Master of Science
Computer Engineering (Technische Informatik)
MScTI

Description of the course modules

Heidelberg University
Department of Physics and Astronomy

Version 1.12 (V4)
<table>
<thead>
<tr>
<th>Name of university</th>
<th>Heidelberg University</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of department</td>
<td>Institute of Computer Engineering</td>
</tr>
<tr>
<td>Name of degree course</td>
<td>Master of Science Computer Engineering</td>
</tr>
<tr>
<td>Format of studies</td>
<td>Full time, part time</td>
</tr>
<tr>
<td>Type of degree course</td>
<td>Consecutive</td>
</tr>
<tr>
<td>Date of version</td>
<td>11.07.2018</td>
</tr>
<tr>
<td>Prescribed period of study</td>
<td>Two years, i. e. four semesters</td>
</tr>
<tr>
<td>Location</td>
<td>Heidelberg</td>
</tr>
<tr>
<td>Total number of credit points</td>
<td>120</td>
</tr>
<tr>
<td>University places</td>
<td>Unlimited</td>
</tr>
<tr>
<td>Target group</td>
<td>Holders of Bachelor of Science, Magister, Staatsexamen, Diploma or equivalent final degree of at least 6 semester study having majored in computer science or in Mathematics, Natural Sciences or Engineering with attestable lectures (recommended 24 CP) imparting knowledge in computer science.</td>
</tr>
</tbody>
</table>
Preamble

Quality Objectives at Heidelberg University for Study Programmes and Teaching

Having regard to its mission statement and constitution, Heidelberg University's degree courses have subject-related, interdisciplinary and occupational objectives. They aim to provide a comprehensive academic education equipping graduates for the world of work.

Consequently, the following competence profile has been drawn up for inclusion in module handbooks as a profile of skills valid for all disciplines. It shall be applied to the specific objectives of the individual courses and then implemented in their curricula and modules.

The main points of the competence profile:

- developing subject-related skills with a pronounced research orientation
- developing the ability to engage in trans disciplinary dialogue
- developing practice-related problem-solving skills
- developing personal and social skills
- promoting the willingness to assume social responsibility on the basis of the skills acquired

Disciplinary and Interdisciplinary Quality Objectives of the Master Programme “Computer Engineering”

The research oriented master programme in Computer Engineering (MScTI) at Heidelberg University is organized by the Institute of Computer Engineering and the Department of Physics and Astronomy. Its educational objective is to qualify students for a research or development oriented professional career in the field of Computer Engineering as well as for participation in PhD programs. The students should get a thorough understanding of possible approaches and solutions and should be able to assess their advantages and drawbacks so that they can chose a good solution for a given problem. They should realize when a solution is inappropriate or suboptimal and should be able to devise novel approaches / solutions. The MScTI emphasizes on practical skills so that the students can use the available tools and methods (software, mathematics) to develop working solutions efficiently.

Students can choose one of three specializations, which are sub-fields of 'computer engineering' (Application Specific Computing, Microelectronics, Intelligent Autonomous Systems). Each specialization consists of a set of modules on an advanced level, which cover the field to a large extent. By following a sufficient number of modules in such a specialization, students reach the state-of-the art in the area to become fully competitive.

After having completed the research phase (seminar, student research project, master thesis), students have obtained the ability to do research independently, to document and publish research work. They deepen their knowledge on scientific methods, information engineering, hardware and software, interdisciplinary system thinking, experience in practical applications as well as the communication competence and the ability to work in teams.

Possible career options are in the practical development of hardware systems for data acquisition and for fast data processing, the efficient solution of compute-intensive tasks on modern, high performance, heterogeneous hardware, the design of analogue or digital microelectronics circuits, the design and operation of robotic systems, etc.
Subject-related Qualification Objectives
After completing the master program ‘Computer Engineering’ the graduates are able to program parallel systems with shared and distributed memory and use the learned structures to develop new architectures of parallel computers. They acquire a deep understanding of nonlinear dynamical systems in order to design simple nonlinear control systems. Additionally, they understand concepts about the functionality and programming of microprocessors and peripheral circuits as well as reconfigurable architectures and use these concepts to implement an own circuit respectively to implement and to program a sample embedded FPGA platform.

Transdisciplinary Qualification Objectives
Master’s graduates in Computer Engineering possess the required skills to work independently with a variety of software tools for various special applications and to choose the appropriate one to solve problems. They are able to apply structured working methods and can organize complex professional projects. Also they have a basic understanding about legal aspects of founding and running a company, financial aspects of founding and running a business and are able to apply marketing strategies and tools.
Overview of the course modules

<table>
<thead>
<tr>
<th>Module</th>
<th>Module Coordinator</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fundamentals</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>• Parallel Computer Architecture (compulsory)</td>
<td>Brüning</td>
<td>6</td>
</tr>
<tr>
<td>• System Theory (compulsory)</td>
<td>Badreddin</td>
<td>6</td>
</tr>
<tr>
<td>• C++ Practice</td>
<td>Strzodka</td>
<td>6</td>
</tr>
<tr>
<td>• Electronics</td>
<td>Wurz</td>
<td>6</td>
</tr>
<tr>
<td>• Introduction to High Performance Computing</td>
<td>Fröning</td>
<td>6</td>
</tr>
<tr>
<td>• Microcontroller Based Embedded Systems</td>
<td>Wurz</td>
<td>6</td>
</tr>
<tr>
<td>• Reconfigurable Embedded Systems</td>
<td>Kugel</td>
<td>6</td>
</tr>
<tr>
<td>Soft Skills</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>• Tools</td>
<td>all</td>
<td>4</td>
</tr>
<tr>
<td>• Entrepreneurship</td>
<td>extern</td>
<td>6</td>
</tr>
<tr>
<td>Main Subject / Specialization</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>• Components, Basic Circuits & Simulation</td>
<td>Fischer</td>
<td>6</td>
</tr>
<tr>
<td>• Full Custom VLSI Design</td>
<td>Fischer</td>
<td>6</td>
</tr>
<tr>
<td>• Digital Hardware Design</td>
<td>Brüning</td>
<td>6</td>
</tr>
<tr>
<td>• Digital Semi Custom Design Flow</td>
<td>Brüning</td>
<td>6</td>
</tr>
<tr>
<td>• Functional Verification</td>
<td>Brüning</td>
<td>6</td>
</tr>
<tr>
<td>• Advanced Analogue Building Blocks</td>
<td>Fischer</td>
<td>6</td>
</tr>
<tr>
<td>• Silicon Sensors & Readout Electronics</td>
<td>Fischer</td>
<td>6</td>
</tr>
<tr>
<td>• GPU Computing</td>
<td>Fröning</td>
<td>6</td>
</tr>
<tr>
<td>• Accelerator Practice</td>
<td>Strzodka</td>
<td>6</td>
</tr>
<tr>
<td>• Parallel Algorithm Design</td>
<td>Strzodka</td>
<td>6</td>
</tr>
<tr>
<td>• Advanced Parallel Algorithms</td>
<td>Strzodka</td>
<td>6</td>
</tr>
<tr>
<td>• Advanced Parallel Computing</td>
<td>Fröning</td>
<td>6</td>
</tr>
<tr>
<td>• FPGA Coprocessors</td>
<td>Kugel</td>
<td>6</td>
</tr>
<tr>
<td>• High Performance Interconnection Networks</td>
<td>Brüning</td>
<td>6</td>
</tr>
<tr>
<td>• Parallel Algorithms, Application Computing</td>
<td>Bastian</td>
<td>8</td>
</tr>
<tr>
<td>• Parallel Solution of Large Linear Systems</td>
<td>Bastian</td>
<td>8</td>
</tr>
<tr>
<td>• Physics of Imaging</td>
<td>Jähne</td>
<td>4</td>
</tr>
<tr>
<td>• Digital Image Processing</td>
<td>Jähne</td>
<td>8</td>
</tr>
<tr>
<td>• Modern Image Sensors</td>
<td>Jähne</td>
<td>2</td>
</tr>
<tr>
<td>• Pattern Recognition</td>
<td>Hamprecht</td>
<td>8</td>
</tr>
<tr>
<td>• Advanced System Theory</td>
<td>Badreddin</td>
<td>6</td>
</tr>
<tr>
<td>• Design of Autonomous Systems</td>
<td>Badreddin</td>
<td>6</td>
</tr>
<tr>
<td>• Digital Control</td>
<td>Badreddin</td>
<td>6</td>
</tr>
<tr>
<td>• Data Acquisition</td>
<td>Badreddin</td>
<td>6</td>
</tr>
<tr>
<td>• Design of Reliable and Dependable Systems</td>
<td>Badreddin</td>
<td>6</td>
</tr>
<tr>
<td>• Robotics 1 - Kinematics, Dynamics and Motion Planning</td>
<td>Mombaur</td>
<td>6</td>
</tr>
<tr>
<td>• Robotics 2 - Simulation and Optimization in Robotics</td>
<td>Mombaur</td>
<td>6</td>
</tr>
<tr>
<td>• Biomechanics 1</td>
<td>Mombaur</td>
<td>6</td>
</tr>
<tr>
<td>• Robotics Practical for Computer Engineering Master</td>
<td>Mombaur</td>
<td>6</td>
</tr>
</tbody>
</table>
Structure of Courses

All in all, the following modules have to be completed successfully (120 CP):

- 3 modules from „Fundamentals“ 18 CP
- 5 modules from „Main Subject / Specialization“ 30 CP
- 2 modules from „Free Courses“ 12 CP
- 2 or more modules from „Soft Skills“ 12 CP
- Seminar 4 CP
- Student research project 14 CP
- Master thesis with final colloquium 30 CP

Fundamentals

The following modules from “Fundamentals” are compulsory and have to be completed (mandatory modules):

- Parallel Computer Architecture
- System Theory

As an elective you can choose any other subject listed above in “Fundamentals”.

Main Subject / Specialization

In principle, advanced students can choose their in-depth modules freely according to the examination rules / regulations. We recommend, however, following one of the model curricula completing an exceptional specialization in a certain field of Computer Engineering. When completing a sufficient number of modules in such a specialization during your studies, this specialization will be documented explicitly in your Master Grade Report.

