
December 2, 2015 Adv. Seminar CE // Steffen Lammel
1

CPU-GPU Heterogeneous 
Computing

Advanced Seminar "Computer Engineering”
Winter-Term 2015/16

Steffen Lammel
December 2, 2015



December 2, 2015 Adv. Seminar CE // Steffen Lammel
2

Content

● Introduction
– Motivation

– Characteristics of CPUs 
and GPUs

● Heterogeneous 
Computing Systems 
and Techniques
– Workload division

– Frameworks and tools

– Fused HCS

● Energy Saving 
with HCT
– Intelligent workload 

division

– Dynamic 
Voltage/Frequency 
Scaling (DVFS)

● Conclusion
– Programming aspects

– Energy aspects



December 2, 2015 Adv. Seminar CE // Steffen Lammel
3

Introduction



December 2, 2015 Adv. Seminar CE // Steffen Lammel
4

Introduction

● Grand Goal in HPC
– Exascale systems 

until the year ~2020

● Problems
– Computational Power

● Now: up to 7GF/W
● Exascale: >=50GF/W

– Power Budget 
~20MW

– Heat Dissipation

Source: [1]

Source: [2]

Compare: #1 TOP500: ~33PF @ 1,9GF/W



December 2, 2015 Adv. Seminar CE // Steffen Lammel
5

Introduction

● CPU
– Few cores (<= 20)
– High frequency (~3GHz)
– Large caches, plenty of 

(slow) memory (<= 1TB)
– Latency oriented

● GPU
– Many cores (> 1000)

– Slow frequency (<=1GHz)
– Fast memory, limited in size 

(<= 12GB)
– Throughput oriented



December 2, 2015 Adv. Seminar CE // Steffen Lammel
6

Introduction

● Ways increase 
Energy Efficiency:
– Get the most 

computational 
power from both 
domains

– Utilize the 
sophisticated power-
saving techniques 
modern CPU/GPUs 
offer

Terminology:

– HCS: Heterogeneous Computing 
System (hardware)

– HCT: Heterogeneous Computing 
Technique (software)

– PU: Processing Unit (can be both, CPU 
and GPU)

– FLOPs: Floating Point Operations per 
second

● DP: Double Precision

● SP: Single Precision

– BLAS: Basic Linear Algebra 
Subprograms

– SIMD: Single Instruction Multiple Data



December 2, 2015 Adv. Seminar CE // Steffen Lammel
7

Heterogeneous Computing
Techniques (HCT)
Runtime Level



December 2, 2015 Adv. Seminar CE // Steffen Lammel
8

HCT - Basics

● Worst case:
– Only one PU is 

active at a time

● Ideal case:
– All PUs do (useful) 

work simultaneously

CPU     GPU CPU     GPU



December 2, 2015 Adv. Seminar CE // Steffen Lammel
9

HCT - Basics

● Examples are idealized
– Real world applications consist of several 

different patterns

● Typical Processing Units (PU) in HCS
– Tens of CPU cores/threads

– Several 1000 GPU cores/kernels

● Goals of HCT
– All PUs have to be utilized (in a useful way)



December 2, 2015 Adv. Seminar CE // Steffen Lammel
10

HCT – Workload Division

● Basic Idea:
– Divide the whole problem 

into smaller chunks

– Assign each sub-task to a 
PU

– compare: “PCAM”, [5]
● Partition
● Communicate
● Agglomerate
● Map

Problem

Sub-Task
0 ...

...

...

...

...

Sub-Task
n

Sub-Task
1



December 2, 2015 Adv. Seminar CE // Steffen Lammel
11

HCT – Workload Division
(naive)

Example:
● Dual-Core System

– CPU + GPU

– Naive data distribution

● CPU core 0
– Master/Arbiter

● CPU core 1
– Worker

● GPU
– Worker

● Huge idle periods for GPU 
and CPU core 0

core0   GPU    core1



December 2, 2015 Adv. Seminar CE // Steffen Lammel
12

HCT – Workload Division
(relative PU performance)

● Approach: use 
relative performance 
of each PU as metric
– A microbenchmark or 

performance model 
deemed the GPU 3x 
faster than than the CPU

– Partition the work in a 3:1 
ratio to the PUs

– Task granularity and the 
quality/nature of the 
microbenchmark are the 
key factors here

core0   GPU    core1



December 2, 2015 Adv. Seminar CE // Steffen Lammel
13

HCT – Workload Division
(characteristics of sub-tasks)

● Idea:
– Use the nature of 

the sub-tasks to 
leverage 
performance

– CPU affine tasks

– GPU affine tasks

– tasks which run 
roughly equally 
well on all PUs

Problem

Sub-Task
0 ...

