
 1

Abstract—Power consumption and battery life is one of the

main limiting factors for the capabilities of mobile devices these

days. It is crucial to build processors which consume as little

power as possible. At the same time expectations and demand for

performance are constantly increasing. It seems like those two

requirements are hard to combine in one device and therefore

compromises have to be made inevitably; compromises which

end with reduced performance, higher power consumption or

both. ARM Limited tried to tackle this problem heads on: being

able to combine a low power with a high performance processor

in one chip and being able to switch between them on-the-fly

depending on the current requirement would reduce the need for

compromise and allow for mobile devices with little average

power consumption, while still meeting our performance

requirements. In this paper I am going to take a closer look at

ARMs big.LITTLE technology; assessing how it works as well as

how it performs.

Index Terms—Energy efficient processing, heterogeneous

microarchitecture, ARM big.LITTLE

I. INTRODUCTION

ITH mobile devices such as smartphones and tablet

computers we can generally distinguish between two

main – but very different – categories of usage: on one hand

the devices idle, are in a low power mode (since they are

usually never truly powered off – not even at night), or are

used for low performance applications such as e-mail or text

messaging for most of the day; on the other hand we demand

high performance for a select few (but increasing) number of

applications such as playing 3D games, watching HD videos

etc. – for these tasks we expect performance similar to modern

computers and laptops.

Both of these scenarios would call for a very different

choice in processors when looked at independently. In the first

case one would want to equip the device with a low power

processor for maximum battery life. The latter case would

require a high performance processor – which inevitably

would mean high power consumption and low battery life.

This conflict of interest is especially drastic considering the

fact that power consumption and battery life are among the

main limiting factors for mobile devices these days.

Choosing one processor for both cases means a compromise

when it comes to performance as well as power consumption.

It would be ideal to have the right processor for each scenario

within the same device or even die (heterogeneous processor)

and to be able to switch back and forth between them

depending on demand for maximum performance and

maximum battery life.

This is what ARM tried to achieve with the development of

their big.LITTLE technology.

In this paper I am going to take a closer look at energy

efficient processing in general as well as ARMs big.LITTLE

technology in particular. For this purpose the paper is divided

into two main parts. In the first section I am going to discuss

general computer architectural concepts for energy efficient

processing with a brief introduction to the ARM micro-

architecture. The second part will introduce and analyze

big.LITTLE in more detail.

II. ENERGY EFFICIENT MICROARCHITECTURE

A. Instruction Set Architecture

One of the most prominent and prevalent opinions about

energy efficient processing is that the instruction set

architecture (ISA) has a major impact on performance and

power consumption of a processor. The two major ISAs to be

distinguished are those labeled Reduced Instruction Set

Computing (RISC) and Complex Instruction Set Computing

(CISC). The general consensus (established in the 1980s) was

that RISC architectures – which implement a smaller, simpler

and fixed-size instruction set – are a better choice for low

power applications but lack performance. CISC architectures

on the other hand – implementing a large number of

instructions, varying greatly in complexity and instruction

length – are better suited for high performance systems where

energy efficiency does not matter as much.

The fact that ARM solely produces RISC processors and at

the same time controls the majority of the mobile market (for

which energy efficiency is crucial) might seem like proof for

this consensus.

However, as Emily Blem et al. [1] presented in their work

“ISA Wars” published in 2015, there is no difference between

RISC and CISC architectures anymore; ISA does not affect

performance and power in modern processors. Instead, the

authors keep emphasizing that microarchitecture and the

decisions made regarding power/performance trade-offs are

the major origin for the significant differences we see in

processors today.

Energy Efficient Processors –

ARM big.LITTLE Technology

(January 2016)

Philipp Gsching, Student (B.Sc.), Heidelberg University, Germany

W

 2

B. Microarchitectural Innovations

There are several principles, tools and technologies on the

microarchitecture level that can be applied to a processor

during its design and utilized to optimize it for either

performance or power consumption. Since the subject of this

paper is processors for mobile devices, I will present some of

the most common of these techniques with an emphasis on

energy efficiency.