This is a list of model curricula and the modules required in each case:

1. Microelectronics

3 compulsory modules:
- Components, Basic Circuits & Simulation
- Digital Hardware Design
- Full Custom VLSI Design

2 elective modules from:
- Advanced Analog Building Blocks
- Digital Semicustom Design Flow
- Electronics
- Functional Verification
- Microcontroller Based Embedded Systems
- Reconfigurable Embedded Systems
- Silicon Sensors & Readout Electronics
2. Application Specific Computing

3 compulsory modules:
- GPU Computing
- Parallel Algorithm Design
- Reconfigurable Embedded Systems

2 elective modules from:
- Accelerator Practice
- Advanced Parallel Algorithms
- Advanced Parallel Computing
- C++ Practice
- Electronics
- FPGA Coprocessors
- High Performance Interconnection Networks
- Introduction to High Performance Computing
- Microcontroller Based Embedded Systems
- Parallel Algorithms, Application Computing
- Parallel Solution of Large Linear Systems

3. Intelligent Autonomous Systems

Attention: From winter term 2018/19 on the specialization "Intelligent Autonomous Systems" will be closed for students beginning their studies.

3 compulsory modules:
- Advanced System Theory
- Design of Autonomous Systems
- Digital Control

2 elective modules from:
- Data Acquisition
- Design of Reliable and Dependable Systems
- Electronics
- Digital Image Processing
- Microcontroller Based Embedded Systems
- Parallel Solution of Large Linear Systems
- Pattern Recognition
- Reconfigurable Embedded Systems
- Silicon Sensors & Readout Electronics

4. Robotics, Biomechanics & Biomedical Engineering

3 compulsory modules:
- Robotics 1 - Kinematics, Dynamics and Motion Planning
- Biomechanics 1
- Biomedical Engineering
 (to be announced in next version of MHB)

2 elective modules from:
- Robotics 2 - Simulation and Optimization in Robotics
- Robotics Practical for Computer Engineering Master
- Robotics & Medical Technology in Society
 (to be announced in next version of MHB)
- Assistive Technology and Rehabilitation Engineering
 (to be announced in next version of MHB)
- Microcontroller Based Embedded Systems
- GPU Programming
- Digital Image Processing
Free Courses

The aim of the Free Course is to broaden one's expertise. The lectures can be chosen from the course catalogue of the Heidelberg University. To be approved as a Free Course in the MScTI, the lecture must meet the following three conditions:

- it is graded,
- the sum of credit points awarded is 12 CP or more,
- it reasonably contributes to a broadening of the expertise for this study program.

In case of doubt, the Dean of Studies makes the decision on the approval.

It is also possible to select Fundamentals or Specializations modules from the MScTI for the Free Course. When the decision on a preferred specialization is not yet made in the first semester, it is a good choice to take a second specialization as the Free Course.

Soft Skills

All in all, 12 CP must be completed in the field of soft skills, 2 of which are integrated in the seminar. For the remaining 10 CP the following courses can be chosen:

- Tools (4 CP),
- Entrepreneurship (6 CP),
- Courses from the University course program classified as soft skill courses,
- Language Courses (6 CP maximum).

Seminar

For the seminar 2 CP are allocated as soft skills in addition to 4 CP for the professional contents. Seminar: 4 CP (professional contents) + 2 CP (soft skills)
Overview of the course modules

Fundamentals:

<table>
<thead>
<tr>
<th>Code:</th>
<th>Course Title:</th>
</tr>
</thead>
<tbody>
<tr>
<td>MScTI_PCA</td>
<td>Parallel Computer Architecture</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lecturer:</th>
<th>Type:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. U. Brüning</td>
<td>Lecture with exercises / lab / …</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Credit Points:</th>
<th>Workload:</th>
<th>Teaching Hours:</th>
<th>Language:</th>
<th>Term:</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>180h</td>
<td>4 / week</td>
<td>German</td>
<td>WS</td>
</tr>
</tbody>
</table>

Module Parts and Teaching Methods:

- Lecture (2 hours/week)
- Exercise / Lab: practical programming exercises on parallel computer system (2 hours/week)

Objectives:

- understand the concepts and principles of parallel processing and the underlying hardware structures, so that they are able to program parallel systems with shared and distributed memory,
- use the learned structures to develop new architectures of parallel computers.

Contents:

- Concepts of Parallel Processing
- SIMD-Architectures
- MIMD-Architectures
- Shared Memory
- Distributed Memory
- Communication and Synchronization
- Multithreading
- Taxonomy of Interconnection Networks
- Point-to-Point INs
- Switched INs, Shuffles, Crossbars, Routing, Latency
- Communication Protocols
- Virtual Shared Memory
- Dataflow Architectures

Prerequisites: none

Recommended Knowledge: basic knowledge of Computer Architecture

Literature: a reading list will be provided in the script

The script will be accessible on the web site of the Computer Architecture Chair

Form of Testing and Examination: 30’ oral exam at the end of the semester
At least 50% of the exercises must be passed.
<table>
<thead>
<tr>
<th>Code:</th>
<th>MSctl_SYSTHEO</th>
<th>Course Title:</th>
<th>System Theory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecturer:</td>
<td>Prof. Dr. sc. techn. E. Badreddin</td>
<td>Type:</td>
<td>Lecture with exercises</td>
</tr>
<tr>
<td>Credit Points:</td>
<td>6</td>
<td>Workload:</td>
<td>180h</td>
</tr>
<tr>
<td>Teaching Hours:</td>
<td>4 / week</td>
<td>Language:</td>
<td>German / English</td>
</tr>
<tr>
<td>Term:</td>
<td>SS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Module Parts and Teaching Methods:
- Lecture: 2 hours/week
- Exercise with homework: 2 hours/week

Objectives: After completing this course the students will be able to:
- describe nonlinear phenomena and nonlinear dynamical systems,
- analyze nonlinear systems by using phase plane, describing functions and Lyapunov theory,
- design simple nonlinear control systems and
- apply the methods to simple practical examples.

Contents:
- Introduction to nonlinear systems,
- Nonlinear phenomena (limit cycles, bifurcations and chaos),
- Phase plane analysis
- Describing function
- Lyapunov stability
- Design of relay feedback control, time optimal control and sliding control

Prerequisites:
none

Recommended Knowledge:
Theory of linear systems (Signals and Systems 1)

Literature:

Form of Testing and Examination: 30' oral exam
<table>
<thead>
<tr>
<th>Code: MScTI_ADVCPP</th>
<th>Course Title:</th>
<th>C++ Practice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecturer: Prof. Dr. R. Strzodka</td>
<td>Type: Lecture with exercises and project</td>
<td></td>
</tr>
<tr>
<td>Credit Points: 6</td>
<td>Workload: 180h</td>
<td></td>
</tr>
<tr>
<td>Teaching Hours: 4 / week</td>
<td>Language: German / English</td>
<td></td>
</tr>
<tr>
<td>Term: WS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Module Parts and Teaching Methods:
- Lecture 2 hours/week
- Exercise 1 hour/week on average plus homework
- Project 1 hour/week on average plus homework

Objectives: Students are able to …
- apply all major features of modern C++,
- design better programs following guidelines for an effective programming style,
- use and combine different programming patterns.

Contents:
- A tour of modern C++ from start to end
- Immediate use of new functionality since C++11, e.g.constexpr, move refs and ctors, initializer lists, lambdas, variadic templates
- How to select among the language features
- Clear and effective programming style
- Intensive exercises with practical applications of discussed C++ feature

Prerequisites: none

Recommended Knowledge: Understanding of all basic C++ concepts such as references, classes, inheritance, overloading, templates, STL

Literature:
- Bjarne Stroustrup: A Tour of C++, Addison-Wesley, 2014

Form of Testing and Examination: 50% of points from the exercises are required for participation in the project exam, which consists of a software design, an oral presentation and a written report, including a statement of independent, unaided project work. Alternatively to the project exam, an oral (20 min) exam may be announced by the lecturer.
<table>
<thead>
<tr>
<th>Code: MScTI_ELEC</th>
<th>Course Title: Electronics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecturer: A. Wurz</td>
<td>Type: Lecture with exercises</td>
</tr>
<tr>
<td>Credit Points: 6</td>
<td>Workload: 180h</td>
</tr>
<tr>
<td>Teaching Hours: 4 / week</td>
<td>Language: German</td>
</tr>
<tr>
<td>Term: WS</td>
<td></td>
</tr>
</tbody>
</table>

Module Parts and Teaching Methods:
- Lecture on “Electronics” (3hours/week)
- Exercise with homework (1 hours/week)

Objectives: After this course the students will be able to:
- analyze the application of active and passive components,
- understand the methods of circuit design,
- design simple electronic circuits and apply the methods to practical examples.

Contents:
- Resistors, capacitors, inductivities
- Diodes (rectifiers, switches)
- Transistors (amplifier, switches)
- Field-effect transistors (JFET, MOSFET)
- Operational amplifier (amplifier, analog filter)
- Oscillators (LC oscillators, crystal oscillators)
- Phase-locked loop, Laplace transformation
- Power supply circuits
- Transmission of analog and digital signals
- Analog to digital conversion
- Simulation of circuits
- Techniques of electronic design

Prerequisites: none

Recommended Knowledge: none

Literature: Horowitz and Hill: The Art of Electronics; Herrmann Hinsch: Elektronik; U. Tietze, Ch. Schenk: Halbleiterschaltungstechnik

Form of Testing and Examination: To be defined by lecturer before beginning of course
Code:
MScTI_INTROHPC

Course Title:
Introduction to High Performance Computing

Lecturer:
JProf. Dr. H. Fröning

Type:
Lecture with exercise

Credit Points:
6

Workload:
180h

Teaching Hours:
4 / week

Language:
German

Term:
WS

Module Parts and Teaching Methods:
- Lecture (3 hours/week)
- Exercise with homework (1 hours/week)

Objectives:
Students…
- know message passing and scalable programming
- are familiar with the most important past and present concepts for large-scale computing problems
- can design and optimize solutions for large-scale computing problems
- know how to use MPI and related software tools to implement large-scale computing problems
- are capable to solve large-scale computing problems with objectives including performance in terms of time and energy, and scalability in terms of time and capacity, and consolidation of compute resources

Contents:
- The challenges of HPC
- Hardware architectures
- Software frameworks, in particular MPI
- Short introduction to accelerated computing
- Practical problems and their solutions

Prerequisites:
none

Recommended Knowledge:
Computer architecture basics, parallel programming principles, C, C++, OS basics

Literature:
Will be announced by lecturer

Form of Testing and Examination:
15 – 30 min. oral exam or 1h written exam announced by lecturer
<table>
<thead>
<tr>
<th>Code:</th>
<th>MScTI_MES</th>
<th>Course Title:</th>
<th>Microcontroller Based Embedded Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecturer:</td>
<td>A. Wurz</td>
<td>Type:</td>
<td>Lecture with exercises</td>
</tr>
<tr>
<td>Credit Points:</td>
<td>6</td>
<td>Workload:</td>
<td>180h</td>
</tr>
<tr>
<td>Teaching Hours:</td>
<td>4 / week</td>
<td>Language:</td>
<td>German</td>
</tr>
<tr>
<td>Term:</td>
<td>SS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Module Parts and Teaching Methods:
- Lecture (2h)
- Exercise/ Lab work (2h)

Objectives: After this course the students will be able to:
- analyse active and passive electronic components for practical applications,
- understand the methods of circuit design, the functionality and programming of microprocessors and peripheral circuits so that they can build a complex microprocessor circuit themselves,
- install a development environment for program development,
- apply methods for debugging in microprocessor circuits.

