus, the performance of a non-
streaming application running with a streaming application
will be significantly degraded.

In order to improve the overall performance of caches,
researchers have proposed a cache mechanisms to identifies
the dominant pattern within an application and avoids
caching for non-temporal data. This can be done by insert-
ing incoming cache blocks into positions other than the most
recently used (MRU) position to enforce a shorter life time
in the cache.

5.1 TLP-Aware Cache Management Policy

This section proposes a thread-level parallelism-aware cache
management policy (TAP), introduced by Kim et al. [8], that
consists of two components: core sampling and cache block
lifetime normalization. They also propose two new TAP
mechanisms: TAP-UCP and TAP-RRIP.

Based on the need of a way to identify the cache-to-
performance effect for GPGPU application they propose a
sampling mechanism that applies a different policy to each

core, called core sampling. Core sampling applies a different
policy to each core and periodically collects samples to see
how the policies work. For example, to identify the effect of
cache on performance, core sampling enforces one core to
use the LRU insertion policy and another core (Core-POL2)
to use the MRU insertion policy. Once a period is over,
the core sampling controller (CSC) collects the performance
metrics, such as the number of retired instructions, from
each core and compares them. If the CSC observes signif-
icant performance differences between Core-1 and Core-2,
we can conclude that the performance of this application
has been affected by the cache behavior.

GPGPU applications typically access caches much more
frequently than CPU applications. Even though memory-
intensive CPU applications also exist, the cache access rate
cannot be as high as that of GPGPU applications due to
a much smaller number of threads in a CPU core. Also,
since GPGPU applications can maintain high throughput
because of the abundant TLP in them, there will be con-
tinuous cache accesses. However, memory-intensive CPU
applications cannot maintain such high throughput due to
the limited TLP in them, which leads to less frequent cache
accesses. As a result, there is often an order of difference
in cache access frequencies between CPU and GPGPU ap-
plications. Hence, when CPU and GPGPU applications run
together, we have to take into account this difference in the
degree of access rates.

To solve this issue, Kim et al. [8] introduced cache
block lifetime normalization. First, they detect access rate
differences by collecting the number of cache accesses from
each application. Periodically, they calculate the access ratio
between applications. The TAP policies utilize the value of
this ratio to enforce similar cache residential time to CPU
and GPGPU applications.

5.1.1 TAP-UCP

TAP-UCP is based on UCP [9], a dynamic cache partitioning
mechanism for only CPU workloads. Base on the observa-
tion that not all threads/applications benefit equally from
caching (simple LRU replacement is not good for system
throughput) the idea of UCP is to allocate more cache space
to applications that obtain the most benefit from more space.
UCP periodically calculates an optimal partition to adapt a
run-time behavior of the system.

To apply TAP in UCP, we need two modifications in the
UCPs partitioning algorithm. The first modification is that
when the CSC identifies that caching is not effective, only
CPU applications are considered for cache allocation. The
second modification is that partitioning is performed based
on the cache access ratio which is periodically set by cache
block lifetime normalization.

5.1.2 TAP-RRIP

The Re-Reference Interval Prediction (RRIP) mechanism
[10], which is the base of TAP-RRIP, dynamically adapts
between two competing cache insertion policies, Static-RRIP
(SRRIP) and Bimodal-RRIP (BRRIP) to filter out trashing
patterns. A saturating counter, called a Policy Selector
(PSEL), keeps track of which policy incurs fewer cache
misses and decides the winning policy.



ADVANCED SEMINAR COMPUTER ENGINEERING WS 2015/2016 6

Fig. 7. Effect on the off-chip memory traffic reduction in FFT.

Fig. 8. Performance of TAP. [11]

When the CSC identifies that caching is not effective
TAP-RRIP enforce the BRRIP policy for the GPGPU applica-
tion since BRRIP generally enforces a shorter cache lifetime
than SRRIP for each block. Further, if the value of the cache
access ratio (GPU/CPU) is greater than 1, the policy for the
GPGPU application will be also set to BRRIP. Otherwise, the
winning policy by PSEL will be applied.

5.1.3 Performance Evaluation
Kim et al. [8] evaluate the TAP mechanisms on 152 heteroge-
neous workloads and showed that they improve the perfor-
mance by 5% and 10% compared to UCP and RRIP and 11%
and 12% to LRU. Also, they showed that TAP mechanisms
show higher benefits with more CPU applications.

6 CONCLUSION

Multi-level hardware-managed caches are relatively recent
addition to GPUs which also marks a paradigm shift in
GPU architecture towards mainstream computing. Effective
management of caches is very important to fully exploit
their potential in boosting GPU performance and energy
efficiency. In this paper, we presented three recent proposals
by different researchers.