1) Technology-node and feature size

Reducing the feature size of processors does not only allow

for more and more complex structures on each die, it also

reduces the capacitance of these structures and therefore plays

a major role in reducing energy consumption.

2) Dynamic voltage and frequency scaling

Dynamically adjusting supply voltage as well as clock

speed of a processor allows matching the performance with

the current task and avoids wasting energy during idling and

low performance applications.

3) Clock-gating

Through supplying different sections of a processor with

individual independent clocks, these individual components

can be stopped independently if not needed. They will retain

their current state, but use significantly less power than before.

4) Power domains

By dividing the processor up into different (logically

coherent) domains, unused parts of the processor can be

turned off entirely to avoid any idle power consumption.

5) Pipelining

An execution pipeline tries to minimize idle time for

different execution stages of a processor which otherwise

would have to wait on previous stages to complete their

current task before continuing execution. This increases

performance and efficiency.

6) Caches

Accesses of the processor to main memory are not only

time but also power intensive. On-chip caches storing the

current working set data drastically reduce the frequency of

main memory accesses.

7) SoC-Design

In mobile devices Systems-On-A-Chip (SoC) – which

combine most of the key components of a system, such as

CPU, GPU, periphery controllers etc. on one die – are

commonly chosen over discrete chips for each of these

components – the usual approach for laptop and desktop

computers. All these components put restrictions on and need

to be adjusted to one another. This can mean limitations as

well as opportunities for designers regarding performance and

power consumption.

Most of these techniques contain some sort of

power/performance trade-off which can and must be used to

optimize a chip for a given task.

C. ARM Processors

In this section I want to introduce and take a closer look at

actual real-life implementations of the ARM architecture. The

processors presented will be the components of the

big.LITTLE system analyzed in the second part of this paper.

The processors most commonly found in the current

(second) generation of big.LITTLE systems are the ARM

Cortex A53 (A53) and the ARM Cortex A57 (A57). Both are

64-bit processors that share the same microarchitecture.

However, they differ greatly in complexity. As shown in Table

I the A57 outperforms the A53 by almost a factor of 2 when

running at the same clock speed. On the other hand the Cortex

A53 consumes significantly less power, as is demonstrated in

Fig. 1. It is also noteworthy that the A53 running all four cores

still consumes less or equal power than only one running core

of the A57 at any clock-rate.

TABLE I

ARM PROCESSORS

 Cortex A53 (LITTLE) Cortex A57 (big)

64 Bit Yes Yes

Cores 1 - 4 1 - 4

Frequency
a
 1.3 GHz 1.9 GHz

L1-Cache 8 – 64 kB 48 / 32 kBb

L2-Cache 128 – 248 kB 512 – 2048 kB

Pipeline stagesc 8 15
Out-of-Order No Yes

Performanced 2.3 DMIPS / MHz 4.1 DMIPS / MHz

Process
a
 20 nm 20 nm

Core size
a
 0.70 mm² 2.05 mm²

Cluster size
a
 4.58 mm² 15.10 mm²

Comparison of two processors used in an ARM big.LITTLE System
aValues vary depending on implementation. Values presented are taken

from Samsung SoC Exynos 5433 used in Samsung Galaxy Note 4. [13]
bFirst value is size of instruction cache, second value is size of data

cache[11]
cInteger depth [10][11]
dUnit DMIPS / MHz stands for Dhrystone MIPS per Megahertz; see

Appendix for additional information

Fig. 1. Cortex-A power consumption in relation to clock frequency.

The Exynos 5433 SoC contains 4 Cortex A53 and 4 Cortex A57 processors.

For the analysis of one cluster, the other was completely powered off. When
measurements for only one core were conducted, the other three cores of the

cluster were powered off entirely as well. [13]

 3

Fig. 2 illustrates the basic architecture of Cortex-A

processors. Next to the execution pipeline (orange) each core

contains a level-1 (L1) cache (blue) for instructions as well as

data. The same is true for the memory management unit

(MMU) (purple). All cores in one cluster share a large level-2

(L2) cache (green). In addition there is a so called snoop

controller unit (SCU) (red) in the cluster, located close to the

L2 cache. The SCU keeps track of the contents and status of

all L1 caches; however, it does not store the actual cache data

itself. The SCU serves an important purpose in the

big.LITTLE system as will be discussed in section III. The

arbiter administers access of the individual cores to the shared

resources and the bus.