Contents:
- project management
- circuit design
- microcontrollers
- mp3 decoder + Ethernet
- power supply (linear regulators + switching regulators)
- selection of components
- CAD program (schematic + layout)
- manufacturing boards
- stuffing boards
- C program development
- test program
- implementing + debugging
- electronic construction techniques

Prerequisites:
none

Recommended Knowledge:
none

Literature:
- Paul Horowitz, Winfield Hill: The Art of Electronics

Form of Testing and Examination: To be defined by lecturer before beginning of course
<table>
<thead>
<tr>
<th>Code:</th>
<th>Course Title:</th>
</tr>
</thead>
<tbody>
<tr>
<td>MScTI_RES</td>
<td>Reconfigurable Embedded Systems</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lecturer:</th>
<th>Type:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. A. Kugel</td>
<td>Lecture with exercises</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Credit Points:</th>
<th>Workload:</th>
<th>Teaching Hours:</th>
<th>Language:</th>
<th>Term:</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>180h</td>
<td>4 / week</td>
<td>German</td>
<td>SS</td>
</tr>
</tbody>
</table>

Module Parts and Teaching Methods:
- Lecture (2 hours) / practical exercise (lab, 1 hour avg) / project (lab, 1 hour avg) / homework
- Just-in-time teaching sessions (4 hours) on selected topics

Objectives: After completing this course students are able to …
- list and explain important elements and properties of embedded systems,
- describe fundamental principles and components of reconfigurable technology,
- apply elementary application design methodologies for microprocessors and FPGAs to implement, program and test a sample embedded FPGA platform.

Contents:
- Requirements and specific properties of embedded systems
- Overview on hardware components: microcontrollers, peripherals, FPGAs
- Real-time issues and scheduling
- FPGA design tools: HDL (incl. VHDL tutorial), simulator, debugger
- System-on-Chip architecture – controller, buses and peripherals
- HW/SW co-design
- Embedded system software (stand-alone and real-time kernels)

Prerequisites:
none

Recommended Knowledge:
none

Literature:
- Th. Flick, H. Liebig: Mikroprozessortechnik, SpringerLehrbuch, 4. Auflage 2004
- Karim Yaghmour: Building Embedded Systems, O’Reilly, April 2003

Form of Testing and Examination: 50% score on exercises plus either oral exam (15min) or project (see below). Available option announced at start of course.

Project exam: autonomous elaboration of project task assigned by lecturer. Successful completion requires all of: operational design/program, written report (5 pages), presentation (10 minutes) with colloquium, statement of unaided work.
Soft Skills:

<table>
<thead>
<tr>
<th>Code: MScTI_TOOLS</th>
<th>Course Title: Tools</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecturer: several, changing</td>
<td>Type: Lecture with exercises</td>
</tr>
<tr>
<td>Credit Points: 4</td>
<td>Workload: 120 h</td>
</tr>
<tr>
<td>Teaching Hours: 4 / week</td>
<td>Language: German</td>
</tr>
<tr>
<td>Term: WS</td>
<td></td>
</tr>
</tbody>
</table>

Module Parts and Teaching Methods:
- Lecture (2 h / week)
- Supervised Exercises (2 h / week)

Objectives: Students
- have an overview of the functionalities of various software tools suited to accomplish frequent tasks, like the creation of drawings and illustrations, programming, solving of mathematical problems, analysis and visualization of data, search for literature or working in a team.
- are able to improve their work flows by choosing an appropriate tool
- are aware that application of a suited tool improves their working quality and efficiency
- are able to deepen their knowledge and skill in the presented tools on the basis of the introductions given

Contents:
Subjects are chosen from a pool of possibilities as a function of interests and need of students. The list is regularly adapted to new developments
- introduction to Linux
- version control tools (git, svn,...)
- introduction to python
- mathematical software (Mathematica)
- data evaluation and plotting (gnuplot, root)
- software documentation tools (doxygen)
- 2D & 3D drawing, construction and visualization (PovRay, OpnSCAD, PostScript, pdf)
- styles and templates (powerpoint, word)
- introduction to Latex
- team work
- project planning
- literature search

Prerequisites: none

Recommended Knowledge: none

Literature: announced by lecturer

Form of Testing and Examination: Regular participation (maximum 2 courses missed without justification) and successful completion of supervised exercises
<table>
<thead>
<tr>
<th>Code:</th>
<th>MScTI_ES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Title:</td>
<td>Entrepreneurship</td>
</tr>
<tr>
<td>Lecturer:</td>
<td>tbd (external)</td>
</tr>
<tr>
<td>Type:</td>
<td>Lecture with exercises</td>
</tr>
</tbody>
</table>

Credit Points:	6
Workload:	180h
Teaching Hours:	4 / week
Language:	German
Term:	SS

Module Parts and Teaching Methods:
- Lecture (2 hours/week)
- Exercise (2 hours/week)

Objectives: After completing this course students will be able to:
- use innovation methods like Design Thinking, Rapid Prototyping and Business Model Innovation to develop tangible solutions for real life problems
- present business cases in short presentations (pitches) to stakeholders and investors
- develop basic marketing strategies to find first customers for their products
- apply the legal framework to found their own company

Contents:
- Design Thinking
- Rapid Prototyping
- Business Model Innovation
- Presentation of business cases
- finance
- marketing
- patent law and copyright
- legal forms of companies

Prerequisites: none

Recommended Knowledge: none

Literature:
- Eric Ries: Lean Startup, Redline Verlag, 2012
- Alexander Osterwalder: Business Model Generation, Campus Verlag, 2011
- Ash Maurya: Running Lean, O'Reilly, 2013

Form of Testing and Examination: Presentation of results
Course Details

<table>
<thead>
<tr>
<th>Code:</th>
<th>MScTI_ANASIM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Title:</td>
<td>Components, Basic Circuits & Simulation</td>
</tr>
<tr>
<td>Lecturer:</td>
<td>Prof. Dr. P. Fischer</td>
</tr>
<tr>
<td>Type:</td>
<td>Lecture with exercises</td>
</tr>
<tr>
<td>Credit Points:</td>
<td>6</td>
</tr>
<tr>
<td>Workload:</td>
<td>180h</td>
</tr>
<tr>
<td>Teaching Hours:</td>
<td>4 / week</td>
</tr>
<tr>
<td>Language:</td>
<td>German</td>
</tr>
<tr>
<td>Term:</td>
<td>SS</td>
</tr>
</tbody>
</table>

Module Parts and Teaching Methods:
- Lecture (2h)
- Practical exercise with homework (2h)

Objectives:
- Students can design simple analog circuits by combining elementary building blocks
- Students can predict the properties (gain, frequency behavior) of simple circuits and give analytical approximate expressions for gain, bandwidth, output resistance, etc.
- Students can use analogue simulators to analyze circuits in the time and frequency domain
- Students know what an operation point is, how it affects circuit behavior and how it can be set
- Students can relate the geometry and operation point of transistors to their small- and large signal properties

Contents:
- Diode and transistor operation principle
- Modelling of Diode und MOS, large / small signal models
- Voltage and current sources, Thevenin equivalent
- Component and circuit description with complex variables
- Bode plot, transfer function
- Analogue simulation (dc, ac, transient)
- Basic circuits: current mirror, gain stage, cascode, source follower, differential pair
- Practical exercises with professional simulation tools

Prerequisites:
- none

Recommended Knowledge:
- Introduction to physics

Literature:

Form of Testing and Examination:
To be defined by lecturer before beginning of course
<table>
<thead>
<tr>
<th>Code:</th>
<th>MScTI_ANADESIGN</th>
<th>Course Title:</th>
<th>Full Custom VLSI Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecturer:</td>
<td>Prof. Dr. P. Fischer</td>
<td>Type:</td>
<td>Lecture with exercises</td>
</tr>
<tr>
<td>Credit Points:</td>
<td>6</td>
<td>Workload:</td>
<td>180h</td>
</tr>
<tr>
<td>Teaching Hours:</td>
<td>4 / week</td>
<td>Language:</td>
<td>German</td>
</tr>
<tr>
<td>Term:</td>
<td>WS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Module Parts and Teaching Methods:
- Lecture (2h)
- Practical exercise with homework (2h)

Objectives: Students...
- can carry out the complete design process from a circuit idea to a final, checked layout,
- understand how design rules are related to semiconductor properties or manufacturing issues,
- are able to practically carry out a mixed mode simulation,
- are able to extract parasitic values and perform a simulation with these parasitics,
- can program simple automatized scripts using SKILL.

