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Abstract—Energy efficiency has always been a goal when
designing a chip or system to reduce the costs of power
consumption and cooling. With the breakdown of Dennard
scaling and chip designs running up the utilization wall,
designing an energy efficient system will directly benefit
performance as more parts of a chip can be turned on at
the same time.

As a result of this, multicore CPUs have been intro-
duced and hardware accelerators like GPUs have become
increasingly important in HPC applications. While suitable
for regular floating point arithmetics, manycore designs
would perform badly as a general purpose CPU.

As a response to this problem, energy efficient, highly
specialized cores targeting specific, frequently used func-
tions in an application are introduced. These cores are
called conservation cores. Simulations show that augment-
ing a design with conservation cores can improve energy
efficiency by 23% without loss of performance.

I. INTRODUCTION

Moore’s law predicts the doubling in transistor count
per chip every two years. To achieve this, transistor
geometries have been continually sized down to accom-
modate the extra devices on the chip. Now as feature
sizes shrink with each new manufacturing technology,
leakage current becomes one of the dominant sources of
power consumption. The energy consumption no longer
scales at the same rate as geometries shrink and thus the
overall consumption in a fixed chip area rises. Therefore,
the number of devices which can actively switch at
full speed within the chips power budget will decrease.
This is called the utilization wall. The remaining silicon
which is left unpowered is referred to as dark silicon
and will grow exponentially with each new technology
generation. As a result, designing energy efficient chips
will not only reduce the operating cost but directly
improve performance.

Symptomatic for this development is Intel’s Nehalem
architecture [1] which allows a core to run at a higher
frequency at the cost of switching off other cores. ARM
follows the same idea with the big.LITTLE architecture
[2] which uses heterogeneous cores, one being ‘just
powerful enough’ for small tasks while the other, larger,
more powerful core is only turned on if the extra pro-
cessing power is needed. Another approach are so called

conservation cores which implement software functions
directly in hardware structures to achieve significant
energy savings per instruction.

Section II discusses classical scaling theory and the
origin of dark silicon as a result of post-Dennard scaling.
As a result of this, multi- and manycore designs were
introduced to the market. How this helps improve per-
formance in post-Dennard scaling is explained in section
III. Finally another approach to the dark silicon problem
is introduced by using conservation cores. Section IV
describes the GreenDroid architecture and analyzes the
gains in energy efficiency that can be made by using
conservation cores.

II. DARK SILICON

A. Classical Scaling

In the past, significant performance gains could be
obtained with each new process generation. Frequencies
were scaled up and geometries shrunk, resulting in faster
and more transistors per chip while not increasing the
overall power budget. This was possible due to the so
called Dennard scaling, which states that as geometries
get smaller, the energy density in a transistor stays
constant since voltage and current in the transistor scale
downward as well [3].

The classical scaling column in table I shows the
principles of technology scaling before the breakdown
of Dennard scaling.

The transistor dimensions W and L are scaled by
a factor of 1

S , where usually S = 1.4 resulting in a
technology shrink from e.g. 45nm to 32nm. This will
result in an approximately doubled device count DS of
the scaled technology in a constant area.

DS =
A

WSLS
=

A
1
S2WL

= S2 ·D (1)

At the same time, the supply voltage Vdd and oxide
thickness tox are scaled by a factor of 1

S as well which
results in a reduction of gate capacitances of 1

S .
The dynamic switching power, which in this case is

the main source of power consumption, comes from
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Parameter Description Relation Classical
Scaling

Leakage
Limited

B Power budget 1 1
A Area 1 1

Vdd, Vth Supply & threshold voltages 1/S 1
tox Oxide thickness 1/S 1/S
W,L Transistor dimensions 1/S 1/S

Isat Saturation current WVdd/tox 1/S 1
p Power per device CV 2f 1/S2 1
C Gate capacitance WL/tox 1/S 1/S

f frequency Isat

CVdd
S S

D Devices per chip A/WL S2 S2

P Full die, full power Dp 1 1/S2

U Utilization B/P 1 1/S2

Table I
CLASSICAL AND LEAKAGE LIMITED SCALING

loading and unloading the gate (load) capacitances CL

driven by a transistor.