III. ARM BIG.LITTLE – CONCEPT

After having introduced the two processors that will be used

in the big.LITTLE system and some of their underlying

microarchitectural features the following section is dedicated

to explain the fundamental concept of big.LITTLE as well as

its implementation. In the end I am going to take a closer look

at performance and efficiency of such a system.

The Idea of big.LITTLE is to establish an environment in

which the operating system (OS) does not have to distinguish

between the two clusters anymore; instead of seeing two

different quadcore clusters it appears as if there was only one

octacore processor on the die. Such a system is no different

from existing multicore processors and would allow handling

multiprocessing in the traditional way. This “illusion” of one

coherent cluster of cores is created by ensuring binary

compatibility, cache coherency and memory coherency.

A. Binary compatibility

The first of the three might seem obvious but it is still

noteworthy. Binary compatibility means that any program

compiled for one of the two processors (A53 or A57) will also

be executable on a core of the other cluster without any

alterations to the code or having to recompile. [14]

B. Cache coherency

Once this prerequisite is met, the next task at hand is to

physically connect the two processors and establish cache

coherency of all eight cores.

1) Interface and Interconnect

This is achieved by extending the existing Advanced

Extensible Interface (AXI) – the common bus interface in

ARM devices – with three more channels (address, data and

response) called the AXI Coherency Extension (ACE). [8][12]

Through this extended (yet backwards-compatible) interface

the “key component” of the system can be connected to the

two processors. This key component is the so called Cache

Coherency Interconnect (CCI). It is a separate co-processor on

the die which administers all the communication as well as

establishes and maintains cache coherency between the

processors. [6] Fig. 3 illustrates how the two clusters are

connected through the CCI. To aide visualization and to put it

its location and relationship to other components into

perspective, the big.LITTLE system is shown in a simplified

sample layout of a SoC design.

2) Coherency protocol

Cache coherency is a known concept already utilized in all

conventional multicore processors. All of these implement

some form of categorization for cache lines to trace their

status within the system. All of these implementations share

an underlying concept similar to the MESI (Modified

Exclusive Shared Invalid) or MOESI (same as MESI with

addition of Owned) protocol. [9]

Fig. 2. Major components of a Cortex-A cluster and core [9][10][12]

 4

ARMs version of such a protocol is presented in Fig. 4. A

protocol like this assigns each cache line one of five statuses.

First of all, it can be valid or invalid. An invalid cache line

either has not been filled with any data so far (e.g. after

powering on) or it previously contained data which has

recently been evicted to make room for data with higher

priority. Valid cache lines are categorized even further. They

can be dirty or clean depending on whether the data they

contain has been altered from what is still stored in main

memory (and hence main memory needs updated sooner or

later) or not. Lastly they can also be unique, which means the

cache line is only held in one cache and no others, or shared,

indicating that several cores hold the line in their caches; these

lines need to be kept coherent to avoid operations on invalid

data. This protocol is then applied to the entire big.LITTLE

system to establish cache coherency across clusters.

Since both processors – big and LITTLE – are multicore

processors, cache coherence within a cluster is already assured

by default. Therefore, the task at hand is to make those two

previously independent cache systems coherent with one

another as well. This is achieved by the CCI as follows:

