
1

Energy Efficient Scheduling
Lorenz Braun

lorenz.braun@stud.uni-heidelberg.de
Institute of Computer Engineering (ZITI),
Ruprecht-Karls-Universitaet Heidelberg

Abstract—As energy efficient hardware is developed and systems feature different kinds of cores, software needs to adapt to it.
Especially schedulers need to acknowledge the heterogeneous computing platforms and make use of it. This paper aims to give a brief
overview on different energy efficient scheduling algorithms for heterogeneous systems and help to find the right scheduler for
applications running on such a platforms. The schedulers this paper covers are the ARM HMP Scheduler, a queue based scheduler, a
portable c library called POET and a model based scheduler for real-time applications. The most important insight is that, independent
of the scheduling strategy, the total load of the system must not be 100 % in order to optimize for energy efficiency.

Index Terms—Scheduling, Energy Efficiency, Heterogeneous Processors, ARM big.LITTLE, Embedded Computing

F

1 INTRODUCTION

ENERGY EFFICIENCY becomes more and more important
these days, be it in server farms or in mobile devices.

When performance is needed the output of each joule,
which was sent into the CPUs, shall be maximized. But
in times when the systems are idle, the power needed
should be as low as possible. This is where heterogeneous
computing platforms come in extremely handy. Powerful
processors together with a smaller but very energy efficient
CPU can fulfill the requirements mentioned before. But hav-
ing the right hardware is not sufficient. The tasks running
on such hardware have to be scheduled accordingly. Only
good scheduling will enable the hardware to perform well
and save energy in that process. This paper aims to give
a brief overview on different energy efficient scheduling
algorithms for heterogeneous systems.

2 SCHEDULING

If there are multiple processors and one or more tasks, a
choice has to be made where the tasks are going to be
executed. The unit that makes this choice is the scheduler.
Its objective is to dispatch the tasks to the processors.

2.1 Common scheduling goals
In common scheduling there are two main goals:

• fairness
• load balancing

Depending on the environment where the scheduler is
used there are additional goals. In a batch system, high
throughput is demanded, whereas in interactive systems
low latency is of importance. In real-time systems like self-
driving cars there are deadlines, which have to be met.
Therefore there is no scheduler which is suited best for all
applications.

Common schedulers are not suited for heterogeneous
systems, as they do not know that the cores are different,

in terms of energy efficiency. Therefore the system cannot
operate in a low energy mode in which only energy efficient
cores are used. Also heavy tasks might not be executed
on more powerful cores where they would profit of the
high computational capacity. Another problem is that gang
scheduling (used for collaborative threads) would waste
performance because threads on the big core would always
finish much earlier.

The current schedulers for homogeneous system save
energy by balancing the load among the cores. By that the
frequency can be lowered when the load is little. This is
the only state-of-the-art technology for energy saving that
homogeneous schedulers are capable of.

2.2 Energy efficient scheduling goals

In energy efficient scheduling it is desirable to reduce the
total energy consumption. This focuses mostly at mobile
devices. For embedded systems, the performance per joule
shall be maximized. The scheduling here considers several
factors. These are not only performance as before, but also
energy consumption and thermal budget. Knowledge of the
different power models has to be put into the scheduler, so
that it can make decisions based on that data. This allows to
dispatch lightweight tasks to the energy efficient cores and
computationally demanding tasks to the powerful ones.

3 THE ARM BIG.LITTLE ARCHITECTURE

The ARM big.LITTLE architecture is a heterogeneous plat-
form, which was developed in order to be energy efficient.
It consists of two different clusters with four cores each.
The little cluster has slow, but very energy efficient ARM
Cortex-A7 cores, whereas the big cluster has faster ARM
Cortex-A15 cores that have more computational power, but
also need much more energy. Each cluster has access to
the interconnect and a separate L2 cache, which lets them
operate independently (Figure 1). Because the cores on
each cluster are binary compatible, tasks can be migrated



2

from big to little and vice versa. Therefore this architecture
can save power when only using the little cluster, without
sacrificing computational power, which is provided when
using the big cluster.

