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Abstract—Power consumption and battery life is one of the 

main limiting factors for the capabilities of mobile devices these 

days. It is crucial to build processors which consume as little 

power as possible. At the same time expectations and demand for 

performance are constantly increasing. It seems like those two 

requirements are hard to combine in one device and therefore 

compromises have to be made inevitably; compromises which 

end with reduced performance, higher power consumption or 

both. ARM Limited tried to tackle this problem heads on: being 

able to combine a low power with a high performance processor 

in one chip and being able to switch between them on-the-fly 

depending on the current requirement would reduce the need for 

compromise and allow for mobile devices with little average 

power consumption, while still meeting our performance 

requirements. In this paper I am going to take a closer look at 

ARMs big.LITTLE technology; assessing how it works as well as 

how it performs. 

 
Index Terms—Energy efficient processing, heterogeneous 

microarchitecture, ARM big.LITTLE 

I. INTRODUCTION 

ITH mobile devices such as smartphones and tablet 

computers we can generally distinguish between two 

main – but very different – categories of usage: on one hand 

the devices idle, are in a low power mode (since they are 

usually never truly powered off – not even at night), or are 

used for low performance applications such as e-mail or text 

messaging for most of the day; on the other hand we demand 

high performance for a select few (but increasing) number of 

applications such as playing 3D games, watching HD videos 

etc. – for these tasks we expect performance similar to modern 

computers and laptops. 

Both of these scenarios would call for a very different 

choice in processors when looked at independently. In the first 

case one would want to equip the device with a low power 

processor for maximum battery life. The latter case would 

require a high performance processor – which inevitably 

would mean high power consumption and low battery life. 

This conflict of interest is especially drastic considering the 

fact that power consumption and battery life are among the 

main limiting factors for mobile devices these days. 

Choosing one processor for both cases means a compromise 

when it comes to performance as well as power consumption. 

It would be ideal to have the right processor for each scenario 

within the same device or even die (heterogeneous processor) 

and to be able to switch back and forth between them 

depending on demand for maximum performance and 

maximum battery life. 

This is what ARM tried to achieve with the development of 

their big.LITTLE technology. 

In this paper I am going to take a closer look at energy 

efficient processing in general as well as ARMs big.LITTLE 

technology in particular. For this purpose the paper is divided 

into two main parts. In the first section I am going to discuss 

general computer architectural concepts for energy efficient 

processing with a brief introduction to the ARM micro-

architecture. The second part will introduce and analyze 

big.LITTLE in more detail. 

II.  ENERGY EFFICIENT MICROARCHITECTURE 

A. Instruction Set Architecture 

One of the most prominent and prevalent opinions about 

energy efficient processing is that the instruction set 

architecture (ISA) has a major impact on performance and 

power consumption of a processor. The two major ISAs to be 

distinguished are those labeled Reduced Instruction Set 

Computing (RISC) and Complex Instruction Set Computing 

(CISC). The general consensus (established in the 1980s) was 

that RISC architectures – which implement a smaller, simpler 

and fixed-size instruction set – are a better choice for low 

power applications but lack performance. CISC architectures 

on the other hand – implementing a large number of 

instructions, varying greatly in complexity and instruction 

length – are better suited for high performance systems where 

energy efficiency does not matter as much. 

The fact that ARM solely produces RISC processors and at 

the same time controls the majority of the mobile market (for 

which energy efficiency is crucial) might seem like proof for 

this consensus. 

However, as Emily Blem et al. [1] presented in their work 

“ISA Wars” published in 2015, there is no difference between 

RISC and CISC architectures anymore; ISA does not affect 

performance and power in modern processors. Instead, the 

authors keep emphasizing that microarchitecture and the 

decisions made regarding power/performance trade-offs are 

the major origin for the significant differences we see in 

processors today. 
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B. Microarchitectural Innovations 

There are several principles, tools and technologies on the 

microarchitecture level that can be applied to a processor 

during its design and utilized to optimize it for either 

performance or power consumption. Since the subject of this 

paper is processors for mobile devices, I will present some of 

the most common of these techniques with an emphasis on 

energy efficiency. 

1) Technology-node and feature size 

Reducing the feature size of processors does not only allow 

for more and more complex structures on each die, it also 

reduces the capacitance of these structures and therefore plays 

a major role in reducing energy consumption. 

2) Dynamic voltage and frequency scaling 

Dynamically adjusting supply voltage as well as clock 

speed of a processor allows matching the performance with 

the current task and avoids wasting energy during idling and 

low performance applications. 