Contents:
- Semiconductor manufacturing
- Technology & design rules, technology files
- Layout of components, rules, matching
- Design Rule Check
- Extraction, Layout versus Schematic Check
- ESD and Antenna rules, latchup
- Test equipment & test procedures
- Script programming using SKILL
- Parasitic extraction & simulation
- Mixed Mode simulation

Prerequisites: none

Recommended Knowledge: MScTI_ANASIM

Literature:
- Lecture script available online

Form of Testing and Examination: Design (schematic entry, simulation and layout) of a simple circuit with a short presentation.
<table>
<thead>
<tr>
<th>Code:</th>
<th>Course Title:</th>
</tr>
</thead>
<tbody>
<tr>
<td>MScTI_DIGHD</td>
<td>Digital Hardware Design</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lecturer:</th>
<th>Type:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. U. Brüning</td>
<td>Lecture with exercises / lab / …</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Credit Points:</th>
<th>Workload:</th>
<th>Teaching Hours:</th>
<th>Language:</th>
<th>Term:</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>180h</td>
<td>4 / week</td>
<td>German</td>
<td>WS</td>
</tr>
</tbody>
</table>

Module Parts and Teaching Methods:
- Lecture (2 hours/week)
- Exercise: design and simulation of digital hardware with EDA software (2 hours/week)

Objectives: The students …
- understand the concepts and principles of hardware design and the methodology for design and verification of hardware structures that means concretely that they are able to use their acquired knowledge to design new and efficient hardware and they can simulate and verify the developed designs.

Contents:
- Introduction to the principles of hardware design
- use of Hardware Description Languages like Verilog HDL.
- design of combinational and sequential logic.
- overall design flow for Integrated Circuits
- Design descriptions
- Design elements
- Simulation
- Verification of Hardware

Prerequisites: none

Recommended Knowledge: basic knowledge of Digital Circuit Design

Literature: a reading list will be provided in the script
The script will be accessible on the web site of the Computer Architecture Chair

Form of Testing and Examination: 30’ oral exam at the end of the semester
At least 50% of the exercises must be passed.
<table>
<thead>
<tr>
<th>Code:</th>
<th>MScTI_DIGDF</th>
<th>Course Title:</th>
<th>Digital Semi Custom Design Flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecturer:</td>
<td>Prof. Dr. U. Brüning</td>
<td>Type:</td>
<td>Lecture with exercises / lab / project …</td>
</tr>
<tr>
<td>Credit Points:</td>
<td>6</td>
<td>Language:</td>
<td>German</td>
</tr>
<tr>
<td>Workload:</td>
<td>180h</td>
<td>Term:</td>
<td>SS</td>
</tr>
<tr>
<td>Teaching Hours:</td>
<td>4 / week</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module Parts and Teaching Methods:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Lecture … (2 hours/week)</td>
</tr>
<tr>
<td>• Exercise / Project: backend processing for ASICs with EDA software (2 hours/week)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Objectives: The students …</th>
</tr>
</thead>
<tbody>
<tr>
<td>• deepen their knowledge of the methodology for semi-custom ASIC design,</td>
</tr>
<tr>
<td>• are able to use their acquired knowledge to design very complex chips,</td>
</tr>
<tr>
<td>• can run the complete backend design process for modern chip technology.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Contents:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Advanced methods for design of application specific ICs</td>
</tr>
<tr>
<td>• Synthesis of complex hardware systems</td>
</tr>
<tr>
<td>• Static Timing Analysis (STA)</td>
</tr>
<tr>
<td>• Place&Route of modules and standard cells</td>
</tr>
<tr>
<td>• Signal integrity analysis</td>
</tr>
<tr>
<td>• Design rule checks</td>
</tr>
<tr>
<td>• Generation of mask data</td>
</tr>
<tr>
<td>• The SEED-2002 agreement between Cadence Design Systems and the University of Heidelberg allows our students to work and learn with the most modern EDA tools that are usually only used in chip industry.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prerequisites:</th>
<th>none</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended Knowledge:</td>
<td>deeper knowledge of Digital Hardware Design</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literature:</th>
<th>a reading list will be provided in the script</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The script will be accessible on the web site of the Computer Architecture Chair</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Form of Testing and Examination:</th>
<th>30’ oral exam at the end of the semester</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>At least 50% of the exercises and the chip project must be passed.</td>
</tr>
<tr>
<td>Code: MScTI_DIGVERI</td>
<td>Course Title: Functional Verification</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>Lecturer: Prof. Dr. U. Brüning</td>
<td>Type: Lecture with exercises / lab / …</td>
</tr>
<tr>
<td>Credit Points: 6</td>
<td>Workload: 180h</td>
</tr>
<tr>
<td>Teaching Hours: 4 / week</td>
<td>Language: German</td>
</tr>
<tr>
<td>Term: SS</td>
<td></td>
</tr>
</tbody>
</table>

Module Parts and Teaching Methods:
- Lecture … (2 hours/week)
- Exercise … (2 hours/week)

Objectives: The students...
- understand the concepts and principles of functional verification and the methodology,
- use the acquired for building verification environments,
- are able to verify complex hardware designs.

Contents:
- Introduction to the principles of functional verification
- Simulation-Based Verification
- Formal Verification
- Use of Hardware Verification Languages like System Verilog
- Use of Verification Methodologies like OVM
- Verification Planning
- Coverage Models
- Assertion-Based Verification

Prerequisites: none
Recommended Knowledge: Experience in Digital Hardware design

Literature: a reading list will be provided in the script
The script will be accessible on the web site of the Computer Architecture Chair

Form of Testing and Examination: 30’ oral exam at the end of the semester
At least 50% of the exercises must be passed.
<table>
<thead>
<tr>
<th>Code:</th>
<th>Course Title:</th>
</tr>
</thead>
<tbody>
<tr>
<td>MScTi_ANABLOCKS</td>
<td>Advanced Analogue Building Blocks</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lecturer:</th>
<th>Type:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. P. Fischer and others</td>
<td>Lecture with exercises</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Credit Points:</th>
<th>Workload:</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>180h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Teaching Hours:</th>
<th>Language:</th>
<th>Term:</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 / week</td>
<td>German</td>
<td>WS+SS</td>
</tr>
</tbody>
</table>

Module Parts and Teaching Methods:
- Lecture (2 hours/week)
- Practical exercise (2 hours/week)

Objectives: The students …
- have a broad overview of advanced circuits so that they are able to chose an appropriate approach for a given problem
- get a deeper qualitative understanding of the behavior of analogue circuits,
- can quantitatively analyze analogue circuits and extract important figures of merit,
- know a large variety of advanced circuit topologies.

Contents:
The lecture introduces various building blocks, mathematical tools or knowledge on more advanced topics, picked from the list below as a function of student background and interest. Content in SW or SS can vary.
- Advanced transistor properties
- Feedback: properties, mathematical treatment, stability, Nyquist test
- Noise of components and circuits
- Transfer function, impulse response, poles and zeros
- Cascaded amplifiers
- Advanced current mirrors
- Differential circuits, common mode feedback
- DACs and ADCs
- Switches
- Switched Capacitor Circuits

Prerequisites: none

Recommended Knowledge: MScTi_ANADESIGN

Literature:
- Razavi „Design of analog CMOS integrated circuits“
- J. Millman „Microelectronics“

Form of Testing and Examination: To be defined by lecturer before beginning of course
<table>
<thead>
<tr>
<th>Code:</th>
<th>MScTI_DET</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Title:</td>
<td>Silicon Detectors & Readout Electronics</td>
</tr>
<tr>
<td>Lecturer:</td>
<td>Prof. Dr. P. Fischer</td>
</tr>
<tr>
<td>Type:</td>
<td>Lecture with exercises</td>
</tr>
<tr>
<td>Credit Points:</td>
<td>6</td>
</tr>
<tr>
<td>Workload:</td>
<td>180h</td>
</tr>
<tr>
<td>Teaching Hours:</td>
<td>4 / week</td>
</tr>
<tr>
<td>Language:</td>
<td>English</td>
</tr>
<tr>
<td>Term:</td>
<td>WS</td>
</tr>
</tbody>
</table>

Module Parts and Teaching Methods:
- Lecture (2 hours/week)
- Exercise with homework (2 hours/week)

Objectives: The students …
- know the basic working principles of silicon detectors, so that they are able to derive important properties (speed, resolution..)
- know different sensor types with their properties, so that they can choose the best detector type for a given application
- know the basics on how to read out the signals and which figures of merit are of importance so that they can design / choose readout concepts for a given application

Contents:
- Basics
 - Interactions of particles and photons with matter (short)
 - Semiconductors, doping, diodes, manufacturing technology
 - Spatial resolution, energy resolution, noise…
- Particle Sensors
 - PiN Diodes, Pads, Pixel, Strips
 - DEPFETs, MAPS
 - Non-silicon materials
- Photo Sensors
 - Quantum efficiency, spectral sensitivity, response time
 - APDs, SiPMs, CCDs, CMOS APS, others
- Readout circuits
 - Charge amplifier, Transimpedance amplifier, bandwidth, noise
 - Readout chips for strip- and pixel detectors
- Applications

Prerequisites:
- none

Recommended Knowledge:
- Basic knowledge in Electrodynamics, Quantum Mechanics and Solid State Physics

Literature:
- Pixel Detectors, Rossi/Fischer/Rohe/Wermes, Springer, ISBN 3540283323

Form of Testing and Examination: To be defined by lecturer before beginning of course
<table>
<thead>
<tr>
<th>Code:</th>
<th>MScTI_GPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Title:</td>
<td>GPU Computing</td>
</tr>
<tr>
<td>Lecturer:</td>
<td>JProf. Dr. H. Fröning</td>
</tr>
<tr>
<td>Type:</td>
<td>Lecture with exercises</td>
</tr>
<tr>
<td>Credit Points:</td>
<td>6</td>
</tr>
<tr>
<td>Workload:</td>
<td>180h</td>
</tr>
<tr>
<td>Teaching Hours:</td>
<td>4 / week</td>
</tr>
<tr>
<td>Language:</td>
<td>German</td>
</tr>
<tr>
<td>Term:</td>
<td>WS</td>
</tr>
</tbody>
</table>

Module Parts and Teaching Methods:
- Lecture on “GPU Computing” (2 hours/week)
- Exercise with homework (2 hours/week)

Objectives: Students…
- know the factors that determine the performance of GPU programs, and are able to program GPUs to solve computing problems,
- are familiar with GPU architecture and design decisions,
- can design and optimize CUDA programs for compute- or memory-intensive problems,
- know how to use CUDA tools to aid in programming, debugging and performance tuning,
- are capable to solve compute- or memory-intensive problems using GPUs with objectives including performance in terms of time and energy, and are capable to decide when accelerators like GPUs are suitable for a given computing problem.