Pdyn = αCLV
2f (2)

The switching probability α states how often the tran-
sistor switches. Even though the frequency f increases
by a factor S, the dynamic power per transistor is
reduced by 1

S2 which counteracts the growing transistor
count and therefore the overall power consumption of a
scaled down chip stays constant.

The increased frequency directly impacts the per-
formance of the chip. The now available transistors
can be used to further improve the performance. More
functional units can be added if this is the bottleneck of
the design and application. Another common bottleneck
of most chips is the access to the main memory. On chip
caches can be added or extended to hide this memory ac-
cess latency. Along with data caches, instruction caches,
sophisticated branch prediction and preemptive fetch and
execute modules can be implemented.

All these structures contain large amounts of parallel
switching transistors which consume a lot of energy.
This is not a problem when energy consumption scales
proportional to geometries, but with the breakdown of
Dennard scaling, these structures contribute to the dark
silicon phenomenon.

B. Breakdown of Dennard Scaling
Up until around 2005, or the 65 nm process, this

method of technology scaling and design paradigm
proved feasible. At this point certain physical and pro-
cessing limits were reached.

Classical scaling relied on supply and threshold volt-
ages scaling accordingly. With new process generations,
the supply voltage could no longer be lowered as needed.
One reason for this is the increasing subthreshold leak-
age current which is exponentially proportional to the
threshold voltage Vth:

Pleak ∝ e
VGS−Vth

nVT (3)

Subthreshold leakage current is a current flowing
from the transistors drain to source terminal when the
transistor is nominally turned off, i.e. the gate voltage
is below the transistor threshold voltage. Unlike the
dynamic switching power, this contribution to the overall
power consumption cannot be eliminated by simply not
using the transistor but instead the supply voltage Vdd
would have to be disconnected from the device. This
is not feasible for caches etc. as they still have to
hold the data values even though the transistors are not
switching. Studies have shown, that subthreshold leakage
currents can make up about 50% of a chips total power
consumption at the 90nm node [4].

Another source of increased energy consumption per
transistor are quantum mechanical tunneling effects at
the thin gate oxide. With an increasingly thin gate oxide
thickness of only a few nm or a few layers of silicon,
electrons may tunnel through the gate insulator into the
channel further adding to the power consumption of the
transistor.

These limitations lead to the supply voltage Vdd not
scaling by a factor of 1

S but staying constant. This leads
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to a scaled dynamic power consumption per device of

PdynS = α · 1
S
CLV

2Sf (4)

= α · CLV
2f (5)

= Pdyn (6)

which is the same as the consumption of the previous
technology node. With the increased device count

DS =
A

WSLS
(7)

=
A

1
S2WL

(8)

= S2 ·D (9)

the power of the full chip at full frequency will
increase by a factor of S2.

Assuming a constant power budget B, the utilization
U = B/P , i.e. the percentage of the chip which can be
turned on within the power budget, will drop by 1

S2 with
each new process generation.

The scaling factors of post Dennard scaling are
shown in the leakage limited column of table I.

Table II shows the severity of this problem. The
authors of [5] have implemented a 64-bit adder design
in 90nm and 45nm TSMC processes in a fixed area of
300mm2. The available chip area was then covered with
the 64-bit in- and output registered adders. The energy
consumption of each chip at full frequency was measured
and from this the utilization at 80W deducted. From the
results of the silicon implementations and data provided
by the ITRS, projections for the 32nm node have been
made.

The results show, that at 90nm the chip would need
455W . When operated within the 80W budget, only
17.6% of the chip can actively be used. At 45nm
the needed energy for the whole chip rises to 1225W
resulting in only 6.5% utilization. Since the scaling factor
from 90nm to 45nm is S = 1

2 , the expected reduction
in utilization would be 1

4 . The actual reduction is by
a factor of about 1

3 . This is attributed to improvements
made to the process and standard cells between the two
processes.