Fig. 1: Simplified figure of the big and little cores.

Both types of cores have performance ranges which
overlap. In this range the little core consumes less power
(Figure 2). Because the little cores are so efficient compared
to the big cores, it is better to use only the little cluster up to
a certain point. Only if the load requires more computational
power the big cores are being used.

Fig. 2: Power consumption of big and little core compared
to each other.

4 ARM HMP SCHEDULER

The ARM Heterogeneous Multi-Processing Scheduler was
implemented for the Linux Kernel and is based on the
Completely Fair Scheduler. It was developed to make use of
heterogeneous hardware from mobile devices, which have a
need to be responsive. Therefore applications need to have
low latency when processing user input.

4.1 HMP Scheduling

The scheduler observes each task at runtime and tracks the
load to make the scheduling decisions. The load is tracked
for each time-slice and the scheduler will dispatch the tasks
according to the following criteria (ARM, 2013):

• Fork Migration
By default all tasks will be spawned on the big
cluster. This ensures that compute intense tasks will
get the power they need right from the beginning
and that the latency is low.

• Wake Migration
While a task is sleeping its load does not change.
Therefore the tasks will be scheduled according to
the last tracked load when it wakes up.

• Forced Migration
Tasks which are running on the little cluster might
never sleep and therefore have a high load. To boost
those tasks they will be migrated to the big cluster
when the load reaches the up migration threshold.

• Offload Migration
When the load is under a certain down migration
threshold for tasks on the big cluster, the task is
migrated to the little cluster in order to save energy.

Because dynamic voltage and frequency scaling (DVFS)
will lower the frequency of cores that are not fully utilized,
the load can appear higher than it actually is. This could
lead to unnecessary migrations. Therefore the scheduler can
be improved by taking the current frequency of the core into
account. If the little core is throttled down and runs a task
which results in a load of 100%, it is more energy efficient to
use the full performance of the little core first.

4.2 HMP Performance Evaluation

Yu et al. (2013) evaluated the scheduler with Bbench, an
automatic web browsing benchmarking tool from the Uni-
versity of Michigan, and audio playback. The benchmark
was to run both at the same time. The evaluation was
executed on an Exynos5420 SMDK board, with an ARM
big.LITTLE core. Figure 3 shows the improvement in energy
efficiency for the ARM HMP Scheduler. Everything above
the blue line is more efficient. The larger the distance the
better the improvement. If the frequency is considered as
well the scheduler will reduces the power consumption
about 3.4 %.

5 QUEUE BASED SCHEDULER

Systems like database servers which process independent
and rather similar requests may make use of queue based
scheduling. The idea here is to have one queue for all
incoming requests. When processing them, the scheduler
decides whether a big or the little core is used. Because the
little cores are more energy efficient the scheduler makes use
of them as much as possible.

Jain et al. (2015) developed a queue based scheduler for
an embedded microserver. Besides the goal to be energy
efficient, their application has soft real-time constraints.
For this reason they considered throttle caused by thermal
violations too, which affects the timing behavior a lot.



3

Fig. 3: Normalized power/performance evaluation of the
ARM HMP Scheduler.

5.1 Queue Based Scheduling
Figure 4 shows the pseudo-code of the implementation.
The preferred server are the little cores. Note that the big
cores are only used when there is no little core available,
no overheating (thermal violation) and the queue size has
reached a certain threshold. The least energy would be
consumed when only the little cores do the work. But to
meet the timing constraints, the big cores are used to speed
up the processing of the outstanding requests.

procedure SCHEDULETASK Input: PreferredServer
PreferredServer <- idle
NonPreferredServer <- idle
while TaskQueue is not empty do

if PreferredServer is idle then
Schedule the next job to the PreferredServer

if (TaskQueue is not empty) AND
(NonPreferredServer is idle) AND
(There is no thermal violation) AND
(TaskQueueSize >= Threshold) then

Schedule the next job to the
NonPreferredServer

Fig. 4: Pseudo-code for the scheduler (Jain et al., 2015).