3) Clock-gating 

Through supplying different sections of a processor with 

individual independent clocks, these individual components 

can be stopped independently if not needed. They will retain 

their current state, but use significantly less power than before. 

4) Power domains 

By dividing the processor up into different (logically 

coherent) domains, unused parts of the processor can be 

turned off entirely to avoid any idle power consumption. 

5) Pipelining 

An execution pipeline tries to minimize idle time for 

different execution stages of a processor which otherwise 

would have to wait on previous stages to complete their 

current task before continuing execution. This increases 

performance and efficiency. 

6) Caches 

Accesses of the processor to main memory are not only 

time but also power intensive. On-chip caches storing the 

current working set data drastically reduce the frequency of 

main memory accesses. 

7) SoC-Design 

In mobile devices Systems-On-A-Chip (SoC) – which 

combine most of the key components of a system, such as 

CPU, GPU, periphery controllers etc. on one die – are 

commonly chosen over discrete chips for each of these 

components – the usual approach for laptop and desktop 

computers. All these components put restrictions on and need 

to be adjusted to one another. This can mean limitations as 

well as opportunities for designers regarding performance and 

power consumption. 

 

Most of these techniques contain some sort of 

power/performance trade-off which can and must be used to 

optimize a chip for a given task.  

C. ARM Processors 

In this section I want to introduce and take a closer look at 

actual real-life implementations of the ARM architecture. The 

processors presented will be the components of the 

big.LITTLE system analyzed in the second part of this paper. 

The processors most commonly found in the current 

(second) generation of big.LITTLE systems are the ARM 

Cortex A53 (A53) and the ARM Cortex A57 (A57). Both are 

64-bit processors that share the same microarchitecture. 

However, they differ greatly in complexity. As shown in Table 

I the A57 outperforms the A53 by almost a factor of 2 when 

running at the same clock speed. On the other hand the Cortex 

A53 consumes significantly less power, as is demonstrated in 

Fig. 1. It is also noteworthy that the A53 running all four cores 

still consumes less or equal power than only one running core 

of the A57 at any clock-rate. 

  

TABLE I 

ARM PROCESSORS 

 Cortex A53 (LITTLE) Cortex A57 (big) 

64 Bit Yes Yes 

Cores 1 - 4 1 - 4 

Frequency
a
 1.3 GHz 1.9 GHz 

L1-Cache 8 – 64 kB 48 / 32 kBb 

L2-Cache 128 – 248 kB 512 – 2048 kB 

Pipeline stagesc  8 15 
Out-of-Order No Yes 

Performanced 2.3 DMIPS / MHz 4.1 DMIPS / MHz 

Process
a
 20 nm 20 nm 

Core size
a
 0.70 mm² 2.05 mm² 

Cluster size
a
 4.58 mm² 15.10 mm² 

Comparison of two processors used in an ARM big.LITTLE System 
aValues vary depending on implementation. Values presented are taken 

from Samsung SoC Exynos 5433 used in Samsung Galaxy Note 4. [13] 
bFirst value is size of instruction cache, second value is size of data 

cache[11] 
cInteger depth [10][11] 
dUnit DMIPS / MHz stands for Dhrystone MIPS per Megahertz; see 

Appendix for additional information 

 
 
Fig. 1.  Cortex-A power consumption in relation to clock frequency. 

The Exynos 5433 SoC contains 4 Cortex A53 and 4 Cortex A57 processors. 

For the analysis of one cluster, the other was completely powered off. When 
measurements for only one core were conducted, the other three cores of the 

cluster were powered off entirely as well. [13] 

  



 3 

Fig. 2 illustrates the basic architecture of Cortex-A 

processors. Next to the execution pipeline (orange) each core 

contains a level-1 (L1) cache (blue) for instructions as well as 

data. The same is true for the memory management unit 

(MMU) (purple). All cores in one cluster share a large level-2 

(L2) cache (green). In addition there is a so called snoop 

controller unit (SCU) (red) in the cluster, located close to the 

L2 cache. The SCU keeps track of the contents and status of 

all L1 caches; however, it does not store the actual cache data 

itself. The SCU serves an important purpose in the 

big.LITTLE system as will be discussed in section III. The 

arbiter administers access of the individual cores to the shared 

resources and the bus. 

