Emerging Memory Technologies for Improved
Energy Efficiency

Martin Wenzel
Department of Computer Engineering
University of Heidelberg
Germany, 68131 Mannheim

Abstract—Power consumption is the dominating constraint
for processor design, and analyses and projections show that
data movements outshine computations in terms of energy
consumption. In addition, multi- and many-core architectures
are dramatically limited by the memory wall, which makes
an increasing amount of applications memory-bound. Possible
solutions to this problem are near-memory architectures and
processing-in-memory. Both gear to overcome the memory band-
width bottleneck and reduce the physical distance for data
movements. This paper will provide an overview of current
related work in this area, and which prospects come with such
solutions.

Index Terms—Memory, Memory Wall, Processing in Memory,
PIM, Hybrid Memory Cube, HMC, Offloading, Tesseract

I. INTRODUCTION

In the last decades it was sufficient to speed up the proces-
sors to archive performance improvements. Current processors
are highly energy efficient and deliver high performances. But
nowadays the performance of a computer is not only limited
by the processor performance. For more and more workloads
the memory bandwidth is the limiting factor. This means the
time it takes to get a value from memory gets significant
compared to the time it takes to process the element. This
is called memory wall. For further performance increases it is
necessary to overcome this memory wall.

The memory bandwidth in a computer is limited by follow-
ing points:

e package pinout is limited

« Signal frequency is limited by distance

« Interface power budged is limited

To increase the bandwidth between two chips either the Signal
frequency or the link width can be increased. Unfortunately
the amount of balls underneath a package is limited to less
than 8000 Pins. In advance to this, the distance between a
memory module and a processor is typically between 3 and
7cm. This distance has a significant impact on the reachable
frequency of the signal between memory and the processor.

To sum this up, the power needed by the interface is strongly
related to the interface width and even more to the interface
frequency. In fact a floating point operation in a current
processor consumes up to 10 times less energy than a memory
access (Figure I). Memory interfaces became a main power
consumer.

Obviously the solution to bring down the memory wall
is to cut down the distance between memory and proces-

Intra-node/SMP Inter-node/MPI

10000

Communication Communication

c - o— 0
£ —
£ 1000
e
g .
& On-chip / CMP
> 100 communication
4}
= —
g now
8 10 \ -#-2018
L
a

1+

L oS <
54 & S 2 & & <
{ &% & < S & R
Q <& o o A S 5
& & N & &
A 2 o R (S
) P
O
Fig. 1. Sources of power consumption [2]

sor. The shortest distance between memory and processor
is Processing-in-Memory (PIM) which is proposed as highly
efficient since the late 90s [[1]].

This paper focuses on PIM to overcome the memory wall.
The discussed papers use the Hybrid Memory Cube (HMC)
as starting point for offloading techniques. To give a short
background 3D DIE stacking and the HMC are introduced
in section [Il and [section IIIl In [section IV| PIM is discussed.
Section [V] gives a short conclusion to PIM.

II. 3D DIE STACKING

The process of placing more than one die on a package
is called die stacking. It is not necessary that the dies are
produced in the same process or have the same dimensions.
For example logic dies (blue) and memory dies (green) can
be stacked on the same package as shown in

Every die is connected with ybumps to the package. These
are up to 100 times smaller as the balls used to solder the
package to the pcb [3]] [4]. Soldering more than one die next
to each other is called 2.5D stacking. 2.5D permits using these
smaller bumps to realize wide interfaces. Stacking also reduces
the signal length between two dies from about 5 to 7 cm to
less than 1 cm. Currently stacked memory is available in form
of HBM, Wide I/O and HMC [5]]. 3D die Stacking is a special
form of die stacking. Under normal circumstances a die has
only pbumps on top of it. Through Silicon Vias (TSV) are used
to add pybumps to the bottom of the die. This allows stacking
multiple dies on top of each other. 3D stacking allows even

[Die
I Disposer
@ Bump

Fig. 2. 2.5D and 3D IC Stacking on a single Package

wider interface and extreme short signal lengths of about 20
to 100 pm [6].