Sub-Task
1 ...

...

...

...

Sub-Task
n



December 2, 2015 Adv. Seminar CE // Steffen Lammel
14

HCT – Workload Division
(nature of sub-tasks)

● Map the tasks to the 
PU it performs best on
– Latency: CPU

– Throughput: GPU

● Further scheduling 
metrics:
– Capability (of the PU)

– Locality (of the data)

– Criticality (of the task)

– Availability (of the PU)

CPU1      CPU0       GPU



December 2, 2015 Adv. Seminar CE // Steffen Lammel
15

HCT – Workload Division
(pipeline)

● If overlap is possible: Pipeline
– Call kernels asynchronously to hide latency

– Small penalty to fill and drain the pipeline

– Good utilization of all PUs if the pipeline is full

PU0

PU1

PUn

Task A.1

Task A.2

Task A.3

Task B.1

Task B.2

Task B.3

Task C.1

Task C.2

Task C.3



December 2, 2015 Adv. Seminar CE // Steffen Lammel
16

HCT – Workload Division
(relative PU performance)

Summary: Metrics for 
workload division

● Performance of PUs
● Nature of sub-tasks

– Order
● Regular Patterns --> GPU (little 

communication)
● Irregular Patterns --> CPU (lots of 

communication)

– Memory Footprint
● Fits into VRAM? --> GPU
● Too Big? --> CPU

– BLAS-Level
● BLAS-1/2 --> CPU (Vector-Vector. Vector-

Matrix operations)
● BLAS-3 --> GPU (Matrix-Matrix operations

● Historical Data
– How well did each PU perform in the previous 

step?

● Availability of PU
– Is there a function/kernel for the desired PU?

– Is the PU able to take a task (scheduling-
wise)?



December 2, 2015 Adv. Seminar CE // Steffen Lammel
17

Heterogeneous Computing
Techniques (HCT)
Frameworks and tools



December 2, 2015 Adv. Seminar CE // Steffen Lammel
18

HCT – Framework Support

● Implementing these techniques is tedious and error-prone
– Better: Let a framework do this job!

● Framework for load-balancing
– Compile-Time Level (static scheduling)
– Runtime Level (dynamic scheduling)

● Framework for parallel-abstraction
– Write the algorithm as a sequential program and let the tools figure out how to utilize 

the PUs optimally
– Sourcecode annotations to give the run-time/compiler hints what approach is the best    

(comp.: OpenMP #pragma_omp_xxx)
– Scheduling: dynamic or static

● Partitioning and work-division principles shown before apply here as 
well!



December 2, 2015 Adv. Seminar CE // Steffen Lammel
19

HCT – Framework Support

● Generic PU specific tools and frameworks
– CUDA+Libraries (Nvidia GPU)

– OpenMP, Pthreads (CPU)

● Generic heterogenous-aware frameworks
– OpenCL, OpenACC

– OpenMP (“offloading”, since v4.0)

– CUDA (CPU-callback)

● Custom Frameworks (interesting Examples)
– Compile-Time Level (static scheduling approach)

● SnuCL

– Run-Time Level (dynamic scheduling approach)
● PLASMA



December 2, 2015 Adv. Seminar CE // Steffen Lammel
20

HCT – Framework Support
(Example: SnuCL)

● Creates a “virtual node” 
with all the PUs of a 
Cluster

● Use a message passing 
interface (MPI) to 
distribute the workloads 
to the distant PUs

● Inter-Node 
communication is 
implicit

Source: [4]



December 2, 2015 Adv. Seminar CE // Steffen Lammel
21

HCT – Framework Support
(Example: PLASMA)

● Intermediate 
representation
– Independent of PU

● PU-specific implementation 
based on IR
– Utilizes the PU's specific SIMD 

capabilities

● A Runtime decides 
assignment to PU 
dynamically
– Speed-Up depends on workload

Original
Code

IR
Code

CPU
Code

GPU
Code

GPU

Runtime

CPU



December 2, 2015 Adv. Seminar CE // Steffen Lammel
22

Heterogeneous Computing
Techniques (HCT)
Fused HCS



December 2, 2015 Adv. Seminar CE // Steffen Lammel
23

HTC – Fused HCS

● CPU and GPU share the 
same die
– … and the same address space!