Interpolating from these results, the energy needed to
power a 300mm2 chip in a 32nm process at full fre-
quency would be 2401W which would mean a utilization
of only 3.3% and even less at future nodes.

III. FROM SINGLE TO MULTI- AND MANYCORE

DESIGNS

As stated above, the breakdown of Dennard scaling
happened around 2005. But since then geometries have

continued to be scaled down and chip performance
has been increased. For this, new design paradigms
have been introduced. Concurrent to the breakdown of
Dennard scaling, multicore CPUs have been introduced
to the market and have since become the standard in
desktop computers. In the high performance computing
sector, an emphasis has been put on energy efficient
accelerators like GPUs and FPGAs as an alternate way
to increase computing power.

The idea behind this development is the reduction of
clock speeds. Even though the native switching speeds of
transistors have continued to increase with each technol-
ogy node, processor clocking frequencies have remained
largely constant in the last years.

When reducing the switching frequency of a
transistor, the supply voltage can also be lowered since
a lower saturation current is needed to charge the load
capacitors. Therefore the dynamic switching power is
roughly proportional to f3. A reduction of clock speed
to 80% will result in approximately 50% dynamic
power consumption. Assuming the performance of a
single core CPU is directly proportional to its operating
frequency, this would mean a loss of 20% performance.
Duplicating the core design and adding a second
identical core to the die will result in the original power
consumption but will increase performance by a factor
of 1.6. This explains why processor clocking speeds
have been largely stable in the last few years.

Throughput orientated accelerators like GPUs have
taken this principle one step further. Instead of a
few cores, a few thousand cores are implemented
on a die and the clock frequency is lowered even
further. Typical GPU speed being at 700MHz to
800MHz. These accelerators are not optimized for
latency but for throughput and do not rely on high
switching frequencies. Their strength lies in handling
large numbers of regular floating point operations. This
makes the manycore approach rather useless for the
mostly irregular task of a general purpose CPU.

ARM has introduced the big.LITTLE architecture
which combines two different cores on one die to im-
prove energy efficiency. The idea behind this is, that for
most tasks it is sufficient to run them on the LITTLE
smaller, slower but more energy efficient core. If required
the task can be scheduled to the big core which is faster
but also consumes more energy. Ideally a core is just
about fast and powerful enough to complete a given task
in reasonable time as not to waste energy when over-
utilizing a core.
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Process 90 nm TSMC 45 nm TSMC 32 nm ITRS

Frequency [GHz] 2.1 5.2 7.3
Full Chip Watts 455 1225 2401
Utilization at 80 W 17.6% 6.5% 3.3%

Table II
EXPERIMENTAL RESULTS FOR THE UTILIZATION WALL

The proposed GreenDroid architecture follows the
same approach of further specifying the hardware to the
software but in this case a core is not a general purpose
processing unit but rather specialized hardware targeted
at a specific software function with the sole goal of
reducing energy per instruction.

IV. CONSERVATION CORES

The GreenDroid is a chip architecture designed for
mobile phones running the Android operating system. It
utilizes conservation cores or c-cores to reduce energy
consumption per instruction. A c-core implements a
software function directly in hardware, thus eliminating
the need for instruction fetch and decode mechanisms as
well as using a highly specialized data path.

A mobile processor and the Android software stack
are ideal for this approach for various reasons:

• The Android software stack has a large stable and
well tested code base. Major changes to the code
are unlikely and only minor patches to the code are
introduced.

• User applications run in a virtual machine called
Dalvik, therefore no new user code has to be antic-
ipated. It is sufficient to implement the functions of
the VM as c-cores.

• Even though many applications are available for
download, Android has a few commonly used appli-
cations such as a web browser, e-mail client, media
player etc.

• Smartphone chips have a tight power budget of
about 3W .

• The usually short replacement cycles of approxi-
mately two years for a smartphone ensure that the
c-core will not be outdated.