But adding a die to a 3D stack also increases the power
density. In addition, stacking dies on top of each other adds
thermal resistance which leads to higher temperatures within
the stack. Thus, the power wall is lower and more challenging
than without stacking [6]].

III. HYBRID MEMORY CUBE HMC

The Hybrid Memory Cube is a 3D stacked memory architec-
ture [7]). several layers of DRAM are stacked on top of a logic
die (Figure 3). The memory cube is prepared to be stacked next
to a processor die (2.5D stacking). A memory cube can hold

Concept only; not a layout /

4

/Multiple banks
'\ /Partition / 5

T
L

Memory /
Memory /
Memory /

Memory

Vault

1/
/Partition/ 1
7

v, T
1 / Logic |

Logic base Wault controller)

Fig. 3. HMC Memory Cube [7]

up to 8 GB of data. The HMC is vertically parted in 32 such
called vaults. Each vault has its own vault controller. Inside
of this vault controller there is a DRAM controller and an
additional processing unit for atomic operations implemented.
Following atomic operations are allowed:

« Integer arithmetic

¢ Compare and Swap

o Bitwise swap / write

« Boolean operations

Each vault controller has a packet based interconnect.

The HMC inherits a packet based crossbar switch as shown
in The HMC provides up to eight independent serial
links with a link bandwidth of 20 GB/s per direction.

Each link can be used either to interconnect with a host or
with a second HMC. The host interface bandwidth can reach
up to 160 GB/s per direction.

‘ Vault 00 ‘ ‘ Vault 01 ‘ Vault 31
[I I
Switch
’Linko‘ ’Linkl‘ LI | ‘Link7‘

Fig. 4. HMC Network Interconnect [7|]

IV. PROCESSING-IN-MEMORY

Data processing inside the memory itself is known as
Processing-in-Memory (PIM). Since the distance between
memory and processing units is minimized to several pum
the internal memory bandwidth could expect to be maximal.
Nevertheless, the host memory bandwidth as shown in [Figure 5|
is still limited by the known problems. PIM is supposed
to greatly increase the efficiency of the off-chip interface
bandwidth usage. This result in higher performance and also
in higher energy efficiency. Adding additional PIM modules
will not only increase the amount of Memory but also deliver
a speedup.

A. Demonstration Workload

To demonstrate the full potential of PIM a workload which
is heavily limited by the memory wall is necessary.

Graph processing is such a workload. A graph consists of
several nodes. Relations between these nodes are represented
via links as shown in Each node inherits only a
small amount of data. For Example a social graph might store
a name and a telephone number in each node. In general the
processing amount for each node is very low. Often checking if
a specific node was processed yet is the most time consuming
part. Nodes which are connected via links are distributed
through the whole memory. Only a low amount of locality
can be found in most graphs.

Some frequently used algorithms for graph computing are:

CPU | HMC

Fig. 5. HMC Interface

o Page Rank

o Shortest Path

e Graph Search
To sum this up, graph processing is a workload which is
dominated by low locality and low compute intensity. Both
examples focus on graph processing as workload.

B. Instruction Offloading

Often most computational operations are used to determine
if a node was already processed. A specific node might be
loaded from memory multiple times. Thus, the memory inter-
face is used very ineffective. Even worse modern processors
load cache lines to exploit locality. A common cache line has
a length of 64 Bytes and inherits multiple data values. Even if
a node was not processed in before, loading a complete cache
line to change a single value wastes memory bandwidth.

Lifeng Nai and Hyesoon Kim use the atomic Compare
and Swap (CAS) Operations available in the HMC to offload
instructions to the HMC [7].

In fact they optimize the breadth-first search which is part
of many graph algorithms.