The scheduler can be improved by making the threshold
dynamic. If currently a lot of requests are incoming, the
threshold is set down to process the requests earlier on the
big cluster. This prevents long queues which can cause the
system to overheat, because the big core is then used for
a long period of time. Also, Execution time prediction and
Out-of-order execution should lead to better energy efficiency.
That is because knowing the total execution time of the
queue is a better indicator for how full the queue is than
just the the number of elements in it. Out-of-order execution
makes it possible to process time critic requests earlier. In
addition, pairing this with execution time prediction allows
processing for time-critic requests to be accelerated.

5.2 Queue Performance Evaluation
Energy efficiency depends on the implementation used (Fig-
ure 5). Static means that the threshold was fixed, where as
dynamic implies that that threshold changed with the load
on the system. The evaluation was executed on an ODROID
- XU3 with Samsung Exynos 5422 MpSoC. The proposed

scheduler performs better than the opportunistic scheduler,
which uses all the big cores before the little cores. The
optimizations indeed increase the energy efficiency. Using
Out-of-order execution and Execution time prediction is more
than five times as efficient as the opportunistic scheduler.

Fig. 5: Comparison of energy efficiency with the queue
based scheduler (Jain et al., 2015)

6 POET: A PORTABLE APPROACH TO MINIMIZING
ENERGY

POET (Performance with Optimal Energy Toolkit) is a
portable C library to minimize energy consumption under
soft real-time constraints developed by Imes et al. (2015). Its
goal is to provide a portable solution which is not hardware
dependent and easy to use.

6.1 POET Scheduling

The scheduling is handled by a digital control system, where
the application latency is measured in order to meet the
deadline. Until now, only one application can be scheduled
because the dispatching of the tasks would get too compli-
cated. Note that there can be several tasks, but all have to
belong to the same application.

Fig. 6: The controller of the POET-library (Imes et al., 2015).

Figure 6 shows the model of the digital control system.
The resource specification has to be provided by the user.
It describes different core configurations with speed-ups,
power usage and operating frequency. The controller pro-
cesses the latency error and determines a speed-up for the
application, which is given to the optimizer. This part of the
system schedules the tasks to the execution units.

The optimizer has the task to find a schedule which
will reach the requested speed-up of the controller with



4

Fig. 7: Flowchart of the optimizer algorithm.

the minimal amount of energy. The flowchart in figure 7
shows how this is accomplished. First, all configurations are
sorted into two sets. The under-set contains all configurations
which are smaller or equal to the speed-up and the over-set
contains all larger ones. For each combination of those sets,
the execution time in each set and the total energy consumed
is calculated. The combination with the least energy will be
saved and the tasks will be executed on those two configu-
rations. First on the under and then, if necessary, on the over
configuration. Time and energy for the context switch is not
considered. This overhead is modeled as inaccuracy in the
specified speed-up.

6.2 POET Performance Evaluation
The library was compared to dynamic voltage and fre-
quency scaling (DVFS) as single energy saving technique
and the energy consumption was measured. Figure 8 shows
the energy which is consumed as a function of the utilization
intensity. 50 % means that half of the processing power of
the system is used, 25 % uses only a quarter and so on. The
energy scale is normalized to the optimal energy. The data
was gathered from eight benchmarks: blackscholes, body-
track, facesim, ferret, x264, dijkstra, sha and data streaming.
All the benchmarks where executed on an ODROID - XU+E
with Samsung Exynos 5410.

Fig. 8: Normalized Energy consumption of POET compared
to DVFS

When most of the processing power is used, POET does
not perform much better than DVFS. This is hardly surpris-
ing, as this case leaves little to no room for decisions for the
scheduler. When turning to low utilization, POET performs
very well and is almost equal to the optimal energy. Unfor-
tunately the authors do not explain how the optimal energy
is calculated. Compared to DVFS, POET needs about five

times less energy which is a huge improvement, although it
has to be admitted that this is a rather unfair comparison,
because DVFS is not even a scheduler, it just throttles the
cores when they are not under full load.