III. ARM BIG.LITTLE – CONCEPT 

After having introduced the two processors that will be used 

in the big.LITTLE system and some of their underlying 

microarchitectural features the following section is dedicated 

to explain the fundamental concept of big.LITTLE as well as 

its implementation. In the end I am going to take a closer look 

at performance and efficiency of such a system. 

The Idea of big.LITTLE is to establish an environment in 

which the operating system (OS) does not have to distinguish 

between the two clusters anymore; instead of seeing two 

different quadcore clusters it appears as if there was only one 

octacore processor on the die. Such a system is no different 

from existing multicore processors and would allow handling 

multiprocessing in the traditional way. This “illusion” of one 

coherent cluster of cores is created by ensuring binary 

compatibility, cache coherency and memory coherency. 

A. Binary compatibility 

The first of the three might seem obvious but it is still 

noteworthy. Binary compatibility means that any program 

compiled for one of the two processors (A53 or A57) will also 

be executable on a core of the other cluster without any 

alterations to the code or having to recompile. [14] 

B. Cache coherency 

Once this prerequisite is met, the next task at hand is to 

physically connect the two processors and establish cache 

coherency of all eight cores. 

1) Interface and Interconnect 

This is achieved by extending the existing Advanced 

Extensible Interface (AXI) – the common bus interface in 

ARM devices – with three more channels (address, data and 

response) called the AXI Coherency Extension (ACE). [8][12] 

Through this extended (yet backwards-compatible) interface 

the “key component” of the system can be connected to the 

two processors. This key component is the so called Cache 

Coherency Interconnect (CCI). It is a separate co-processor on 

the die which administers all the communication as well as 

establishes and maintains cache coherency between the 

processors. [6] Fig. 3 illustrates how the two clusters are 

connected through the CCI. To aide visualization and to put it 

its location and relationship to other components into 

perspective, the big.LITTLE system is shown in a simplified 

sample layout of a SoC design. 

2) Coherency protocol 

Cache coherency is a known concept already utilized in all 

conventional multicore processors. All of these implement 

some form of categorization for cache lines to trace their 

status within the system. All of these implementations share 

an underlying concept similar to the MESI (Modified 

Exclusive Shared Invalid) or MOESI (same as MESI with 

addition of Owned) protocol. [9] 

 
Fig. 2.  Major components of a Cortex-A cluster and core [9][10][12] 
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ARMs version of such a protocol is presented in Fig. 4. A 

protocol like this assigns each cache line one of five statuses. 

First of all, it can be valid or invalid. An invalid cache line 

either has not been filled with any data so far (e.g. after 

powering on) or it previously contained data which has 

recently been evicted to make room for data with higher 

priority. Valid cache lines are categorized even further. They 

can be dirty or clean depending on whether the data they 

contain has been altered from what is still stored in main 

memory (and hence main memory needs updated sooner or 

later) or not. Lastly they can also be unique, which means the 

cache line is only held in one cache and no others, or shared, 

indicating that several cores hold the line in their caches; these 

lines need to be kept coherent to avoid operations on invalid 

data. This protocol is then applied to the entire big.LITTLE 

system to establish cache coherency across clusters. 

Since both processors – big and LITTLE – are multicore 

processors, cache coherence within a cluster is already assured 

by default. Therefore, the task at hand is to make those two 

previously independent cache systems coherent with one 

another as well. This is achieved by the CCI as follows: 

3) Load commands 

If the core wants to read data from main memory, the CCI 

receives that request and then automatically issues a snoop 

request to all the other clusters through the ACE interface. The 

snoop controller unit (SCU) receives that snoop request. It will 

– again automatically – snoop the L2 cache of its cluster as 

well as all the L1 caches of each core within the cluster. Keep 

in mind that meta-data for all L1 cache entries is stored within 

the SCU. Therefore the sole act of snooping the L1 caches 

does not actually require accessing them. If the requested data 

can be found in one of the caches, the SCU will return the data 

to the CCI through its ACE interface. The CCI eventually 

returns that data to the initiating core through the regular AXI 

interface. The data in both processors will be marked as 

“shared”, indicating that the data is now present in more than 

one cache. In case the snoop request is unsuccessful the CCI 

will simply fetch the data from main memory, mark it as 

“unique”, and also return it through the AXI interface. This 

means, that the initiating core cannot tell the difference 

between a successful (or unsuccessful) snoop of the CCI and a 

regular main memory read without interference of a CCI. The 

SCU on the receiving side also handles snoop requests 

independently. Therefore, the receiving cluster is also unaware 

of the snoop request taking place. Both processors are entirely 

unaffected by the operation of the CCI in the background. 

