

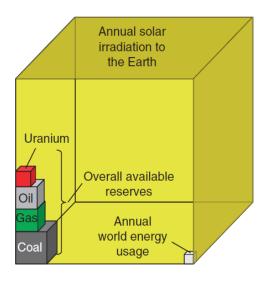
Efficiency improvement in solar cells

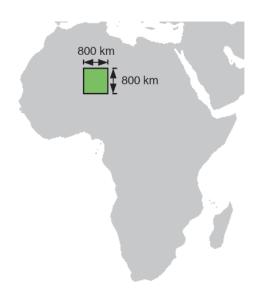
MSc_TI | Winter Term 2015 Klaus Naumann

- Introduction
- Physical Basics
- Function of Solar Cells
- Cell Technologies
- Efficiency Improvement
- Outlook

- Introduction
- Physical Basics
- Function of Solar Cells
- Cell Technologies
- Efficiency Improvement
- Outlook

Introduction | Application Examples





MSc TI | Seminar | 2015 4

Introduction | Sun, Radiation and the Sahara Miracle

"Sun sends us more than 7000 time the energy than we use in a year"

$$W_{Earth} = 1.119 \, * 10^{18} \, kWh$$

$$W_{World} = 1.454 * 10^{14} kWh$$

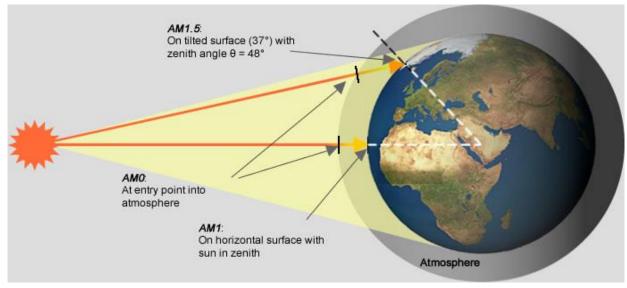
Source:

Konrad Mertens, Photovoltaics – Fundamentals, Technology and Practice, Wiley 2014

Radiation power of sun:

$$P_{Sun} = 3.845 \cdot 10^{26} W$$

Solar constant: outside Earth's atmosphere:


$$E_0 = 1367 \frac{W}{m^2}$$

• Global radiation: Inside the atmosphere:

$$E_G \approx 1000 \; \frac{W}{m^2}$$

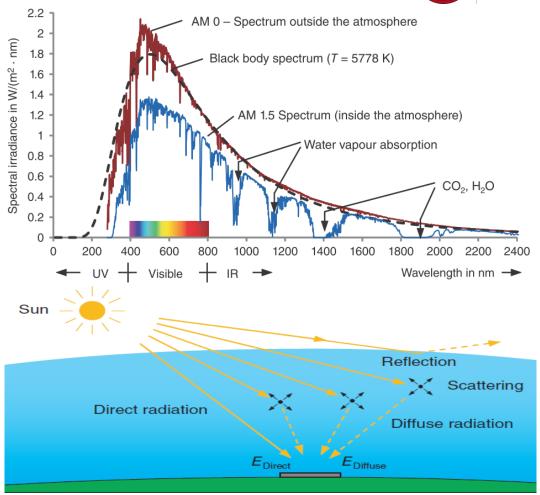
Introduction | Air Mass

Source:

http://www.greenrhinoenergy.com/solar/radiation/spectra.php

- AM 0 (Air Mass 0): outside the atmosphere
- AM 1 (Air Mass 1): inside the atmosphere (vertical path through atmosphere)
- AM 1.5 (Air Mass 1.5): light travelled 1.5 times the distance compared to AM 1

Introduction | Solar Spectrum and Radiation Types


Losses:

- Reflection at atmosphere
- Absorption of light
- Scattering

→ Two types of radiation:

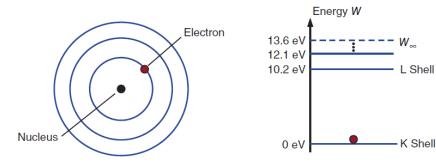
- Direct
- Diffuse

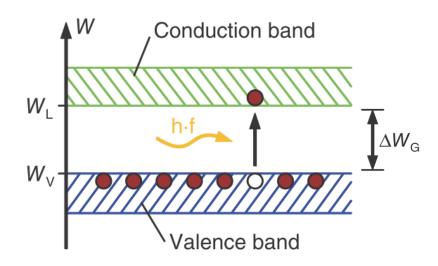
$$\rightarrow E_G = E_{Direct} + E_{Diffuse}$$