We have presented a low-latency mechanism, proposed
by Franey et al. [12], for acquiring and releasing mutexes in
a system of multiple nodes, applied to improve the perfor-
mance of atomic operations on a GPU. This mechanisms
achieve modest improvements for GPGPU workloads on
Fermi. Still, it is very doubtful that it improves performance
on later GPU architectures since Kepler already reduced the

L2 latency significantly and therefore the performance of
atomic operations. Besides, Maxwell only has a L1 read-only
cache so it is likely that this mechanism can’t be applied
there.

We have analyzed the publication by Choi et al. [6]
which shows that the off-chip memory accesses can be
substantially reduced by the proposed techniques, namely
write-buffering and read-bypassing. Larger L2 caches are
obviously a trend in GPUs. For example Fermi implements
768 KB whereas Maxwell implements 2048 KB. The per-
formance evaluation shows, that the proposed mechanism
improves more with larger L2 caches. Also, latency of L2
caches in GPUs decreases which should improve perfor-
mance further. A negative aspect is the high implementation
cost for programmers which have to add the instructions
manually.

In order to identify the characteristics of a GPGPU ap-
plication in heterogeneous processors, we finally analyzed
a proposed mechanism, published by Kim et al. [8], called
core sampling, which is a simple yet effective technique to
profile a GPGPU application at run-time. By applying core
sampling to UCP and RRIP and considering the different de-
gree of access rates, the researchers proposed the TAP-UCP
and TAP-RRIP mechanisms. The TAP mechanism shows
good performance improvements over LRU and is not re-
stricted to specific architectures. This comes with the cost
of high overhead for control logic and storage. However,
none of the previous mechanisms consider GPGPU-specific
characteristics in heterogeneous workloads.

We believe that this paper will provide the readers
insights into GPU cache management techniques and moti-
vate them to propose even better techniques for leveraging
the full potential of caches in the GPUs of tomorrow.

REFERENCES

[1] Future Technologies Group, Oak Ridge National Laboratory
(ORNL), ”A Survey of Techniques for Managing and Leveraging
Caches in GPUs”, Journal of Circuits, Systems, and Computers,
2014.

[2] Nvidia. CUDA Programming Guide. 2015.
[3] Intel, http://download.intel.com/newsroom/archive/Intel-

Itanium-processor-9500 ProductBrief.pdf.
[4] A. Heinecke, M. Klemm, and H. Bungartz, From GPGPU to Many-

Core: Nvidia Fermi and Intel Many Integrated Core Architecture
Computing in Science & Engineering, vol. 14, no. 2, pp. 7883, 2012.



ADVANCED SEMINAR COMPUTER ENGINEERING WS 2015/2016 7

[5] Ang Li, Gert-Jan van den Braak, Akash Kumar, and Henk Corpo-
raal, ”Adaptive and Transparent Cache Bypassing for GPUs”, C 15,
November 15-20, 2015, Austin, TX, USA.

[6] H. Choi, J. Ahn, and W. Sung, Reducing off-chip memory traffic
by selective cache management scheme in GPGPUs, in 5th Annual
Workshop on General Purpose Processing with Graphics Process-
ing Units. ACM, 2012, pp. 110119.

[7] NVIDIA Corporation. PTX: Parallel Thread Execution ISA Version
2.0, 2010.

[8] J. Lee and H. Kim, TAP: A TLP-aware cache management policy
for a CPU-GPU heterogeneous architecture, in 18th International
Symposium on High Performance Computer Architecture (HPCA).
IEEE, 2012, pp. 112.

[9] M. K. Qureshi and Y. N. Patt. Utility-based cache partitioning: A
low-overhead, high-performance, runtime mechanism to partition
shared caches. In MICRO-39, pages 423432, 2006.

[10] A. Jaleel, K. B. Theobald, S. C. Steely, Jr., and J. Emer. High per-
formance cache replacement using re-reference interval prediction
(RRIP). In ISCA-32, pages 6071, 2010.

[11] J. Lee and H. Kim, ”TLP Aware Cache Management Policy”, Talk
HPCA-18.

[12] S. Franey and M. Lipasti, Accelerating atomic operations on GPG-
PUs, in Seventh IEEE/ACM International Symposium on Networks
on Chip (NoCS), 2013, pp. 18.

[13] D. Vantrease, M. Lipasti, and N. Binkert, Atomic coherence: Lever-
aging nanophotonics to build race-free cache coherence protocols,
in High Performance Computer Architecture (HPCA), 2011 IEEE
17th International Symposium on, 2011, p. 132143.


