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F O R E W O R D  
 

 

 

 

Dear reader, 

 

This annual report describes the research activities of the chair of optoelectronics for the year 2013. This 

year, two main research directions emerged. One activity centers around the diffractive micro lenses in 

contributions on page 4, 5, 9, 11 resulting in the construction of a highly parallel wide field scanning 

microscope providing a 20 Megapixel image. The second, new research direction looks at effects arising 

from localized illumination. To this end, two new simulation methods were developed for unstructured 

(page 6) and for structured (page 7) layers of optical materials. Existing simulation methods generally 

assume an infinitely extended plane wave as light source. The new methods come along with a new model 

for describing the input polarization and may be useful in many application areas such as projection 

lithography and structured illumination microscopy. 

 

We hope that many of the topics in this report will find your interest. 
 

 

Karl-Heinz Brenner 

Head of the chair 
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Construction of a Plenoptic Camera 
 

A. Junker, T. Stenau, K.-H. Brenner 
 
 
A plenoptic camera consists of a micro lens array 

(MLA), which is positioned in the image plane of a 
classic imaging system. The image sensor is located 
one micro lens focal length behind the MLA (Fig. 1). 

 

 
Fig. 1: Illustration of the light field camera setup. 

 
The MLA pitch is usually chosen such that one 

micro lens covers approximately 10-20 sensor pixels in 
one dimension. Furthermore, the camera sensor ideally 
has a high resolution [1]. Moreover, an objective lens 
with small focal length and small sensor pixels are 
advantageous for a later wave-optical simulation / 
reconstruction [2]. 

 
Our setup uses an AVT Guppy F-503 industrial 

camera with a 5 megapixel CMOS sensor and 2.2µm 
pixel pitch. A MLA (circular lenses on a quadratic 
grid) with 110µm pitch and 0.03 numerical aperture 
manufactured by Süss MicroOptics is employed. We 
use a Tamron 25mm C-mount objective lens with 
adjustable aperture size. This is necessary to ensure 
that individual micro lens images do not overlap [1]. 

 
The housing of the Guppy camera is removed in 

order to access the image sensor directly. The bolts 
connecting the circuit boards are replaced by M2 
threaded bars for the attachment of the MLA socket 
(Fig. 2). Four nuts (two on each threaded bar) are used 
to control the distance and tilt with respect to the image 
sensor; additionally, a spring and another screw are 
used to adjust the tilt in the other direction. 
 

 

       
Fig. 2: Guppy camera with housing removed (left). MLA 

socket mounted on top of the Guppy camera guided by two 
threaded bars (right). 

The MLA socket features a rotatable mount (Fig. 3 
left), which holds the MLA inside a cavity. The lenses 
of the MLA point towards the objective lens. The 
MLA can be turned about the optical axis with an M2 
screw attached to the outer socket part. The distance, 
tilt and rotational alignment of the MLA with the 
image sensor are conducted using a plane wave 
incident on the MLA and a subsequent analysis of the 
spot image with a grid fitting software [3]. 

 

   
Fig. 3: MLA socket from the top view (left). Camera with 

C/CS-mount fitting attached (right). 
 
The C/CS-mount fitting for the objective lens is 

likewise attached to the threaded bars (Fig. 3 right). 
The flange back distance and tilt is adjusted in the 
same manner as the MLA socket. A sample image of 
the plenoptic camera is presented in Fig. 4. 
 

 
Fig. 4: Sensor image of a dice at g=8cm with the objective 

lens focused at infinity. 
 