[7][9][10] 

4) Store commands 

For store/write commands also two cases can be 

distinguished. If the cache line has been marked as “unique” it 

can simply be stored in a conventional way. If, however, it is 

present in more than one cache and therefore marked 

“shared”, cache coherency needs to be maintained. 

The CCI will receive the request and broadcast a signal to 

all other clusters demanding the cache line to be made unique. 

This means, the receiving clusters now know that they have an 

out-of-date cache line and will evict it from their caches. After 

eviction each cluster responds to the CCI with an 

acknowledge-signal. The CCI will collect these 

acknowledgements until the cache line is unique again. Then it 

will allow the initiating core to perform the store command. 

Should other cores require that data again, they need to fetch it 

again as explained in the previous paragraph. [7][9][10] 

C. Memory Coherency 

In a multicore system threads running on several different 

cores might share the same virtual memory (e.g. if they belong 

to the same process). This virtual memory needs to stay 

coherent as well. To achieve this in a big.LITTLE system, 

where threads sharing the same virtual memory can be spread 

not only across cores but also across clusters (called 

Distributed Virtual Memory (DVM)), ARM uses a concept 

similar to the cache coherency approach. 

Each core of a cluster contains a Memory Management Unit 

(MMU), which mainly consist of a translation lookaside 

buffer (TLB) (compare Fig. 2). TLBs are similar to caches. 

They save the results of the last few memory address 

translations. Addresses accessed several times in a given time-

frame (which is very common in computer programs) do not 

have to be translated. The translation result can simply be 

looked up in the TLB. 

However, if several cores share the same virtual memory, 

 
 

Fig. 3.  Connecting big and LITTLE via the Cache Coherent Interconnect in 
a simplified sample layout of an SoC 

 

 
 

 

 
 
 

 

 
Fig. 4.  ARM cache coherency states [9] 
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any changes to these addresses need to be synchronized 

among all the cores involved. 

In such a case an invalidation message is sent to the CCI, 

which in return will send a broadcast-signal to all other 

clusters and cores. The affected TLB entry will be invalidated. 

This is a one-way communication because TLBs are read-

only. TLB entries can only be invalidated; there will be no 

response from the cores back to the CCI. Altered addresses 

have to be translated again by each core individually and 

stored in the respective TLB. [7][9] 

After ensuring binary compatibility, cache and memory 

coherency there is no limitation anymore to scheduling threads 

to any of the available cores, no matter what cluster (big or 

LITTLE) they belong to. 

 

IV. ARM BIG.LITTLE – PERFORMANCE 

A. ACE and CCI performance 

The ACE interface can be clocked at integer fractions of the 

CPU clock, including 1:1, which allows operation at CPU 

clock speed. [8] 

One cluster can issue and queue a total of 16 write 

commands. Each core can issue and queue 8 simultaneous 

read commands (a total of 32 per cluster). Each request is 

assigned an ID and the CCI will automatically keep track of 

the status of every request. [7] [10] 

B. Snoop performance 

The SCU is located within a cluster and therefore clocked at 

CPU clock speed. [10] 

The SCU can handle 8 simultaneous snoops per cluster. 

A snoop response will be ready after 13 cycles, if there has 

been a L2 cache hit. If the cache line was found in one of the 

L1 caches, the response will be ready after 16 cycles, which is 

also the worst case scenario. Note that the L1 and L2 caches 

are not inclusive. 

If there is a cache miss and the requested cache line cannot 

be found in any of the caches, the negative response will be 

ready in 6 cycles. [10] 

C. Performance example 

Combining the results of A and B one can see, that a given 

core can issue 8 read requests and a receiving core can handle 

8 snoop requests. Therefore, a maximum of 8 transfer 

transaction can be active between two cores at a time. 

Since cache lines have a width of 64 byte and the ACE data 

channel is 128 bit wide, transferring one cache line will take 4 

cycles (on top of the initial 13 - 16 cycle wait for the snoop 

response). 

This means, that after a one-time wait of 16 cycles (worst-

case scenario) 128-bits (16 Bytes) of data can be transmitted 

every cycle. 

 

 

 

 

 

Transferring all 32kB of data contained in a L1 cache 

(compare Table I) will take 

 

   
     

    
       cycles. 

 

Transferring the entire content of a 2MB L2 cache will take  

 

   
    

    
         cycles. 