3) Load commands

If the core wants to read data from main memory, the CCI

receives that request and then automatically issues a snoop

request to all the other clusters through the ACE interface. The

snoop controller unit (SCU) receives that snoop request. It will

– again automatically – snoop the L2 cache of its cluster as

well as all the L1 caches of each core within the cluster. Keep

in mind that meta-data for all L1 cache entries is stored within

the SCU. Therefore the sole act of snooping the L1 caches

does not actually require accessing them. If the requested data

can be found in one of the caches, the SCU will return the data

to the CCI through its ACE interface. The CCI eventually

returns that data to the initiating core through the regular AXI

interface. The data in both processors will be marked as

“shared”, indicating that the data is now present in more than

one cache. In case the snoop request is unsuccessful the CCI

will simply fetch the data from main memory, mark it as

“unique”, and also return it through the AXI interface. This

means, that the initiating core cannot tell the difference

between a successful (or unsuccessful) snoop of the CCI and a

regular main memory read without interference of a CCI. The

SCU on the receiving side also handles snoop requests

independently. Therefore, the receiving cluster is also unaware

of the snoop request taking place. Both processors are entirely

unaffected by the operation of the CCI in the background.

[7][9][10]

4) Store commands

For store/write commands also two cases can be

distinguished. If the cache line has been marked as “unique” it

can simply be stored in a conventional way. If, however, it is

present in more than one cache and therefore marked

“shared”, cache coherency needs to be maintained.

The CCI will receive the request and broadcast a signal to

all other clusters demanding the cache line to be made unique.

This means, the receiving clusters now know that they have an

out-of-date cache line and will evict it from their caches. After

eviction each cluster responds to the CCI with an

acknowledge-signal. The CCI will collect these

acknowledgements until the cache line is unique again. Then it

will allow the initiating core to perform the store command.

Should other cores require that data again, they need to fetch it

again as explained in the previous paragraph. [7][9][10]

C. Memory Coherency

In a multicore system threads running on several different

cores might share the same virtual memory (e.g. if they belong

to the same process). This virtual memory needs to stay

coherent as well. To achieve this in a big.LITTLE system,

where threads sharing the same virtual memory can be spread

not only across cores but also across clusters (called

Distributed Virtual Memory (DVM)), ARM uses a concept

similar to the cache coherency approach.

Each core of a cluster contains a Memory Management Unit

(MMU), which mainly consist of a translation lookaside

buffer (TLB) (compare Fig. 2). TLBs are similar to caches.

They save the results of the last few memory address

translations. Addresses accessed several times in a given time-

frame (which is very common in computer programs) do not

have to be translated. The translation result can simply be

looked up in the TLB.

However, if several cores share the same virtual memory,

Fig. 3. Connecting big and LITTLE via the Cache Coherent Interconnect in
a simplified sample layout of an SoC

Fig. 4. ARM cache coherency states [9]

 5

any changes to these addresses need to be synchronized

among all the cores involved.

In such a case an invalidation message is sent to the CCI,

which in return will send a broadcast-signal to all other

clusters and cores. The affected TLB entry will be invalidated.

This is a one-way communication because TLBs are read-

only. TLB entries can only be invalidated; there will be no

response from the cores back to the CCI. Altered addresses

have to be translated again by each core individually and

stored in the respective TLB. [7][9]

After ensuring binary compatibility, cache and memory

coherency there is no limitation anymore to scheduling threads

to any of the available cores, no matter what cluster (big or

LITTLE) they belong to.

IV. ARM BIG.LITTLE – PERFORMANCE

A. ACE and CCI performance

The ACE interface can be clocked at integer fractions of the

CPU clock, including 1:1, which allows operation at CPU

clock speed. [8]

One cluster can issue and queue a total of 16 write

commands. Each core can issue and queue 8 simultaneous

read commands (a total of 32 per cluster). Each request is

assigned an ID and the CCI will automatically keep track of

the status of every request. [7] [10]

B. Snoop performance

The SCU is located within a cluster and therefore clocked at

CPU clock speed. [10]

The SCU can handle 8 simultaneous snoops per cluster.

A snoop response will be ready after 13 cycles, if there has

been a L2 cache hit. If the cache line was found in one of the

L1 caches, the response will be ready after 16 cycles, which is

also the worst case scenario. Note that the L1 and L2 caches

are not inclusive.