Contents:
- Basics of GPU architecture and programming model
- Introduction to CUDA
- Performance optimization techniques
- Consistency and coherence of GPUs
- Introduction to OpenCL and productivity tools

Prerequisites: none

Recommended Knowledge: Parallel programming, C++ programming skills

Literature: T.G. Mattson, B.A. Sanders, B.L. Massingill: Parallel Patterns for Parallel Programming, Addison Wesley 2004; D.B. Kirk, W.W. Hwu: Programming Massively Parallel Processors, Morgan-Kaufmann 2010

Form of Testing and Examination: 15 – 30 min. oral exam or 1h written exam, announced by lecturer
<table>
<thead>
<tr>
<th>Code:</th>
<th>MScTI_PAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Title:</td>
<td>Parallel Algorithm Design</td>
</tr>
<tr>
<td>Lecturer:</td>
<td>Prof. Dr. R. Strzodka</td>
</tr>
<tr>
<td>Type:</td>
<td>Lecture with exercises and project</td>
</tr>
<tr>
<td>Credit Points:</td>
<td>6</td>
</tr>
<tr>
<td>Workload:</td>
<td>180h</td>
</tr>
<tr>
<td>Teaching Hours:</td>
<td>4 / week</td>
</tr>
<tr>
<td>Language:</td>
<td>German / English</td>
</tr>
<tr>
<td>Term:</td>
<td>WS</td>
</tr>
<tr>
<td>Module Parts and Teaching Methods:</td>
<td></td>
</tr>
<tr>
<td>- Lecture 2 hours/week</td>
<td></td>
</tr>
<tr>
<td>- Exercise 1 hour/week on average plus homework</td>
<td></td>
</tr>
<tr>
<td>- Project 1 hour/week on average plus homework</td>
<td></td>
</tr>
<tr>
<td>Objectives:</td>
<td>Students are able to …</td>
</tr>
<tr>
<td>- exploit the available parallelism in modern CPUs,</td>
<td></td>
</tr>
<tr>
<td>- make design decisions depending on tradeoffs in parallel algorithms,</td>
<td></td>
</tr>
<tr>
<td>- apply and combine parallel patterns in their own programs.</td>
<td></td>
</tr>
<tr>
<td>Contents:</td>
<td></td>
</tr>
<tr>
<td>- Multiple levels of parallelism</td>
<td></td>
</tr>
<tr>
<td>- Parallel data access</td>
<td></td>
</tr>
<tr>
<td>- Communication vs. computation</td>
<td></td>
</tr>
<tr>
<td>- Latency vs. throughput</td>
<td></td>
</tr>
<tr>
<td>- Work efficiency vs. step efficiency</td>
<td></td>
</tr>
<tr>
<td>- Locality vs. parallelism</td>
<td></td>
</tr>
<tr>
<td>- Parallel design patterns</td>
<td></td>
</tr>
<tr>
<td>Prerequisites:</td>
<td>none</td>
</tr>
<tr>
<td>Recommended Knowledge:</td>
<td>Basic C++</td>
</tr>
<tr>
<td>Literature:</td>
<td></td>
</tr>
<tr>
<td>Form of Testing and Examination: 50% of points from the exercises are required for participation in the project exam, which consists of a software design, an oral presentation and a written report, including a statement of independent, unaided project work. Alternatively to the project exam, an oral (20 min) exam may be announced by the lecturer.</td>
<td></td>
</tr>
</tbody>
</table>
Code: MScTI_ACC
Course Title: Accelerator Practice

Lecturer: Prof. Dr. R. Strzodka
Type: Lecture with exercises and project

Credit Points: 6
Workload: 180h
Teaching Hours: 4 / week
Language: German / English
Term: SS

Module Parts and Teaching Methods:
- Lecture 2 hours/week
- Exercise 1 hour/week on average plus homework
- Project 1 hour/week on average plus homework

Objectives: Students are able to …
- program accelerators on a high-level with parallel patterns,
- create multi-backend programs that can run on different architectures,
- select efficient parallel algorithms from existing accelerator libraries.

Contents:
- Overview of programming paradigms for accelerators
- High level accelerator programming
- Effective use of STL-like algorithm libraries
- Multi-backend programming for different architectures
- Libraries for dense and sparse linear algebra
- Specialized libraries
- Simultaneous use of multiple accelerators

Prerequisites: none
Recommended Knowledge: Basic C++

Literature:
- Will be announced by the lecturer

Form of Testing and Examination: 50% of points from the exercises are required for participation in the project exam, which consists of a software design, an oral presentation and a written report, including a statement of independent, unaided project work. Alternatively to the project exam, an oral (20 min) exam may be announced by the lecturer.
<table>
<thead>
<tr>
<th>Code:</th>
<th>MScTI_APA</th>
<th>Course Title:</th>
<th>Advanced Parallel Algorithms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecturer:</td>
<td>Prof. Dr. R. Strzodka</td>
<td>Type:</td>
<td>Lecture with exercises and project</td>
</tr>
<tr>
<td>Credit Points:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Workload:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teaching Hours:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Language:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Term:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>180h</td>
<td>4/week</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>German / English</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>WS</td>
</tr>
<tr>
<td>Module Parts and Teaching Methods:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Lecture 2 hours/week</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Exercise 1 hour/week on average plus homework</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Project 1 hour/week on average plus homework</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Objectives:</td>
<td>Students are able to ...</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>apply advanced transformations to improve parallelism and locality,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>make detailed design decisions depending on tradeoffs in parallel algorithms,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>balance numerical efficiency and parallel efficiency.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contents:</td>
<td>The lectures MScTI_PAD and MScTI_APA can be attended in the same semester in parallel. MScTI_PAD looks at more topics in breadth, while MScTI_APA looks at fewer topics in depth.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Most recent developments in parallel devices</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>On-the-fly data transformations</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Data locality optimizations</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hierarchical algorithms</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SIMD utilization</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Precision, accuracy and numerical schemes</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Numerical efficiency vs. parallel efficiency</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Data representation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisites:</td>
<td>none</td>
<td>Recommended Knowledge:</td>
<td>Basic C++, CUDA (e.g. MScTI_GPU), and MScTI_PAD in parallel</td>
</tr>
<tr>
<td></td>
<td>More will be announced by the lecturer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Form of Testing and Examination:</td>
<td>50% of points from the exercises are required for participation in the project exam, which consists of a software design, an oral presentation and a written report, including a statement of independent, unaided project work. Alternatively to the project exam, an oral (20 min) exam may be announced by the lecturer.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Code:</td>
<td>MScTI_APC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course Title:</td>
<td>Advanced Parallel Computing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecturer:</td>
<td>JProf. Dr. H. Fröning</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type:</td>
<td>Lecture with exercises</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Credit Points:</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Workload:</td>
<td>180h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teaching Hours:</td>
<td>4 / week</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Language:</td>
<td>German</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Term:</td>
<td>SS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Module Parts and Teaching Methods:
- Lecture … (2 hours/week)
- Exercise: homework and practical programming exercises on parallel architectures (2 hours/week)

Objectives: The students …
- know principles of parallel architectures, including synchronization, consistency, and coherence,
- are familiar with advanced concepts like transactional memory, relaxed consistency, and multi-threading,
- know how to design and optimize complex parallel code for particular compute and synchronization problems,
- are capable of solving complex computing problems using massively parallel processors, understanding the implications of architectural design decisions on performance in terms of time and energy, and reasoning about the suitability of certain processor architectures for a given computing problem.

Contents:
- Principles of parallel computing
- Shared memory architectures
- Programming paradigms, communication and synchronization primitives
- Consistency models and scalable cache coherence
- Multi-/many-core and multi-threading architectures
- Exemplary applications and benchmarks

Prerequisites:
- none

Recommended Knowledge:
- MScTI_PCA, MScTI_INTROHPC, C++, OS basics

Literature:
a reading list will be announced by the lecturer

Form of Testing and Examination:
- 15 – 30 min. oral exam or 1h written exam, announced by lecturer
<table>
<thead>
<tr>
<th>Code:</th>
<th>MScTI_FPGA</th>
<th>Course Title:</th>
<th>FPGA Coprocessors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecturer:</td>
<td>Dr. A. Kugel</td>
<td>Type:</td>
<td>Lecture with exercises</td>
</tr>
<tr>
<td>Credit Points:</td>
<td>6</td>
<td>Workload:</td>
<td>180h</td>
</tr>
<tr>
<td>Teaching Hours:</td>
<td>4 / week</td>
<td>Language:</td>
<td>German</td>
</tr>
<tr>
<td>Term:</td>
<td>WS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Module Parts and Teaching Methods:
- Lecture (2 hours) / practical exercise (lab, 1 hour avg) / project (lab, 1 hour avg) / homework
- Just-in-time teaching sessions (4 hours) on selected topics

Objectives: After completing this course students are able to …
- list and explain advanced components of FPGA devices,
- list and explain coprocessor architectures and communication types,
- select, configure and program FPGA IP library elements,
- create custom IP cores using structural data-flow and FSM based control-flow design techniques,
- use IP cores to create hybrid applications for processor and reconfigurable coprocessor with appropriate interface mechanisms,
- program and test coprocessor applications.

Contents:
- Reconfigurable Computing Hardware
 - FPGA Device Architecture and Features
 - Reconfigurable Computing Architectures
 - (Re-)Configuration Management
- Programming Reconfigurable Systems
 - Compute Models and System Architectures
 - Programming FPGA Applications in VHDL
 - Data- and Control- Flow Graphs
 - High-Level Synthesis Tools
- Mapping Designs to Reconfigurable Platforms
 - Technology Mapping
 - Datapath Optimizations
- Projects: Implementing Applications with FPGAs
- Computation, Image-processing, I/O oriented

Prerequisites: none

Recommended Knowledge:
FPGA and HDL fundamentals (e.g. from MScTI_RES)

Literature: Scott Hauck & André Dehon: Reconfigurable Computing; Morgan Kaufmann, 2008

Form of Testing and Examination: 50% score on exercises plus either oral exam (15min) or project (see below). Available option announced at start of course.