Source: Konrad Mertens, Photovoltaics – Fundamentals, Technology and Practice, Wiley 2014

- Introduction
- Physical Basics
- Function of Solar Cells
- Cell Technologies
- Efficiency Improvement
- Outlook

Physical Basics | Bohr's Atomic Model and Band Model

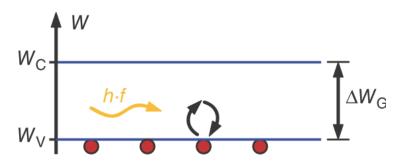


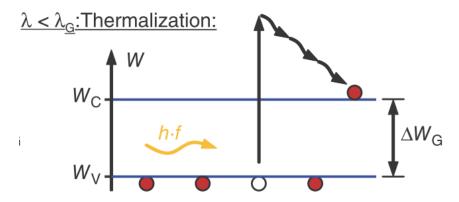

- lonizing energy: separate electron from the atom
- Photon: light packet of particular wavelength
- Absorption of light:

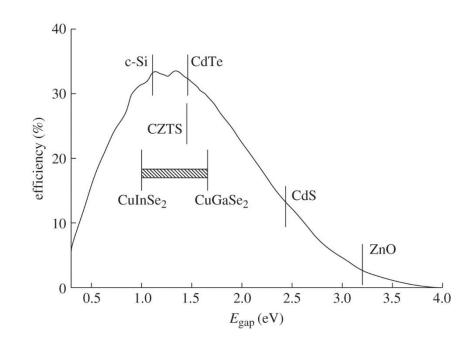
 light particle hits electron and is absorbed. Released energy lifts electron from Valence band to Conduction band

$$\Delta W_G = W_L - W_V = h \cdot f$$
$$\lambda = \frac{c_0}{f}$$

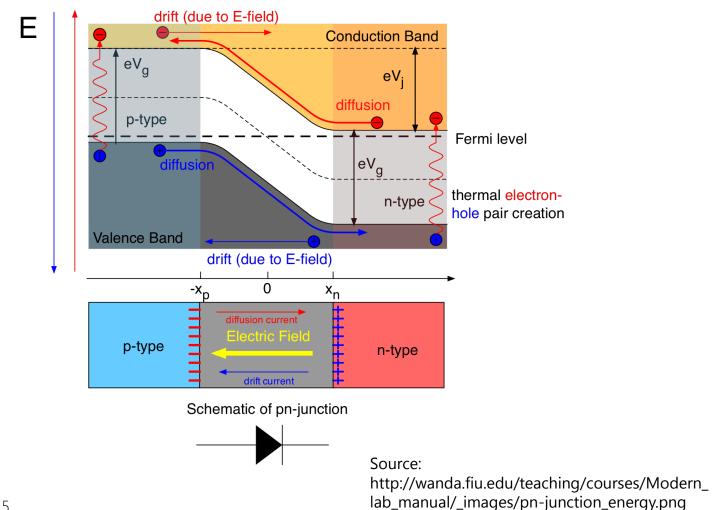
h = Planck's constant



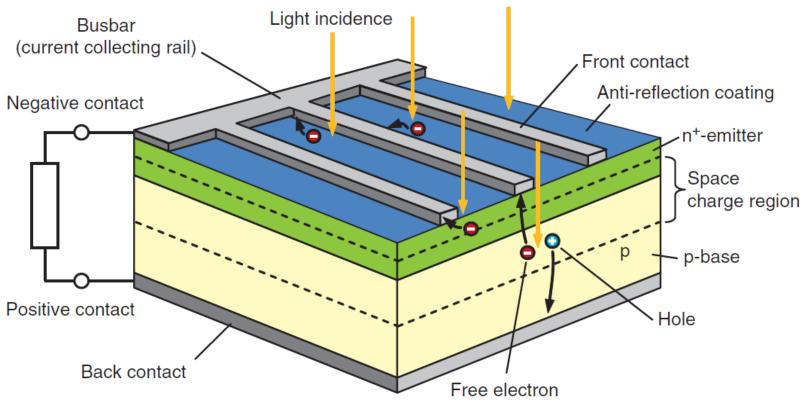

Source: Konrad Mertens, Photovoltaics – Fundamentals, Technology and Practice, Wiley 2014