Fig. 6. Breadth-first Search [8§]]

A graph search tries to find a specific node. The breadth first
search starts at a random node called root node. As shown in
the algorithm processes the nodes directly related to
the root node (distance 0) first. If all directly related nodes are
processed the algorithm checks all nodes with a distance of 1.

bool flag[SZ]={false};

for (i=0;i<u.degree;i++){

v = u.neighbour(i);

CAS_equal(&(level[v]), infinity, step);

flag[i] = CAS_equal(&(parent[v]), infinity, u);

for each v in u.neighbors
if (level[v] == infinity){
level[v] = step;
parent[v] = u;
Q-out.insert(v); ﬁm»
} }
} for (i=0;i<u.degree;i++) if (flag[i]) WSout.insert(v);

Fig. 7. Breadth-first search algorithm conversion to CAS operations [9]

As shown in the check part of a node can be
converted in two CAS operations. These CAS operations can
be processed on the HMC. The maximum bandwidth reduction
will be reached if the cache hit rate (graph property hit rate)

reaches zero and each node has a high amount of links to
other nodes. As shown in the necessary bandwidth
for the conventional algorithm descents if the hit rate rises.
The optimized approach shows no benefit of a high cache hit
rate. Since graphs in general have low locality the hit rate can
be assumed as very low.

EWBW-Conventional BW-HMC =#=BW-Saving

I I 67%

0% 10% 20% 30% 40% 50% 60% 70% 80%
Graph Property Hit Rate (Hp)

w
S

80.0%

o

40.0%

PN
o

1,000,000)
G

0.0%

H
o
Bandwidth Saving

-40.0%

o w

-80.0%

Bandwidth in million FLITs
(when Ei

Fig. 8. Instruction Offloading resulting Bandwidth reduction [9]

C. Application Offloading

PIM allows scaling processing performance and memory
bandwidth proportional to the memory size. The host interface
bandwidth does not scale as well. If instruction offloading is
used, the scaling of the PIM system is limited to the host
interface bandwidth. Offloading of an application instead of
single instructions allows the PIM system to scale beyond
current host interface bandwidth limitations.

1) Tesseract Architecture: The Tesseract architecture is an
approach to build an application accelerator to demonstrate
the scalability of PIM. The architecture consists of multiple
modified HMCs (Tesseract Cubes). A small in-order cpu core
is added to each vault controller (see inside of an
HMC. Message passing is used instead of a cache coherence
protocol. Cache coherence would be difficult and inefficient in
such a manycore environment. Since instruction offloading is
more efficient than fetching data, the message pathing interface
is used to pass function calls. To improve the efficiency of the
in-order core two prefetchers are used.

« Stride Prefetcher

o Message triggered Prefetcher
Since each node in graph computing consists of several values
including the links between nodes, a stride prefetcher can
exploit this kind of locality. The stride prefetcher prefetchs
cache blocks based on a reference prediction table to hide
memory latency.

As shown in the message triggered prefetcher is
used to prefetch any data which is needed to process a remote
function call. Thereby fetching-stalls of the in-order core could
be prevented.

2) Tesseract Benchmark: To benchmark the Tesseract ar-
chitecture a simulator is used. In the following benchmark
results the Tesseract architecture is compared to 3 traditional
processing centric architectures. An architecture with a low
amount of high performance cores is used with DDR3 memory
(DDR3-000) and with HMCs (HMC-000). In addition, an
architecture with a high amount of low performance cores is
used with HMCs (HMC-MC)

In-Order Core -

Y 1

List Prefetch |_|
Prefetcher Buffer

1

Message-triggered
Prefetcher

*
Message Queue < NI

19|josuod NWvHA

>

Fig. 9. Tesseract core with additional prefetching units [[10]

Following graph algorithm are used as benchmark:

o Average Teenager Follover (AT)
e Conductance (CT)

« PageRank (PR)

o Shortest Path (SP)

e Vertex Cover (VC)

Following graphs are used for the benchmarks:

« ljournal 2008 from the LifeJournal social site (LJ) [11]]

o enwiki-2013 from the english Wikipedia (WK) [11]

« indochina-2004 from the country domains of Indochina

do (1]

Each of the input graphs is several times bigger than the total
cache size to avoid caching effects.

shows the benchmark results normalized to the
DDR3-000 architecture. The Tesseract without the prefetch-
ing units reaches a speedup between 4 and 16. Using the
prefetching units of the Tesseract cores increases the speedup
up to 43. The reached speedup depends highly on the work-
load.