A. The GreenDroid Architecture

The GreenDroid consists of 16 tiles connected to each
other via a point-to-point mesh interconnect as an on chip
network (see figure 1).

Each tile uses a standard 32-bit in-order MIPS core
and contains instruction and data caches for the MIPS
core. Additionally the tile contains an array of 8 to 15

Figure 1. Layout of the GreenDroid Chip Architecture, source: [6]

c-cores targeting specific software functions (see figure
2). Each tile is therefore unique.

The MIPS core is coupled to the c-cores via the L1
cache in the tile. Communication with the c-cores and
starting an execution on a c-core is done via the scan
chain interface.

C-cores targeting parts of the same software function
or those for which the use correlates, are clustered
together in the same tile to improve performance.

B. Generating Cores

To generate the c-cores for an application, the work-
load of the application has to be characterized. For this,
the regions of ‘hot’ code, i.e. most frequently used parts
of the code, have to be identified. These are sections of
the code which benefit the most from the use of c-cores
in terms of energy efficiency.

Once the part of the code which is to be executed on
a c-core are identified, the code is translated to verilog
code and synthesized. This is done by translating the
control flow graph (CFG) of the code into a finite state
machine (FSM) of the c-core. The CFG is now closely
coupled to the FSM of the c-core which makes later
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Figure 2. Schematic of One Tile in the GreenDroid Chip, source:
[6]

computeArraySum
{

sum = 0;
for(i = 0; i < n; i++)
{

sum += a[i];
}
return(sum);

}

i = 0
sum = 0

phi(i)
phi(sum)

i < n

sum+=a[i]
i++ return(sum)

F

Figure 3. The Control Flow Graph of the Code Will Determine the
State Machine of the C-Core, source: [5]

changes easier. An example data path and FSM are
shown in figure 4.

isum a

+

ld unit
addr

valid

en

value+

0 0

+1

muxSel
muxSel

ldEn

ldValid

<

n

cond

Data Path

sInit

s1

s2

s3 ldValid==0

sRet
cond==0

Control
Path

Cache
Interface

Scan Chain
Interface

Scan Chain

Figure 4. Data Path and FSM of a C-Core, source [5]

Afterwards scan chains are inserted to connect all
registers of the core. Apart from the L1 cache, the CPU
can communicate with the c-cores only through these
scan chains. Function arguments can be passed through

the scan chain interface to the c-cores and the internal
state of the datapath can be read back to the CPU.
Once all parameters and configuration bits are passed
to the c-core, the execution can be started by the CPU
using a single bit master scan chain. When the execution
is complete, the c-core raises an exception and passed
control back to the CPU.

Once all c-cores are in place, the code can be compiled
for the c-core enabled design. The compiler has to be
aware of the c-core functionality. If it encounters a
portion of the code that can be executed on a c-core,
it will insert a function stub which allows execution
either on the c-core or on the host CPU. In this way,
the CPU can determine at runtime if an appropriate c-
core is available and if not, execute the code itself.

C. Patching Cores

To increase the useful lifespan of a c-core enabled
design, the c-cores are fitted with patching mechanisms
which allow a core to continue working after minor
changes have been made to the code. Three most com-
mon categories of code changes have been identified:

• Hard coded constants, e.g. loop boundaries, initial
values etc., might change from one version to
another.

• Operators might be replaced, e.g. a plus becoming
a minus or comparison operators are reversed.

• The structure of the CFG might change, code blocks
moved or entire sections of code are deleted or
replaced.

For each of these categories a mechanism is imple-
mented which allows the c-core to adapt to the new code.

To enable the change of constants, rather than hard
coding them in the c-core, all constants are replaced with
a register. The value of the register can then be set at
runtime using the scan chain interface.

Another common change is the altering of an oper-
ator. Therefore the initial operators are replaced with
generalized version and a control bit selecting the correct
operator. E.g. an adder is replaced by an adder-subtracter
and comparison operators by a generalized comparison
operator.