Physical Basics | Semiconductor Band Gap

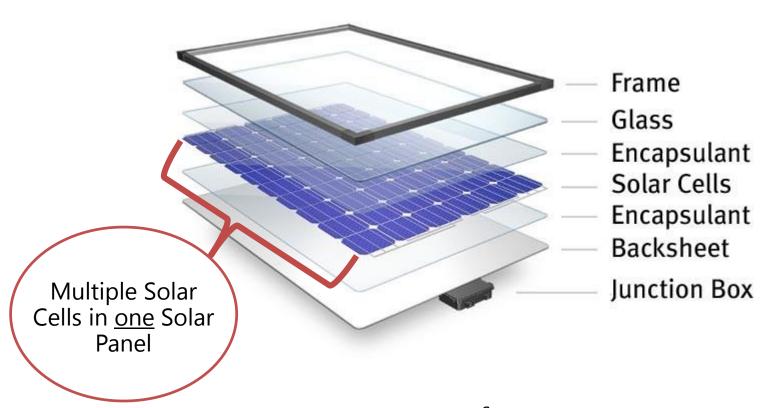
$\lambda > \lambda_G$:Transmission:


Source: Konrad Mertens, Photovoltaics – Fundamentals, Technology and Practice, Wiley 2014

- Introduction
- Physical Basics
- Function of Solar Cells
- Cell Technologies
- Efficiency improvement
- Outlook

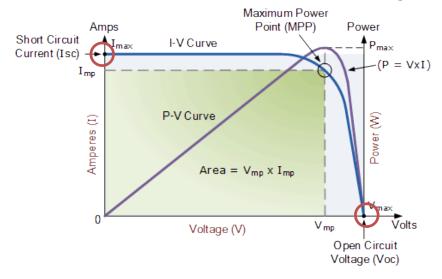

Function of Solar Cells | p-n junction

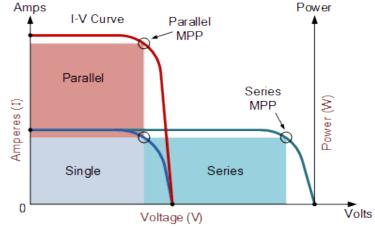
Function of Solar Cells | Method of Function



Source: Konrad Mertens, Photovoltaics – Fundamentals, Technology and Practice, Wiley 2014

Function of Solar Cells | Solar Panel Construction


Source:


http://www.dupont.com/content/en_us/home/products-and-services/solar-photovoltaic-materials/what-makes-up-solar-

panel/_jcr_content/thumbnail.img.jpg/1435680366722.jpg

Function of Solar Cells | Characteristic Curve

MSc TI | Seminar | 2015

Source: http://www.alternative-energy-tutorials.com/energy-articles/solar-cell-i-vcharacteristic.html

Load Resistance determines operating point:

$$\blacksquare$$
 R = 0 $\rightarrow I_{SC}$

$$R = \infty \rightarrow V_{OC}$$

Maximum Power Point (MPP):

$$P_{MPP} = I_{MPP} \cdot V_{MPP}$$

Fill Factor (FF):

$$FF = \frac{V_{MPP} \cdot I_{MPP}}{V_{OC} \cdot I_{SC}} = \frac{P_{MPP}}{V_{OC} \cdot I_{SC}}$$

- > Si-Cells: 0.75 0.85
- Thin Film: 0.6 0.75
- Measure for Quality

- Introduction
- Physical Basics
- Function of Solar Cells
- Cell Technologies
- Efficiency Improvement
- Outlook

Cell Technologies | Cell Types

•	Thick	Film	(150 –	250	μm)
---	--------------	------	--------	------------	-----

	Monocrystalline	(1st Gen Cells)	~ 20 %
--	-----------------	-----------------	--------

Polycrystalline (1st Gen Cells) ~ 16 %

Thin Film (< 10 μm)

- Amorphous Silicon (2nd Gen Cells) ~ 10 %
- Cadmium-Telluride (2nd Gen Cells) ~ 10 %
- CIGS (CuIn_xGa_(1-x)Se₂)* (2nd Gen Cells) $\sim 15 \%$
- Emerging: Perovskite (3rd Gen Cells)