Bl Memory Layers Logic Layers [Cores
20 repm—— A Ay A e A —via 1
|
I
> 1 Q |
QE; 1.5 |L 8 % % a
c o [I
fim} = 1
ko] | iy o
E oot i
= | x
E :
s 05+ a 4
b= : § 1
1
0.0 = = .
AT.LJ CTLJ PR.LJ SP.LJ VC.LJ

Fig. 11. Benchmark results Power Consumption [[10]

During the benchmarks the power consumption of the dif-
ferent architectures was also simulated. As shown in[Figure T1]
the Tesseract consumes up to 80% less power than the process-
ing centric architectures. Since the former memory interface is
used as off chip communication interface the shorter execution
times take a big part of the power savings. The Tesseract
architecture offers high energy efficiency in comparison to
processing centric architectures.

As shown in the Tesseract architecture scales

nearly linear from 1 Tesseract cube to 4 cubes. However, the

O 32 Cores (8GB) M 128 Cores (32GB) M 512 Cores (128 GB)

AT.LJ CTLJ PR.LJ SP.LJ VC.LJ

Figure 11: Performance scalability of Tesseract.

Fig. 12. Benchmark results Scalability [[10]

scaling of the Tesseract architecture seems to be limited. 16
Tesseract cubes do not reach a speedup of ~ 16. The scaling
limit of the Tesseract system is the external memory bandwidth
between the Cubes. Increasing the external bandwidth will also
increase the scaling limit.

The Tesseract architecture was proposed as a memory
centric architecture to show scaling with memory capacity.
The simulated workloads show high speedups and higher
energy efficiency compared to conventional architectures. The
scalability of the Tesseract is limited to the external bandwidth.

D. Comparing Instruction Offloading with Application Of-
floading

Instruction offloading is easy to implement. Depending on
a specific algorithm it may only be necessary to convert
small parts. Using application offloading means to convert
the complete algorithm in a specific order to match the PIM
system.

However, instruction offloading only increases the effective
bandwidth. Only the higher effective memory bandwidth can
be used to reach a speedup.

Depending on the algorithm application offloading highly
increases the efficiency and the performance of the system.
The reached performance of an PIM accelerator scales with
the amount of memory installed.

To sum this up, instruction offloading has fewer benefits
and is easier to implement. Application offloading offers high
performance and is harder to implement.

V. CONCLUSION

Future PIM systems will overcome the current memory
wall. Due to the small distance between memory and process-
ing units extreme high memory bandwidth can be archived.
Optimized accelerators offer high speedups and great effi-
ciency improvements compared to current designs.

Although PIM systems offer several improvements com-
pared to conventional systems, there is still a lot of work to
do.

Since the scalability of PIM accelerators is only limited by
the off-chip bandwidth the old memory wall will be resurrected
as a communication wall. Though graph computing is a well
performing workload on PIM systems, other workloads must

[DDR3-00c0 [HMC-CoQ [EI HMC-MC B Tesseract (No Prefetching)

Speedup

Figure 6: Performance comparison between conventional architectures and Tesseract (normalized to DDR3-000).

Fig. 10. Benchmark results Speedup

be examined as well. Compute intensive workloads might
even show less performance on a PIM system. Future work is
necessary to determine the type of the processing units in a
PIM system. A small amount of different approaches are:

[1]

[2]
[3]

[4]

[5]

[6

=

[71
[8

=

[91

[10]

(11]

General Purpose Processing Units
Fixed Function Processing Units
FPGAs

REFERENCES

C. Kozyrakis, S. Perissakis, D. Patterson, T. Anderson, K. Asanovic,
N. Cardwell, R. Fromm, J. Golbus, B. Gribstad, K. Keeton, R. Thomas,
N. Treuhaft, and K. Yelick, “Scalable processors in the billion-transistor
era: Iram,” Computer, vol. 30, no. 9, pp. 75-78, Sep 1997.