 

Assuming a A53 clocked at 1.3 GHz the L1 transfer would 

take about 1.5 µs, whereas the L2 transfer would take 

approximately 100 µs. As a comparison, an Intel E5520 

desktop multicore processor clocked at 2.26 GHz will take 

about 6.5 µs for a context switch with a working set size of 

32kB and 30µs for one with 2MB. [15] 

A regular context switch on the big.LITTLE system will 

usually take about 20 – 30 µs, and is therefore absolutely 

comparable to any current processor and can even be 

considered fast if one keeps in mind that this context switch is 

not happening from core to core within a given processor but 

from one CPU cluster to another. [16] 

D. Summary 

Combining the measurements presented in Fig. 1 with the 

Dhrystone performance of each processor and assuming linear 

scalability (each core runs a separate Dhrystone thread) we 

can put performance and power consumption in a simple 

relation. Fig. 5 shows the result of this in comparison to 

having just a A53 or A57 cluster. Despite the linear and 

simple approach, this result is consistent with the findings of 

S. Yoo et al. [4]. 

The chart illustrates the two main advantages of using a 

big.LITTLE system: because LITTLE cores can be utilized 

over big cores whenever possible, the big.LITTLE system 

always consumes less power than a processor just consisting 

of a Cortex A57 given a specific performance level. This 

power advantage can be quite substantial with up to 70%. 

There is also a smaller performance advantage of up to 25% 

due to the simple fact that there are eight cores in the system 

which all can be utilized at once. At this point thermal 

limitations need to be considered though. Mobile devices 

usually do not have any active cooling and having 8 cores run 

at full speed might easily increase the device temperature 

above a save threshold of 40-50°C. 

 

The most important advantage of a big.LITTLE system in 

comparison to a processor just containing a A57, however, 

might be the availability of the LITTLE cores when idling or 

executing very low performance tasks. Here a big.LITTLE 

system can operate at power consumptions which are simply 

inaccessibly to the big-cluster-only processor. 
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V. CONCLUSION 

To conclude this paper I want to stress again the three major 

advantages of ARMs big.LITTLE technology: 

First, there is a performance advantage of up to 25% 

because of the availability of extra cores (8 versus 4). 

Second, there are substantial power advantages of up to 

70%; power is saved at all times and performance levels; low 

performance tasks benefit more. 

Third, the availability of LITTLE cores allow extra low 

power consumption during idling or when in low-power 

modes (which is a very common scenario for mobile devices). 

It is also noteworthy that the big.LITTLE system proved 

that a heterogeneous CPU is not only possible at all, but it is 

also feasible and performs well (enough). This new modularity 

opens up a lot of possibilities in the future to custom-make 

CPUs with exactly the properties required for a given task and 

reducing the need for compromise. 

 

APPENDIX 

A. Dhrystone 

Dhrystone is a benchmark program for evaluating and 

comparing computer performance. Developed in 1984, the 

program only contains integer operations. 

The output of the program is the number of Dhrystones per 

second. That is the number of iterations of the program per 

second, which is executed continuously in a loop. 

The kind and amount of operations in the program are 

designed to mimic the typical utilization of a processor (with 

the exception of floating-point operations). 

The benchmark result is said to be more appropriate for 

measuring processor performance than basic MIPS (million 

instructions per second). The result for MIPS can be very 

different depending on the (instruction set) architecture (e.g. 

RISC and CISC): processors with similar performance might 

need a very different amount of (simple or complex) 

instructions to achieve that performance. Therefore it might be 

more practical to measure how many times per second a given 

program can be executed (regardless of how many instructions 

are needed for executing the program once). 

At the time Dhrystone was created a popular benchmark 

program for floating-point operations was “Whetstone”. 

Therefore the name was derived as a play on words whet / wet 

and dhry / dry respectively. 

 

B. DMIPS 

DMIPS are derived from the basic Dhrystone count when 

dividing the result by 1757. This was the number of Dhrystone 

iterations per second achieved by the Vax-11/780 processor, 

nominally an even 1MIPS machine. It is therefore a way to 

normalize the Dhrystone result and make it comparable to 

other MIPS evaluations. The Vax instruction set architecture is 

a CISC architecture. 

 

C. DMIPS/MHz 

DMIPS per Megahertz can be derived by dividing the 

DMIPS result by the clock frequency in MHz (megahertz) of 

the processor. This allows performance comparisons between 

processors with different clock speeds. 

 
 

Fig. 5.  Power / Performance comparison of a big.LITTLE system in comparison to the big and LITTLE processors individually. 
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