Multi-Layer

nmax

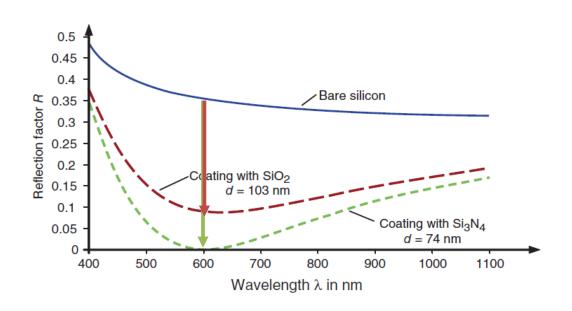
^{*}Copper-Indium-Gallium-Selenide

Cell Technologies | Comparison of Cell Types

					And I was
		Mono	Poly	Thin	CIGS
	Generation	1 st Gen		2 nd Gen	
>	Efficiency	14 – 20 %	12 – 16 %	6 – 10 %	13 – 15 %
>	Low light performance	Losses (diffuse)		Low losses	
>	Thermal behavior	High temperature losses		Low losses	
>	Cost (1 = lowest)	3	2	1	4
	Long-term test	Very high Performance, stable	High Performance, stable	Average Performance	Low Performance (in winter higher)
	Durability	High	High	Lower	Not tested yet
	Weight	1		Ţ	
	Failure vulnerability	11		1	

 \uparrow = High, \downarrow = Low, $\downarrow \downarrow$ = Very low

Source: http://www.solaranlagen-portal.com/solarmodule/systeme/vergleich

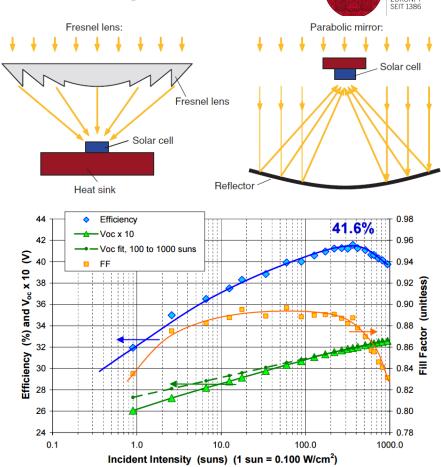


- Introduction
- Physical Basics
- Function of Solar Cells
- Cell Technologies
- Efficiency Improvement
- Outlook

Efficiency Improvement | AR Coating

Anti-Reflection Coating

- Reduction of reflection increases efficiency
- With certain coatings and specific wavelengths:
 Reflection → 0

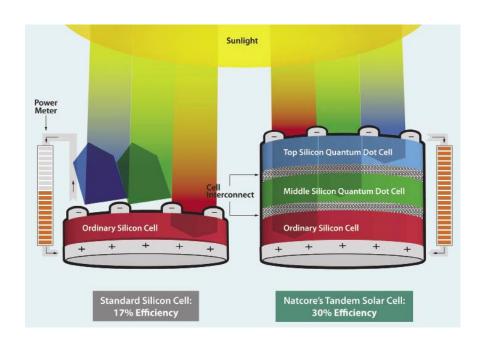

Source: Konrad Mertens, Photovoltaics – Fundamentals, Technology and Practice, Wiley 2014

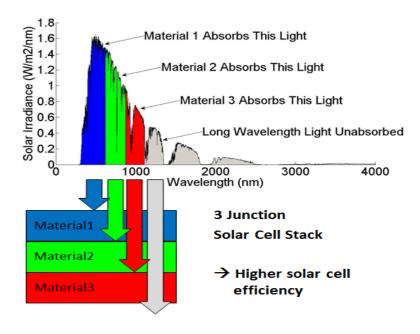
Efficiency Improvement | Radiation Bundling

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

Radiation Bundling

- Reduction of solar cell area
- Cell curve moves up
 - → higher efficiency
- Efficiency increase not continuously!
 - → Electrical losses increase as well
- Resistance rise with square of operating current
 - → Heat sink needed
- Record: 43.5 % efficiency (concentration factor: 418(!))