If there is a cache miss and the requested cache line cannot

be found in any of the caches, the negative response will be

ready in 6 cycles. [10]

C. Performance example

Combining the results of A and B one can see, that a given

core can issue 8 read requests and a receiving core can handle

8 snoop requests. Therefore, a maximum of 8 transfer

transaction can be active between two cores at a time.

Since cache lines have a width of 64 byte and the ACE data

channel is 128 bit wide, transferring one cache line will take 4

cycles (on top of the initial 13 - 16 cycle wait for the snoop

response).

This means, that after a one-time wait of 16 cycles (worst-

case scenario) 128-bits (16 Bytes) of data can be transmitted

every cycle.

Transferring all 32kB of data contained in a L1 cache

(compare Table I) will take

 cycles.

Transferring the entire content of a 2MB L2 cache will take

 cycles.

Assuming a A53 clocked at 1.3 GHz the L1 transfer would

take about 1.5 µs, whereas the L2 transfer would take

approximately 100 µs. As a comparison, an Intel E5520

desktop multicore processor clocked at 2.26 GHz will take

about 6.5 µs for a context switch with a working set size of

32kB and 30µs for one with 2MB. [15]

A regular context switch on the big.LITTLE system will

usually take about 20 – 30 µs, and is therefore absolutely

comparable to any current processor and can even be

considered fast if one keeps in mind that this context switch is

not happening from core to core within a given processor but

from one CPU cluster to another. [16]

D. Summary

Combining the measurements presented in Fig. 1 with the

Dhrystone performance of each processor and assuming linear

scalability (each core runs a separate Dhrystone thread) we

can put performance and power consumption in a simple

relation. Fig. 5 shows the result of this in comparison to

having just a A53 or A57 cluster. Despite the linear and

simple approach, this result is consistent with the findings of

S. Yoo et al. [4].

The chart illustrates the two main advantages of using a

big.LITTLE system: because LITTLE cores can be utilized

over big cores whenever possible, the big.LITTLE system

always consumes less power than a processor just consisting

of a Cortex A57 given a specific performance level. This

power advantage can be quite substantial with up to 70%.

There is also a smaller performance advantage of up to 25%

due to the simple fact that there are eight cores in the system

which all can be utilized at once. At this point thermal

limitations need to be considered though. Mobile devices

usually do not have any active cooling and having 8 cores run

at full speed might easily increase the device temperature

above a save threshold of 40-50°C.

The most important advantage of a big.LITTLE system in

comparison to a processor just containing a A57, however,

might be the availability of the LITTLE cores when idling or

executing very low performance tasks. Here a big.LITTLE

system can operate at power consumptions which are simply

inaccessibly to the big-cluster-only processor.

 6

V. CONCLUSION

To conclude this paper I want to stress again the three major

advantages of ARMs big.LITTLE technology:

First, there is a performance advantage of up to 25%

because of the availability of extra cores (8 versus 4).

Second, there are substantial power advantages of up to

70%; power is saved at all times and performance levels; low

performance tasks benefit more.

Third, the availability of LITTLE cores allow extra low

power consumption during idling or when in low-power

modes (which is a very common scenario for mobile devices).

It is also noteworthy that the big.LITTLE system proved

that a heterogeneous CPU is not only possible at all, but it is

also feasible and performs well (enough). This new modularity

opens up a lot of possibilities in the future to custom-make

CPUs with exactly the properties required for a given task and

reducing the need for compromise.

APPENDIX

A. Dhrystone

Dhrystone is a benchmark program for evaluating and

comparing computer performance. Developed in 1984, the

program only contains integer operations.

The output of the program is the number of Dhrystones per

second. That is the number of iterations of the program per

second, which is executed continuously in a loop.

The kind and amount of operations in the program are

designed to mimic the typical utilization of a processor (with

the exception of floating-point operations).

The benchmark result is said to be more appropriate for

measuring processor performance than basic MIPS (million

instructions per second). The result for MIPS can be very

different depending on the (instruction set) architecture (e.g.

RISC and CISC): processors with similar performance might

need a very different amount of (simple or complex)

instructions to achieve that performance. Therefore it might be

more practical to measure how many times per second a given

program can be executed (regardless of how many instructions

are needed for executing the program once).