Project exam: autonomous elaboration of project task assigned by lecturer. Successful completion requires all of: operational design/program, written report (5 pages), presentation (10 minutes) with colloquium, statement of unaided work.
Code:
MScTI_HPNET

Course Title:
High Performance Interconnection Networks

Lecturer:
Prof. Dr. U. Brüning

Type:
Lecture with exercises

<table>
<thead>
<tr>
<th>Credit Points:</th>
<th>Workload:</th>
<th>Teaching Hours:</th>
<th>Language:</th>
<th>Term:</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>180h</td>
<td>4 / week</td>
<td>German</td>
<td>SS</td>
</tr>
</tbody>
</table>

Module Parts and Teaching Methods:
- Lecture (2 hours/week)
- Exercise with homework (2 hours/week)

Objectives: The students ...
- understand the concepts and principles of interconnection networks,
- will be able to configure and use interconnection networks for given demands,
- can use the learned structures to develop new high performance interconnection networks.

Contents:
- Topologies, Switching, Routing, Flow Control
- Fault tolerance and Deadlocks
- Collective Communications
- Congestion Management
- Network Interfaces
- On-Chip Networks
- Performance Evaluation and Simulation

Prerequisites:
none

Recommended Knowledge:
MScTI_PCA, MScTI_APC

Literature: a reading list will be provided in the script
The script will be accessible on the web site of the Computer Architecture Group

Form of Testing and Examination: 30’ min. oral exam or 2h written exam, announced by lecturer
The following module is imported from the master program in computer science:

<table>
<thead>
<tr>
<th>Code:</th>
<th>Course Title:</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPHR</td>
<td>Parallel Algorithms, Application Computing (Paralleles Höchstleistungsrechnen)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lecturer:</th>
<th>Type:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. P. Bastian/ Dr. S. Lang</td>
<td>Lecture with exercises</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Credit Points:</th>
<th>Workload:</th>
<th>Teaching Hours:</th>
<th>Language:</th>
<th>Term:</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>240h</td>
<td>6 / week</td>
<td>German</td>
<td>WS</td>
</tr>
</tbody>
</table>

Module Parts and Teaching Methods:
- Lecture 4 SWS
- Exercises 2 SWS

Objectives: The student
- knows different architectures for high-performance computers,
- knows synchronization mechanisms in parallel systems including performance aspects,
- can handle the most important programming paradigms for parallel systems,
- is able to solve basic synchronization tasks,
- understands the parallelization of linear algebra algorithms,
- is able to assess the performance of a parallel program.

Contents:
- Systems with global address space
- Cache coherence
- Systems with local address space and message passing
- critical sections, condition synchronization, semaphore
- posix threads
- programming of graphics cards
- message passing theory, MPI
- client server model, remote procedure call
- Assessment of parallel algorithms
- load balancing
- dense linear algebra algorithms, solution of sparse linear systems
- particle methods
- parallel sorting

Prerequisites:
- none

Recommended Knowledge:
- knowledge of a higher-level programming language (preferably C, C++), knowledge of data structures and algorithms

Literature:

Form of Testing and Examination: Minimum 50% successful exercises and final examination.
The following module is imported from the master program in computer science:

<table>
<thead>
<tr>
<th>Code:</th>
<th>Course Title:</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPLGG</td>
<td>Parallel Solution of Large Linear Systems (Parallele Lösung großer Gleichungssysteme)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lecturer:</th>
<th>Type:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. P. Bastian</td>
<td>Lecture with exercises</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Credit Points:</th>
<th>Workload:</th>
<th>Teaching Hours:</th>
<th>Language:</th>
<th>Term:</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>240h</td>
<td>6 / week</td>
<td>German</td>
<td>WS</td>
</tr>
</tbody>
</table>

Module Parts and Teaching Methods:
- Lecture 4 SWS
- Exercises 2 SWS

Objectives: The student
- knows the discretization of scalar elliptic partial differential equations with the finite element method,
- understands the abstract concept of subspace correction methods,
- is able to apply this to domain decomposition and multigrid methods,
- understands the convergence theory for these methods,
- is able to implement these methods on a parallel system and can judge the performance of the methods.

Contents:
- Basis of Finite Element methods for elliptic partial differential equations
- Subspace correction methods
- Overlapping and non-overlapping domain decomposition methods with convergence theory
- Geometric multigrid methods with convergence theory
- Algebraic multigrid methods

Prerequisites: none

Recommended Knowledge: knowledge of a higher-level programming language (preferably C++), knowledge of numerical methods for differential equations

Literature:

Form of Testing and Examination: Minimum 50% successful exercises and final examination.
The following module is imported from the master program in physics:

<table>
<thead>
<tr>
<th>Code:</th>
<th>MWInf6 (Physics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Title:</td>
<td>Digital Image Processing</td>
</tr>
<tr>
<td>Lecturer:</td>
<td>Prof. Dr. B. Jähne</td>
</tr>
<tr>
<td>Type:</td>
<td>Lecture with Exercise</td>
</tr>
<tr>
<td>Credit Points:</td>
<td>8</td>
</tr>
<tr>
<td>Workload:</td>
<td>240h</td>
</tr>
<tr>
<td>Teaching Hours:</td>
<td>6 / week</td>
</tr>
<tr>
<td>Language:</td>
<td>English</td>
</tr>
<tr>
<td>Term:</td>
<td>WS</td>
</tr>
</tbody>
</table>

Module Parts and Teaching Methods:
- Lecture (4h)
- Exercise (2h)

Objectives: After the course the students will be able to:
- judge what kind of processing needs to be applied to extract information of interest for a specific task from time series, images, and any kind of multidimensional signals and to apply it there knowledge to applications from natural sciences, life sciences and technology.

Contents:
- Continuous and discrete signals, sampling theorem, signal representation
- Fourier transform
- Random variables and fields, probability density functions, error propagation
- Homogeneous and inhomogeneous point operations
- Neighborhood operations, linear and nonlinear filters, linear system theory
- Geometric transformations and interpolation
- Multi-grid signal presentation and processing
- Averaging, edge and line detection, local structure analysis, local phase and wave numbers
- Motion analysis in image sequences
- Segmentation
- Regression, globally optimal signal analysis, variation approaches, steerable and nonlinear filtering, inverse filtering
- Morphology and shape analysis, moments, Fourier descriptors
- Bayesian image restoration
- Object detection and recognition

Prerequisites:
none

Recommended Knowledge:
UKInf1 (Physics)

Literature:

Form of Testing and Examination:
Written examination
The following module is imported from the master program in physics:

<table>
<thead>
<tr>
<th>Code:</th>
<th>MWInf5 (Physics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Title:</td>
<td>Physics of Imaging</td>
</tr>
<tr>
<td>Lecturer:</td>
<td>Prof. Dr. B. Jähne</td>
</tr>
<tr>
<td>Type:</td>
<td>Lecture</td>
</tr>
<tr>
<td>Credit Points:</td>
<td>4</td>
</tr>
<tr>
<td>Workload:</td>
<td>120h</td>
</tr>
<tr>
<td>Teaching Hours:</td>
<td>4 / week</td>
</tr>
<tr>
<td>Language:</td>
<td>English</td>
</tr>
<tr>
<td>Term:</td>
<td>SS</td>
</tr>
</tbody>
</table>

Module Parts and Teaching Methods:
- Lecture

Objectives: The students
- learn the basics of the Physics of Imaging; common principles and techniques of imaging for atomic to astronomical scales. They will be enabled to analyse imaging measuring tasks from all kind of application areas and select a proper imaging method, wavelength of radiation, and lenses.

Contents:
- Projective geometry, optics, wave optics, Fourier optics and lens aberrations
- Radiometry of imaging
- Methods of imaging: scanning electron microscopy, X-ray, EDX, FLIM, FRET, fluorescence imaging, near-field imaging
- CCD and CMOS technology
- Holography, ultrasound imaging, CT- computer tomography, magnetic resonance imaging…
- Satellite imaging, synthetic aperture radar, radio astronomy

Prerequisites: none

Recommended Knowledge:
- UKInf2, PEP1-PEP4

Literature: B. Jähne, Digital Image Processing, 6th edition, Springer 2005

Form of Testing and Examination: Oral examination
<table>
<thead>
<tr>
<th>Code:</th>
<th>MScTI_MIS</th>
<th>Course Title:</th>
<th>Modern Image Sensors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecturer:</td>
<td>Prof. Dr. B. Jähne</td>
<td>Type:</td>
<td>Lecture</td>
</tr>
<tr>
<td>Credit Points:</td>
<td>2</td>
<td>Workload:</td>
<td>60h</td>
</tr>
<tr>
<td>Teaching Hours:</td>
<td>compact course</td>
<td>Language:</td>
<td>English</td>
</tr>
<tr>
<td>Term:</td>
<td>WS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Module Parts and Teaching Methods:
- Lecture

Objectives: The students
- learn all the basic knowledge about image sensors one should know to apply image processing techniques successfully and then be able to choose the right image sensor for a given imaging application.