Lastly, a new version might significantly change a
portion of the code. This would render the corresponding
c-core useless even if a large part of the code remains
unchanged. To account for this, each edge of the state
machine is augmented with an exception bit. If the c-
core encounters a part of the code which for any reason
cannot be executed on the core, it raises an exception and
control is transfered back to the host CPU. The CPU can
then readout the internal state of all registers at the time
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of the exception and continue running the code on its
own until a point is reached where the c-core can take
over again. The values of all registers are updated using
the scan chain and control is again transfered back to
the c-core. In this way, control can bounce back and
forth between CPU and c-core until the function call is
complete.

All these changes are implemented before synthesiz-
ing the code to hardware. Of course, adding more (and in
some cases not used) functionality to the design takes up
more space on the chip but ensures a longer life cycle of
the c-core. The core can then in turn contribute longer to
the energy efficient execution of the code. This justifies
the overhead originating from making the core patchable.

D. Results

For analysis of the energy savings that can be obtained
by using c-cores, a complete tile of the GreenDroid
architecture has been designed and simulated. The c-
cores implement functions from various versions of
bzip2, cjpeg, djpeg, mcf1 and vpr2. Together these span
about 3600 lines of C code and the time each program
spends in these function ranges from 1.3% to 71.1% of
total execution time.

Figure 5. Energy Per Instruction of the Baseline CPU Compared to
a C-Core, source [6]

Figure 5 shows the energy consumption per instruction
from the baseline MIPS CPU compared to the execution
on a c-core. The 91pJ per instruction can be reduced by
91% to just 8pJ per instruction on the c-core. Most of
the energy savings come from the c-core not needing any
instruction cache or fetch and decode mechanisms which
are by design hard wired into the core. The core also has
no need of a traditional register file as data is directly
inserted to the core via the scan chain. The last part of
the energy savings come from the highly specialized data
path.

1A memory intensive integer benchmark
2Place and route tool for FPGAs
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Figure 6. Detailed Power Analysis of Code Running on a General
Purpose CPU Compared to a C-Core, source [5]

Figure 6 compares execution times of code run exclu-
sively on the MIPS CPU and the same code run on the c-
cores. The results are an average of the above mentioned
functions and they are normalized to the baseline MIPS
core.

The overall execution time increases only slightly
by about 1% and about 60% of the time is spent in a
c-core. By executing the code on the energy efficient
c-core, the dynamic switching power of the MIPS can
be drastically reduced which leads to an overall energy
saving compared to the MIPS of 23%.

The results shown in figure 6 are for patchable c-cores.
Without introducing the patching support, significantly
higher energy reductions can be achieved and a core
would require less space on the chip. For example,
replacing an adder in the 45nm technology by an
adder-subtractor would increase the area from 270µm2

to 365µm2. Identifying where patching support is not
required could further increase energy efficiency and
the now available space could be used to implement
additional c-cores.

Another obvious goal is to increase c-core coverage.
Adding support for floating point operations in c-cores
would increase the amount of code which could be
executed on a c-core even further. As a side effect of
spending more time in the c-cores rather than the host
CPU, changes to the MIPS core and peripherals could
be made. Using high Vth transistors in the CPU would
reduce leakage losses without significantly impacting
performance.

V. CONCLUSION

Due to the dark silicon phenomenon, leakage limited
scaling and traditional chip design paradigms will not
yield the same performance gains as in the past. Intro-
ducing conservation cores to a design can significantly
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reduce its power consumption. Simulations have shown,
that the power needed for a single instruction can be
reduced by 91% and the overall power of a chip can
be reduced by 23% and there is still a lot of room for
improvement by increasing c-core coverage.

Utilizing the dark silicon in energy efficient computa-
tions can boost performance of a chip. If less power is
needed per instruction, more can be run in parallel.

However, the dark silicon problem still remains and
will get worse with each new technology node. Using
c-cores in a design might help bridge the gap until a
breakthrough in energy efficient transistors is made or a
new technology replaces current CMOS logic.
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