7 MODEL BASED SCHEDULING

Colin et al. (2014) took a different approach to energy
efficient scheduling with a model. Their focus is on real-
time applications with sets of periodic tasks. The available
processors and computational load (tasks) with deadlines
can be modeled and used to find the optimal schedule with
the lowest energy consumption.

The processors are modeled in regard to their power con-
sumption and the according performance which is achieved
with that power budget (Figure 2). It is a simplification,
but if the operating frequency is assumed to be equal to
the actual computational power, then it is always better to
use the little core. Only in terms of energy and when more
performance is needed the big core has to be used.

7.1 Workload Modeling

Benchmarks were executed to evaluate how the actual per-
formance on both cores differs. They were used also to
measure how the frequency affects required cycles on the
CPU. In total 24 benchmarks were used. The results show,
that in average the big core has a speed-up of 1.6 compared
to the little core. The required cycles increase in average
with higher frequencies. This behavior correlates for all
benchmarks, with only a few exceptions. The reasons for
this behavior were not investigated. A possible explanation
might be that with higher frequencies memory latency is not
hidden as well as with lower frequencies.

The tasks are modeled by the amount of cycles needed
and a deadline. For the amount of cycles the maximum of
all benchmarks is assumed, so that the inaccuracy does not
affect the deadline constraints.

With all this information, the scheduling is just a matter
of distributing the load to the cores in a manner that mini-
mizes energy costs and fulfills the deadline constraints. This
leads to the question, how the optimal load distribution for
heterogeneous systems has to be. To answer this question, a
formula that describes the power consumption of a core as
a function of the frequency is needed:

P (f) = κfα + β

κ, α and β were obtained by fitting a curve on real
measurements on CPUs. Table 1 shows the model values



5

for the big and little cores. A slightly different model was
taken to argue about the load distribution. Two cores were
considered with α = 3, β = 0 and varying κ. If the κ of the
cores are equal (homogeneous system) the lowest power is
achieved when the load is equally distributed. But if the κ of
cores are different (heterogeneous system) the lowest power
is achieved by giving most of the load to the core with the
smaller κ (little core) and only some load to the other core.
The ratio of the load distribution depends on the ratio of the
two κ.

TABLE 1: Model values for the A-7 and A-15 cores (Colin
et al., 2014).

Core κ α β

A-7 1.00E-8 3.28 34.24

A-15 2.91E-6 2.63 146.49

This modeled load distribution is counter-intuitive, as
one would usually assign as much work as possible to the
small core because it is the cheaper one. But with such a
simple model it is hard to make a general conclusion. The
cores need different amounts of cycles for the same tasks for
example. But even with a model that is not 100 % accurate
the optimization problem can be solved quite good.

7.2 Model Based Scheduling
The optimal solution of the model can be found but this
problem is NP-hard. Solving this in real-time is not feasible.
Therefore good heuristics are needed. Two heuristics are
provided and compared with a naive approach. They work
in the following ways:

• Naive (Load Balancing):
All tasks are sorted descending by computational de-
mand. Each task will be scheduled to the processing
unit (PE) with the least load at that point.

• Marginal Power (M-PWR):
All tasks are sorted descending by computational
demand. For each task, calculate the energy needed
on every available PE and assign it to the PE where
is will have the least power consumption.

• Desired Load (DL-CAP):
Calculate the optimal load for each PE. Artificially
limit the load to the optimal load. Then assign the
task in the manner of the naive or the marginal
power approach. After that set the limits to core
capacity and assign the remaining tasks with the
marginal power approach for optimal results.

Unfortunately the authors do not explain how the dead-
lines are taken into account.