● Communication paths are 
significantly shorter

● AMD “Fusion” APU 
– x86 + OpenCL

● Intel “Sandy Bridge” and 
successors
– x86 + OpenCL

● Nvidia “Tegra”
– ARM + CUDA



December 2, 2015 Adv. Seminar CE // Steffen Lammel
24

Energy saving with HCS



December 2, 2015 Adv. Seminar CE // Steffen Lammel
25

Energy saving with HCS

● Trade-of
– Performance vs. energy consumption

● Modern PUs are delivered with 
extensive power-saving features
– e.g.: Power Regions, Clock Gating

● Less aggressive energy saving in HPC
– Reason: get rid of state transition penalties

● Aggressive ES in mobile/embedded
– Battery-life is everything in this domain



December 2, 2015 Adv. Seminar CE // Steffen Lammel
26

Energy saving with HCS
(hardware: DVFS)

● Dynamic Voltage/Frequency Scaling (DVFS)

– P = C*V²*f
● with f~V; C=const.

– Reduce f by 20%
● → P: -50%!

– How far can we lower f/V to meet our timing 
constraints?



December 2, 2015 Adv. Seminar CE // Steffen Lammel
27

Energy saving with HCS
(software: intelligent work distribution)

● Intelligent Workload Partitioning
– Power model of tasks and PU

– Assign tasks with respect to power model

– Take communication overhead into account



December 2, 2015 Adv. Seminar CE // Steffen Lammel
28

Conclusion



December 2, 2015 Adv. Seminar CE // Steffen Lammel
29

Conclusion
(programming aspects)

● Trade of
– Usability vs. performance

– Portability vs. performance

● High Performance requires high 
programming efort
– “Raw” CUDA/OpenMP

● Code-abstracting frameworks can 
support developers to a certain degree
– OpenCL, OpenACC, custom solutions

● Dynamic scheduling frameworks can 
accelerate an application
– Complicated cases, many PUs

P
erform

ance

E
as

e 
of

 p
ro

gr
am

m
in

g

P
or

ta
bi

lit
y



December 2, 2015 Adv. Seminar CE // Steffen Lammel
30

Conclusion
(energy aspects)

● HCS do contribute to a better 
performance/watt ratio

● Intelligent workload partitioning
– equally important for performance and energy 

saving

● DVFS is a key technique for energy-
saving

● Fused HCS can fill nichès where 
communication is a key factor



December 2, 2015 Adv. Seminar CE // Steffen Lammel
31

Thank you for your attention!

Questions?



December 2, 2015 Adv. Seminar CE // Steffen Lammel
32

References

Papers:
A Survey of CPU-GPU Heterogeneous Computing Techniques (Link)
SnuCL: an OpenCL Framework for Heterogeneous CPU/GPU Clusters (Link)
PLASMA: Portable Programming for SIMD Heterogeneous Accelerators (Link)

Images:
[1] http://www.hpcwire.com/2015/08/04/japan-takes-top-three-spots-on-green500-list/
[2] http://www.top500.org/lists/2015/11/
[3] https://en.wikipedia.org/wiki/Performance_per_watt#FLOPS_per_watt
[4] http://snucl.snu.ac.kr/features.html
[5] http://www.mcs.anl.gov/~itf/dbpp/text/node15.html

http://dl.acm.org/citation.cfm?id=2788396
http://dl.acm.org/citation.cfm?id=2304623
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.180.5686
http://www.hpcwire.com/2015/08/04/japan-takes-top-three-spots-on-green500-list/
http://www.top500.org/lists/2015/11/
https://en.wikipedia.org/wiki/Performance_per_watt#FLOPS_per_watt
http://snucl.snu.ac.kr/features.html
http://www.mcs.anl.gov/~itf/dbpp/text/node15.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