Contents:
- Radiation detection: Basic principle of quantum detectors, quantum efficiency and responsivity, dark signal, overall system gain, spectral sensitivity;
- Non-silicon solid-state imaging: InGaAs, HgCdTe, InSb, QWIP, superlattice detectors; indirect (thermal) detectors: pyroelectricity, microbolometers
- Imaging detectors: the charge-coupled device (CCD), CCD sensor architecture, frame transfer, interline transfer, electronic shutter, microlens arrays; CMOS imaging sensors and active pixels, scientific CMOS sensors, color and spectral sensors, high-speed imaging, artefacts of image sensors
- Standard interfaces for digital cameras: Camera Link, Camera Link HS, CoaxPress (CXP), Firewire (IEEE1394), USB2, USB3 Vision, GigE Vision, towards a standardized interface: GenICam
- Performance characterization for image sensors: EMVA 1288 standard, noise model for a linear camera, photon transfer method, signal to noise ratio (SNR), signal saturation, absolute sensitivity threshold, dynamic range (DR), Dark current and auto-saturation time, Spatial nonuniformities and defective pixel: spatial variances, spectrogram method, logarithmic histograms, profiles
- Practical issues: Measuring equipment for camera performance characterization, Application-oriented camera selection according to different criteria

Prerequisites:
- none

Recommended Knowledge:
- BSc Applied Computer Science

Literature: will be given at course

Form of Testing and Examination: Oral examination
The following module is imported from the master program in physics:

<table>
<thead>
<tr>
<th>Code:</th>
<th>MWInf7 (Physics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Title:</td>
<td>Pattern Recognition</td>
</tr>
<tr>
<td>Lecturer:</td>
<td>Prof. Dr. F. Hamprecht</td>
</tr>
<tr>
<td>Type:</td>
<td>Lecture with exercises</td>
</tr>
<tr>
<td>Credit Points:</td>
<td>8</td>
</tr>
<tr>
<td>Workload:</td>
<td>240h</td>
</tr>
<tr>
<td>Teaching Hours:</td>
<td>6 / week</td>
</tr>
<tr>
<td>Language:</td>
<td>English</td>
</tr>
<tr>
<td>Term:</td>
<td>SS</td>
</tr>
</tbody>
</table>

Module Parts and Teaching Methods:
- Lecture
- Exercise

Objectives: The students
- given a huge bunch of data, find out what's in it; build automated diagnostic systems or expert systems that automatically learn to make reliable predictions from a training set of examples. Lectures and exercises will be interwoven and allow you to build such systems by yourself; real-life examples will be drawn from for the application areas named below.

Contents:
- Curse of dimensionality
- Variable selection and dimension reduction for high-dimensional data
- Unsupervised learning: Cluster analysis
- Supervised learning: Regression
- Supervised learning: Classification by means of neural networks, support vector machines, etc.
- Graphical models
- Applications: Data mining, industrial quality control, process monitoring, astrophysics, medicine, life sciences

Prerequisites: none

Recommended Knowledge:
- UKInf1, Knowledge about Linear Algebra, Probability, Statistics

Literature: Pattern Classification (2nd ed.) by Richard O. Duda, Peter E. Hart and David G. Stork. Wiley, 2000.

Form of Testing and Examination: Defined at lecture start
<table>
<thead>
<tr>
<th>Code:</th>
<th>MScTI_ASYSTHEO</th>
<th>Course Title:</th>
<th>Advanced System Theory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecturer:</td>
<td>Prof. Dr.sc.techn. E. Badreddin</td>
<td>Type:</td>
<td>Lecture with exercises</td>
</tr>
<tr>
<td>Credit Points:</td>
<td>6</td>
<td>Workload:</td>
<td>180h</td>
</tr>
<tr>
<td>Teaching Hours:</td>
<td>4 / week</td>
<td>Language:</td>
<td>German / English</td>
</tr>
<tr>
<td>Term:</td>
<td>WS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Module Parts and Teaching Methods:
- Lecture: 2 hours/week
- Exercise: 2 hours/week

Objectives: After completing this course the students will be able to:
- describe and analyze systems by using fuzzy sets, artificial neural networks or game theory and
- design control systems for some relevant examples based on the aforementioned methods.

Contents:
The course consists of three parts:

Fuzzy sets and fuzzy control
- Definitions, operations and relations with fuzzy sets
- Linguistic modelling of dynamic systems
- Linguistic system analysis and control

Artificial Neural Networks
- Introduction, motivation and definitions
- Modelling of neural networks
- Processing artificial neural networks
- Application of artificial neural networks in control systems

Game Theory
- Introduction (motivation, definitions, description of a game)
- Strategic games and extensive games
- Differential games
- Application of game theory in control systems

Prerequisites:
none

Recommended Knowledge:
System Theory, Theory of linear systems

Literature:

Form of Testing and Examination: 30' oral exam
<table>
<thead>
<tr>
<th>Code:</th>
<th>Course Title:</th>
<th>Lecturer:</th>
<th>Type:</th>
</tr>
</thead>
<tbody>
<tr>
<td>MScTI_AUTO</td>
<td>Design of Autonomous Systems</td>
<td>Prof. Dr.sc.techn. E. Badreddin</td>
<td>Lecture with exercises</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Credit Points:</th>
<th>Workload:</th>
<th>Teaching Hours:</th>
<th>Language:</th>
<th>Term:</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>180h</td>
<td>4 / week</td>
<td>German / English</td>
<td>WS</td>
</tr>
</tbody>
</table>

Module Parts and Teaching Methods:
- Lecture: 2 hours/week
- Exercise: 2 hours/week

Objectives: After completing this course the students will be able to:
- understand the design requirements and formulate the system specifications,
- formulate the problem,
- decompose the problem of the design of autonomous mechatronic systems into sub-problems,
- choose an architecture in which the solutions of the sub-problems leads to the overall design,
- find an implementation to each of the posed sub-problems,
- integrate the individual implementation into the selected overall system architecture,
- understand the practical constraints and requirements of the real-time realization and
- demonstrate the whole design process by using Autonomous Wheeled-mobile robots.

Contents:
- Introduction to autonomous systems
- The design problem
- Control structure
- Behavior fusion
- Kinematics
- Kinematic control
- Collision avoidance
- Navigation
- Higher-level behavior
- Implementation
- Overall system specifications

Prerequisites: none

Recommended Knowledge:
- System Theory, theory of linear systems (Signals and Systems 1)

Literature:

Form of Testing and Examination: 30’ oral exam
Code:
MScTI_DIGCTRL

Course Title:
Digital Control in Real Time

Lecturer:
Prof. Dr.sc.techn. E. Badreddin

Type:
Lecture with exercises

<table>
<thead>
<tr>
<th>Credit Points:</th>
<th>Workload:</th>
<th>Teaching Hours:</th>
<th>Language:</th>
<th>Term:</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>180h</td>
<td>4 / week</td>
<td>German / English</td>
<td>SS</td>
</tr>
</tbody>
</table>

Module Parts and Teaching Methods:
- Lecture: 2 hours/week
- Exercise: 2 hours/week

Objectives: After completing this course the students will be able to:
- understand the sampling process,
- use the z-transform for solving control problems,
- model, analyze and design digital control systems and
- implement a control system in real time.

Contents:
- Introduction to digital signals and systems
- Sampling theory and z-Transform
- Modelling of discrete-time dynamic systems
- Analysis of discrete-time dynamic systems
- Digital design of control systems
- Real-time implementation
- Practical aspects of the implementation and operation

Prerequisites:
none

Recommended Knowledge:
System Theory, Theory of linear systems

Literature:

Form of Testing and Examination: 30’ oral exam
<table>
<thead>
<tr>
<th>Code:</th>
<th>MScTI_DAQ</th>
<th>Course Title:</th>
<th>Data Acquisition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecturer:</td>
<td>Prof. Dr.sc.techn. E. Badreddin</td>
<td>Type:</td>
<td>Lecture with exercises</td>
</tr>
<tr>
<td>Credit Points:</td>
<td>6</td>
<td>Workload:</td>
<td>180h</td>
</tr>
<tr>
<td>Teaching Hours:</td>
<td>4 / week</td>
<td>Language:</td>
<td>German / English</td>
</tr>
<tr>
<td>Term:</td>
<td>WS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Module Parts and Teaching Methods:
- Lecture: 2 hours/week
- Exercise: 2 hours/week

Objectives: After completing this course the students will be able to:
- understand the components of a Data Acquisition System (DAS),
- describe the basic principles, which dominates each stage of a DAS and
- implement a DAS for a given application.

Contents:
- Overview of Sensors and Signals
- Analogue and digital inputs and outputs
- Hardware and software for data acquisition
- Signal conditioning
- Data communication and data transfer
- Signal processing

Prerequisites: none

Recommended Knowledge:
- Digital control in real time, Sensor technologies

Literature:

Form of Testing and Examination: 30' oral exam
<table>
<thead>
<tr>
<th>Code: MScTI_RELSYS</th>
<th>Course Title: Design of Reliable and Dependable Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecturer: Prof. Dr.sc.techn. E. Badreddin</td>
<td>Type: Lecture with exercises</td>
</tr>
<tr>
<td>Credit Points: 6</td>
<td>Workload: 180h</td>
</tr>
<tr>
<td>Teaching Hours: 4 / week</td>
<td>Language: German / English</td>
</tr>
<tr>
<td>Term: WS</td>
<td></td>
</tr>
</tbody>
</table>

Module Parts and Teaching Methods:
- Lecture: 2 hours/week
- Exercise: 2 hours/week

Objectives: After completing this course the students will be able to:
- understand and describe the basic properties of reliable and dependable systems,
- utilize problem specific modelling methods to describe a variety of systems,
- analyze technical systems with respect to their reliability and dependability,
- apply methods and techniques for the design and realization of reliable and dependable systems.

Contents:
- Introduction
- Reliability and Dependability Measures
- Boolean Reliability Modelling
- Markov Modelling
- Petri Nets
- Redundancy Techniques for Hardware and Software
- Fault Injection
- Description of Dynamic Systems
- System Architectures and Topologies
- Dynamic Safety Control
- Monitoring and Diagnosis
- Human Reliability
- System Design Methods and Techniques
- Application Examples from Mobile Robotics, Avionics, and Medical Technology

Prerequisites: none

Recommended Knowledge: Theory of linear systems (Signals and Systems 1)

Literature:

Form of Testing and Examination: 30’ oral exam
<table>
<thead>
<tr>
<th>Code:</th>
<th>MScTI_ROB1</th>
<th>Course Title:</th>
<th>Robotics 1 - Kinematics, Dynamics and Motion Planning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecturer:</td>
<td>Prof. Dr. Katja Mombaur</td>
<td>Type:</td>
<td>Lecture with exercises</td>
</tr>
<tr>
<td>Credit Points:</td>
<td>6</td>
<td>Workload:</td>
<td>180h</td>
</tr>
<tr>
<td>Teaching Hours:</td>
<td>2 + 2 / week</td>
<td>Language:</td>
<td>German / English</td>
</tr>
<tr>
<td>Term:</td>
<td>every WS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Module Parts and Teaching Methods:
- Lecture (2 hours / week)
- Exercises (2 hours / week)

Objectives: The students...
- can apply principles of mechanics to mechanisms and robotics problems,
- can explain theory and solve problems using appropriate algorithms of robot kinematics and dynamics and motion planning,
- can give an overview on state of the art robotics applications in various fields,
- can explain the function of robotics hardware such as actuators, sensors in a robotic system.