7.3 Model Based Performance Evaluation
For evaluation, task sets were generated with more or less
random workloads. They were all executed on an ODROID
- XU+E with Samsung Exynos 5410. A comparison of the
scheduling heuristics is shown in Figure 9. The energy is
normalized to the naive approach which is represented by
the yellow line. Similar to the evaluation of the POET library,

the x-axis shows the utilization of the total computational
capacity. Marginal Power and Desired Load perform almost
equally well. From utilization 1 to 0.4, the energy saved
increases because there is more room for decisions for the
scheduler. The lowest energy consumption is achieved at a
utilization of 0.4 and is about 72.5 %. After that, the energy
saving worsens which might have to do with the deadlines
or inaccuracy of the model.

Fig. 9: Energy cost comparison of the scheduling heuristics.

8 CONCLUSION

The four presented types of schedulers all make use of
heterogeneous processor platforms. Because they were de-
veloped for very different applications, they cannot be
compared easily. Table 2 shows a comparison of the major
features of the schedulers. The best improvement column
seems to make the scheduler comparable, but they were
compared to very different baselines. POET for example was
compared to DVFS, which is not a fair match.

TABLE 2: Comparison of the schedulers.

Scheduler ARM
HMP
Scheduler

Queue
Based
Scheduler

POET Hetero-
geneous
Load
Distribution

Applications any appli-
cations
with
indepen-
dent tasks
of similar
kind

any
(only
single
applica-
tions)

any

Portable yes no yes no

Effort least moderate little high

Real-Time
Support

no soft
real-time

soft
real-
time

hard
real-time

Best
Improvement
(Energy Con-
sumption)

∼ 5 % ∼ 15 % ∼ 81 % ∼ 38 %

The ARM HMP Scheduler is a scheduler for Linux, so
it is probably a choice for heterogeneous systems with a
full operating system. This scheduler has good potential for
mobile devices hardware, which need only low performance



6

or are idle most of the time. In fact, the scheduler was
developed for this use case.

When dealing with specialized embedded systems, the
other three schedulers come in handy. The Model Based
Scheduler is applicable for almost any use case. But when no
hard real-time support is needed, the modeling is a rather
high effort. When porting to other hardware this has to be
done again.

POET and the Queue Based Scheduler are more special-
ized, but fit their niche very well. POET is suited for problem
solutions which need only one application and no operating
system. The amount of energy needed there can be reduced
very well, especially when there are times where the load is
low.

The Queue Based Scheduler is suited best for systems
like micro-servers. The processed requests have to be inde-
pendent to use this scheduler.

As already mentioned, there is no scheduler which is
suited best for all applications, but the schedulers might be
used for ranges of applications which overlap. All sched-
ulers have in common that they can only optimize the
energy efficiency when the total load of the system is a
good step below 100 %. Evaluating the same or similar
applications with different schedulers would be the next
step in order to have an even better comparison of the
schedulers and identify the most effective techniques to
schedule on heterogeneous systems. This is where further
investigation should be heading.

REFERENCES

ARM (2013). big.little technology: The future of
mobile. https://www.arm.com/files/pdf/big LITTLE
Technology the Futue of Mobile.pdf. [Online accessed
14.01.2016].

Colin, A., Kandhalu, A., and Rajkumar, R. (2014). Energy-
efficient allocation of real-time applications onto hetero-
geneous processors. In Embedded and Real-Time Computing
Systems and Applications (RTCSA), 2014 IEEE 20th Interna-
tional Conference on, pages 1–10. IEEE.

Imes, C., Kim, D. H., Maggio, M., and Hoffmann, H. (2015).
Poet: a portable approach to minimizing energy under
soft real-time constraints. In Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2015 IEEE,
pages 75–86. IEEE.

Jain, S., Navale, H., Ogras, U., and Garg, S. (2015). Energy
efficient scheduling for web search on heterogeneous mi-
croservers. In Low Power Electronics and Design (ISLPED),
2015 IEEE/ACM International Symposium on, pages 177–
182. IEEE.

Yu, K., Han, D., Youn, C., Hwang, S., and Lee, J. (2013).
Power-aware task scheduling for big. little mobile proces-
sor. In SoC Design Conference (ISOCC), 2013 International,
pages 208–212. IEEE.