R. Sevens, A. White, S. Dosanjh, and et al., “Scientific grand challenges:
Architectures and technology for extreme-scale computing report,” 2011.
W. Koh, “Memory device packaging - from leadframe packages to wafer
level packages,” in High Density Microsystem Design and Packaging and
Component Failure Analysis, 2004. HDP ’04. Proceeding of the Sixth
IEEE CPMT Conference on, June 2004, pp. 21-24.

S.-Y. Huang, C.-J. Zhan, Y.-W. Huang, Y.-M. Lin, C.-W. Fan, S.-
C. Chung, K.-S. Kao, J.-Y. Chang, M.-L. Wu, T.-F. Yang, J. Lau,
and T.-H. Chen, “Effects of ubm structure/material on the reliability
performance of 3d chip stacking with 30 pm-pitch solder micro bump
interconnections,” in Electronic Components and Technology Conference
(ECTC), 2012 IEEE 62nd, May 2012, pp. 1287-1292.

J. Hruska. (2015) Beyond ddr4: The differences between wide
i/o, hbm, and hybrid memory cube. [Online]. Available: http:
/Iwww.extremetech.com/computing/197720-beyond-ddr4-understand-
the-differences-between-wide-10-hbm-and-hybrid-memory-cube

B. Black, M. Annavaram, N. Brekelbaum, J. DeVale, L. Jiang, G. Loh,
D. McCauley, P. Morrow, D. Nelson, D. Pantuso, P. Reed, J. Rupley,
S. Shankar, J. Shen, and C. Webb, “Die stacking (3d) microarchitec-
ture,” in Microarchitecture, 2006. MICRO-39. 39th Annual IEEE/ACM
International Symposium on, Dec 2006, pp. 469-479.

“Hybrid memory cube specification 2.0,” Hybrid Memory Cube Con-
sortium, Tech. Rep., 2014.

Wikimedia Foundation Inc. [Online]. Available: https://de.wikipedia.
org/wiki/Breitensuche

L. Nai and H. Kim, “Instruction offloading with hmc 2.0 standard -
a case study for graph traversals,” in Proceedings of the International
Symposium on Memory Systems (MEMSYS), ser. MEMSYS’15, 2015.
J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, “A scalable processing-
in-memory accelerator for parallel graph processing,” in Computer
Architecture (ISCA), 2015 ACM/IEEE 42nd Annual International Sym-
posium on, June 2015, pp. 105-117.

L. for Web Algorithmics. [Online]. Available: http://law.di.unimi.it/
datasets.php

JJJJJJJJJ

ATWK ATIC ATLJ CTWK CTIC CTLJ PRWK PR.IC

PR.LJ

SPWK

Bl Tesseract + LP HE Tesseract + LP + MTP

1l

SPIC

SPLJ VCWK VCIC

VC LJ

I S) A

http://www.extremetech.com/computing/197720-beyond-ddr4-understand-the-differences-between-wide-io-hbm-and-hybrid-memory-cube
http://www.extremetech.com/computing/197720-beyond-ddr4-understand-the-differences-between-wide-io-hbm-and-hybrid-memory-cube
http://www.extremetech.com/computing/197720-beyond-ddr4-understand-the-differences-between-wide-io-hbm-and-hybrid-memory-cube
https://de.wikipedia.org/wiki/Breitensuche
https://de.wikipedia.org/wiki/Breitensuche
http://law.di.unimi.it/datasets.php
http://law.di.unimi.it/datasets.php

	Introduction
	3D DIE Stacking
	Hybrid Memory Cube HMC
	Processing-in-Memory
	Demonstration Workload
	Instruction Offloading
	Application Offloading
	Tesseract Architecture
	Tesseract Benchmark

	Comparing Instruction Offloading with Application Offloading

	Conclusion
	References