Contents:
- Mechanical concepts, rigid body motions
- Forward kinematics of open and closed chains
- Differential kinematics and statics
- Inverse kinematics
- Dynamics
- Trajectory generation
- Motion planning
- Robot control
- Actuators and sensors
- State of the art robot types (Humanoid robots, manipulators, wearable robots and assistive devices, swarm robots, unmanned land/sea/aerial vehicles, etc.)
- State of the art robot applications in (Industry, Medicine, Care, Rescue/Humanitarian, Space, Transport etc.)

Prerequisites:

Recommended Knowledge:
Basic knowledge in Mechanics and Linear Algebra

Literature:
- B. Siciliano, et al: Robotics - Modeling, Planning and Control
- F. Park & K. Lynch: Modern Robotics – Mechanics, Planning and Control
- D. Greenwood: Principles of Dynamics

Form of Testing and Examination: Written exam at the end of the semester. Successful participation in the exercises is required to be accepted to exam.
Code:
MScTI_ROB2

Course Title:
Robotics 2 - Simulation and Optimization in Robotics

Lecturer:
Prof. Dr. Katja Mombaur

Type:
Lecture with exercises

Credit Points:
6

Workload:
180h

Teaching Hours:
2 + 2 / week

Language:
German / English

Term:
every SS

Module Parts and Teaching Methods:
- Lecture (2 hours / week)
- Programming Exercises (2 hours / week)

Objectives: The students...
- can explain and apply advanced principles of modeling, optimization and control of dynamic processes, in particular mechanical systems,
- can apply nonlinear optimization and optimal control methods and can compare and evaluate different mathematical approaches,
- can model, classify and analyze complex motions of mechanical systems, e.g. in robotics or biomechanics, and investigate specific properties such as stability,
- know how to use software tools based on C++ and Lua for modeling, simulation, optimization and visualization of humanoid and robotic systems,
- are capable of solving optimal control problems numerically and to evaluate the quality of the solution.

Contents:
- Dynamic process modeling
- Modeling of complex mechanical systems (e.g. humanoids)
- Simulation of mechanical Systems (Integrators and Initial Value Problems)
- Boundary value problems
- Nonlinear optimization problems
- Optimal control problems in robotics
- Direct and indirect methods for optimal control problems
- Stability of dynamical systems
- Simulation and visualization of mechanical systems
- Modeling multi body systems with RBDL (Rigid Body Dynamics Library)
- Visualization of motions of mechanical systems with Puppeteer
- Solution of optimal control problems with MUSCOD-II for different mechanical examples
- Modeling bipedal walking and running motions

Prerequisites:
Programming skills in C/C++
Robotics 1 or Theoretical Mechanics or similar knowledge

Recommended Knowledge:
Knowledge in Matlab/Octave
Introduction to Numerical mathematics, Algorithmic Optimization 1, Numerical mathematics 1;

Literature:
- J. T. Betts: Practical Methods for Optimal Control Using Nonlinear Programming
- J. Nocedal, S. Wright: Numerical Optimization

Form of Testing and Examination:
Written exam at the end of the semester.
Successful participation in the programming exercises is required to be accepted to exam.
Code:
MScTI_BIOMECH

Course Title:
Biomechanics 1

<table>
<thead>
<tr>
<th>Lecturer:</th>
<th>Type:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Katja Mombaur</td>
<td>Lecture with exercises</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Credit Points:</th>
<th>Workload:</th>
<th>Teaching Hours:</th>
<th>Language:</th>
<th>Term:</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>180h</td>
<td>2+2h/week + block</td>
<td>German / English</td>
<td>every SS</td>
</tr>
</tbody>
</table>

Module Parts and Teaching Methods:
- Lecture (2 hours / week) with exercises (2 hours / week)
- practical (block)

Objectives: The students...
- can explain the basics of human physiology,
- can distinguish between different concepts of biological motion,
- can model different aspects of biological motion generation (neural control, muscle activity, reflexes),
- understand the function and are familiar with the use of devices for motion analysis such as marker-based and IMU based motion capture systems and electromyography,
- know how to classify different types of locomotion of humans and animals and can explain their respective advantages in a given context,
- are able to independently plan and execute a biomechanical study, possibly in a team,
- can analyze motion capture data with respect to a specific biomechanical question,
- can write code for analysis or visualization of biomechanical data,
- can present project results in a scientific way using posters, presentations or other media,
- are able to formulate a documentation for the project including the created code.

Contents:
- Physiological basics of the human body and of animals
- Different modes of locomotion (walking, running, swimming, flying, gliding, etc.)
- Body proportions and anthropometric data
- Muscle physiology and muscle models
- Neural control of biological motion
- Human sensor systems and sensor-based motion control
- Human motion measurements: camera and marker based (sparse) motion capture, IMU based motion capture, electromyography, force plates, pressure soles, markerless (dense) motion capture
- Methods for motion evaluation
- Methodological principles of experimental design
- Statistical Analysis of recorded motion capture data
- Design and execution of a problem specific biomechanical lab study

Prerequisites:

Recommended Knowledge:
- Robotics 1

Literature:
- Robert McNeill Alexander: Exploring Biomechanics - Animals in Motion

Form of Testing and Examination: Successful completion of biomechanical lab project with presentation and report
<table>
<thead>
<tr>
<th>Code:</th>
<th>Course Title:</th>
</tr>
</thead>
<tbody>
<tr>
<td>MScTI_ROBP</td>
<td>Robotics Practical for Computer Engineering Master</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lecturer:</th>
<th>Type:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr. Katja Mombaur</td>
<td>Practical course</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Credit Points:</th>
<th>Workload:</th>
<th>Teaching Hours:</th>
<th>Language:</th>
<th>Term:</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>180h</td>
<td>4 / week</td>
<td>German / English</td>
<td>every SS</td>
</tr>
</tbody>
</table>

Module Parts and Teaching Methods:
- Practical course in groups of 2 persons

Objectives: The students...
- can use different types of robotics hardware and explain the respective applications and challenges related to them,
- are able to independently plan and execute robotics projects in a team,
- can apply theoretical knowledge in robotics to implement solutions on real platforms,
- can present results of a robotics project in a scientific way.

Contents:
- Challenges of real hardware vs. model calculations
- Working principles and practical implementation of sensors and actuators
- Development or modification of robotic hardware
- Code development for specific hardware
- Robotic projects on different kinds of hardware such as (but not limited to)
 - Robot arm
 - Mobile platform
 - Unmanned aerial vehicle
 - Humanoid robot

Prerequisites:
- Basic knowledge in C/C++

Recommended Knowledge:
- MScTI_ROB1

Literature:
- Script

Form of Testing and Examination: Oral colloquium and written documentation.
<table>
<thead>
<tr>
<th>Code:</th>
<th>Course Title:</th>
<th>Lecturer:</th>
<th>Type:</th>
</tr>
</thead>
<tbody>
<tr>
<td>MScTI_SEM</td>
<td>Advanced Seminar</td>
<td>all groups</td>
<td>Seminar with Presentation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Credit Points:</th>
<th>Workload:</th>
<th>Teaching Hours:</th>
<th>Language:</th>
<th>Term:</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 + 2 (soft skills)</td>
<td>180h</td>
<td>2 / week</td>
<td>German, maybe English</td>
<td>WS</td>
</tr>
</tbody>
</table>

Module Parts and Teaching Methods:
- Seminar

Objectives: After this course the students will be able to:
- Search literature for a specific subject,
- Select subject / material for a presentation,
- Prepare material (slides) for a presentation,
- Give a scientific presentation.

Contents:
- Literature research
- Preparation of presentation
- Oral Presentation (~45 Minutes)
- Preparation of a short summary report (~10 pages)
- Active participation in other student’s presentations & discussion

<table>
<thead>
<tr>
<th>Prerequisites:</th>
<th>Recommended Knowledge:</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>General Knowledge about the chosen field</td>
</tr>
</tbody>
</table>

Literature:
Partially provided by lecturer

Form of Testing and Examination: Presentation, Written Summary, Regular active participation
<table>
<thead>
<tr>
<th>Code: MScTI_SA</th>
<th>Course Title: Student Research Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecturer: all groups</td>
<td>Type: Practice Course</td>
</tr>
<tr>
<td>Credit Points: 14</td>
<td>Workload: 420h</td>
</tr>
<tr>
<td>Teaching Hours: n.a.</td>
<td>Language: n.a.</td>
</tr>
<tr>
<td>Term: WS/SS</td>
<td></td>
</tr>
</tbody>
</table>

Module Parts and Teaching Methods:
- Practical Course

Objectives: After this course the students will be able to:
- Dig into scientific and technical aspects of a selected topic,
- Manage and carry through a small research project,
- Write a medium length report.

Contents:
- Research work on a specific topic.
- Management of work.
- Preparation of a medium length report.

Prerequisites: none

Recommended Knowledge: Knowledge in research field

Literature:
Depending on subject. Provided by supervisor

Form of Testing and Examination: Written Report
<table>
<thead>
<tr>
<th>Code:</th>
<th>MScTI_THESIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Title:</td>
<td>Master Thesis</td>
</tr>
<tr>
<td>Lecturer:</td>
<td>all groups</td>
</tr>
<tr>
<td>Type:</td>
<td>Practice Course</td>
</tr>
<tr>
<td>Credit Points:</td>
<td>30</td>
</tr>
<tr>
<td>Workload:</td>
<td>900h</td>
</tr>
<tr>
<td>Teaching Hours:</td>
<td>n.a.</td>
</tr>
<tr>
<td>Language:</td>
<td>n.a.</td>
</tr>
<tr>
<td>Term:</td>
<td>WS/SS</td>
</tr>
</tbody>
</table>

Module Parts and Teaching Methods:
- Master Thesis

Objectives: After this course the students will be able to:
- Manage and carry through a large research project,
- Write an extended thesis,
- Report on own scientific work in an oral presentation.

Contents:
- Research work on a specific topic.
- Management of work.
- Preparation of a longer written thesis.
- Oral presentation in the Colloquium.

Prerequisites: none

Recommended Knowledge: Knowledge in research field

Literature:
Depending on subject. Provided by supervisor

Form of Testing and Examination: Written Thesis, Colloquium