At the time Dhrystone was created a popular benchmark

program for floating-point operations was “Whetstone”.

Therefore the name was derived as a play on words whet / wet

and dhry / dry respectively.

B. DMIPS

DMIPS are derived from the basic Dhrystone count when

dividing the result by 1757. This was the number of Dhrystone

iterations per second achieved by the Vax-11/780 processor,

nominally an even 1MIPS machine. It is therefore a way to

normalize the Dhrystone result and make it comparable to

other MIPS evaluations. The Vax instruction set architecture is

a CISC architecture.

C. DMIPS/MHz

DMIPS per Megahertz can be derived by dividing the

DMIPS result by the clock frequency in MHz (megahertz) of

the processor. This allows performance comparisons between

processors with different clock speeds.

Fig. 5. Power / Performance comparison of a big.LITTLE system in comparison to the big and LITTLE processors individually.

 7

REFERENCES

[1] E. Blem, J. Menon, T. Vijayaraghavan, K. Sankaralingam. (2015,

March). ISA Wars: Understanding the Relevance of ISA being RISC or
CISC to Performance, Power, and Energy on Modern Architectures.

ACM Transactions on Computer Systems. [Type of medium]. Vol. 33,

No.1, Article 3. Available: http://tocs.acm.org/
[2] T. Mitra. (2014). Energy-Efficient Computing with Heterogeneous

Multi-Cores, Presented at International Symposium on Integrated

Circuits (ISIC).
[3] V. Villebonnet, G. Da Costa, L. Lefevre, J.-M. Pierson, P. Stolf. (2014).

Towards Generalizing "Big.Little" for Energy Proportional HPC and

Cloud Infrastructures. Presented at IEEE Fourth International
Conference on Big Data and Cloud Computing.

[4] S. Yoo, Y. Shim, S. Lee, S.-A. Lee, J. Kim. (2015, October). A case for

bad big.LITTLE switching: How to scale power-performance in SI-
HMP. Presented at Hotpower’15, Monterey, CA, USA.

[5] ARMv7 Architecture Reference Manual, ARM Ltd., Cherry Hinton,

Cambridge, 2014.
[6] ARMv8 Architecture Reference Manual, ARM Ltd., Cherry Hinton,

Cambridge, 2015.

[7] CoreLink CCI-400 Cache Coherent Interconnect Technical Reference
Manual, ARM Ltd., Cherry Hinton, Cambridge, 2012.

[8] AMBA AXI and ACE Protocol Specification, ARM Ltd., Cherry Hinton,

Cambridge, 2013.
[9] Introduction to AMBA 4 ACE and big.LITTLE Processing Technology,

ARM Ltd., Cherry Hinton, Cambridge, 2013.

[10] ARM Cortex-A53 MPCore Processor Technical Reference Manual,
ARM Ltd., Cherry Hinton, Cambridge, 2014.

[11] ARM Cortex-A57 MPCore Processor Technical Reference Manual,

ARM Ltd., Cherry Hinton, Cambridge, 2014.
[12] big.LITTLE Technology: The Future of Mobile, ARM Ltd., Cherry

Hinton, Cambridge, 2013.

[13] A. Frumusanu, R. Smith. (2015, February). ARM A53/A57/T760
investigated - Samsung Galaxy Note 4 Exynos Review. Available:

http://www.anandtech.com/show/8718/the-samsung-galaxy-note-4-

exynos-review/
[14] H.-D. Cho, K. Chung, T. Kim. (2012, February). Benefits of the

big.LITTLE Architecture. Samsung Electronics, Seoul.

[15] B. Sigoure, (2010, November) How long does it take to make a context
switch? Available: http://blog.tsunanet.net/2010/11/how-long-does-it-

take-to-make-context.html

[16] K. Yu, (2012) big.LITTLE Switchers – Evaluation on Exynos.bl
Processor. Presented at 2012 Korea Linux Forum. Available:

http://events.linuxfoundation.org/images/stories/pdf/klf2012_yu.pdf