Source:

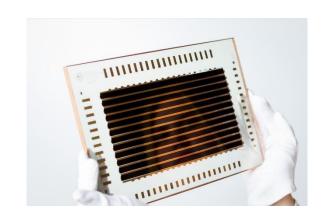

Mertens, Konrad: Photovoltaics – Fundamentals, Technology and Practice, Wiley 2014

Efficiency Improvement | Multi-Layer Cells

Multi-Layer Cells

Source:

http://www.solarpowerworldonline.com/2011/10/solar-cells-without-the-silicon/

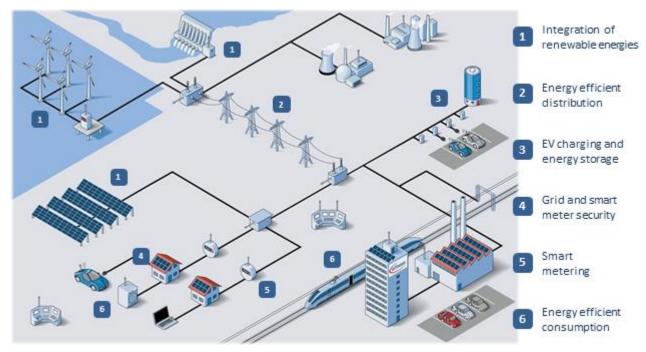

http://www.sj-solar.com/technology/

Efficiency Improvement | Perovskite

New Materials: Perovskite

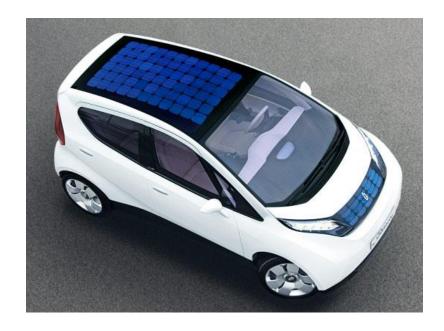
- Thin film cells (stand-alone or in multi-layer cells)
- Very fast efficiency improvement (2006: 2.2 % → 2014: 20.1 %)
- CH₃NH₃Pb X_3 where $X = I^-$ (Iodine), Br^- (Bromine) or Cl^- (Chlorine)
- Anode/Cathode material defines bandgap
 - → not tuned to one wavelength
 - → higher efficiency
- Low energy input in processing compared to Si
 → Low material/manufacturing costs
- Flexible | Light-weight | Semi-Transparent

Source:


Dyakonov, Prof. Dr. Vladimir, Perowskit-Halbleiter erobern die (Dünnschicht-) Photovoltaik, ZAE Bayern, 2014

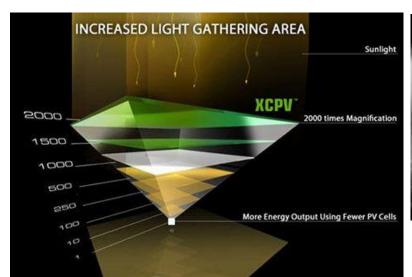
- Introduction
- Physical Basics
- Function of Solar Cells
- Cell Technologies
- Efficiency Improvement
- Outlook

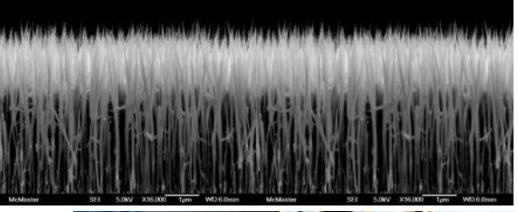
Outlook | Smart Grids

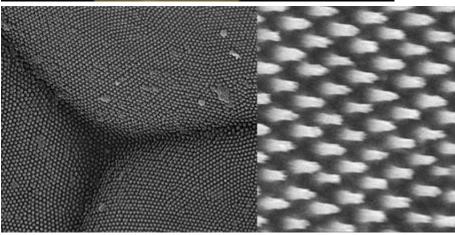

Source: http://www.tonex.com/training-courses/smart-grid-training-for-non-engineers/

- Decentralisation of energy supply
- Efficiency of high importance (decrease of required place and costs)
- Photovoltaics is a big and important part in future concepts (smart grid)

Outlook | Innovations







Outlook | Innovations

Source: http://www.scientificamerican.com/article/farming -solar-energy-in-space/ 28

Thank You

Questions?