References: 

 
[1] R. Ng, „Digital Light Field Photography” – PhD Thesis, 
Stanford University (2006) 
  
[2] A. Junker, „Wave-optical Reconstruction of Plenoptic 
Camera Images”, Master Thesis, University of Heidelberg 
(2013) 
 
[3] K.-H. Brenner, „Accuracy of fitting an array of spots to a 
model (GRIDFIT)” this report, contribution #9, University of 
Heidelberg (2013)



 
 

- 2 - 

Wave-optical Reconstruction of Plenoptic Camera Images 
 

A. Junker, T. Stenau, K.-H. Brenner 
 
 

A light field camera, also called plenoptic camera, 
consists of a micro lens array (MLA), which is 
positioned in the image plane of a classic imaging 
system. The image sensor is located one micro lens 
focal length behind the MLA (Fig. 1). Such a setup is 
capable of capturing both positional and directional 
information, which results in an enhanced performance 
in post shot image manipulation. 

 

 
Fig. 1: Light field camera setup: f1, D1 / f2, D2 denote main 
/ micro lens focal length and diameter. g and b correspond to 

the main lens object and image distance. 
 
The reconstruction of light field camera images up to 

now has been only conducted in a ray-optical 
framework, as example in [1]. Since present camera 
sensors’ pixel sizes approach the order of visible 
light’s wavelength, it can be assumed that in 
combination with low aperture optical systems this 
approximation is not valid. Therefore, we present a 
scalar wave-optical object reconstruction algorithm and 
compare its final images to the results of a ray-optical 
reconstruction procedure. 

 
Considering the field ( )0u x⊥

�
incident on a single 

micro lens, then from the image sensor data the 
following amplitude distribution is obtained, 

 

.   (1) 

 
The corresponding phase information is lost. The 

object reconstruction is started with a converging wave 
at the image sensor, which is implemented by a back-
refraction through a reconstruction lens with focal 
length f2 in the image sensor plane (Fig. 2). This field 
is then back-propagated into the MLA plane and back-
refracted through the corresponding micro lens. The 
resulting field reads 

 

.   (2) 

 
This result corresponds to the true input field 

( )0u x⊥
�

, except that the object phase is lost, which 

originates from the measurement process at the image 

sensor. The propagation phase is entirely 
reconstructed. From the MLA plane the field can be 
propagated to any desired main lens image plane. In 
order to introduce incoherence into the system, each 
micro lens image is reconstructed separately. The 
resulting intensity distributions are added. 
 

 
Fig. 2: Illustration of the reconstruction process. A 

reconstruction lens (blue) is positioned in the image sensor 
plane. Its optical axis (red) is aligned with the optical axis of 

the corresponding micro lens from the MLA. Each 
reconstruction lens covers the area of one micro lens image. 

Note that the latter are shifted relative to the micro lens 
centers due to the image capture process. 

 
We implemented the Angular Spectrum algorithm 

for the propagation of the complex wave field. The 
refraction by a thin lens is realized by a multiplication 
with a quadratic phase factor. Fig. 3 shows the ray- and 
wave-optical reconstruction of a true light field image 
of a dice. The resolution gain is clearly visible. A more 
detailed analysis shows that the resolution is enhanced 
by an approximate factor of two [2]. Furthermore, 
reconstruction artifacts are suppressed more 
effectively. 

 

   
Fig. 3: Ray- (left) and wave-optical (right) reconstruction of 
a true light field image of a dice. We applied the algorithm 

presented in [1] for the ray-optical reconstruction. 
 
References: 

 
[1] R. Ng, „Digital Light Field Photography” – PhD Thesis, 
Stanford University (2006) 
[2] A. Junker, „Wave-optical Reconstruction of Plenoptic 
Camera Images”, Master Thesis, University of Heidelberg 
(2013)
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Experimental setup for the measurement  
of resonant effects in high-contrast gratings  

 
M. Auer, K.-H. Brenner 

 
 
For optical gratings with a feature size similar to the 

incident light, strong resonances can be excited, raising 
the degree of reflection or absorption to more than 
90 %. Thus the efficiency of optoelectronical devices 
like detectors, solar cells or photo-lithographical 
systems could be improved significantly. 

In order to show and study this effect not only in 
simulation, but in a real environment, a setup is needed 
that can illuminate an optical grating with a low 
bandwidth but sufficiently powerful beam of light. At 
the same time the light source needs to be angle and 
wavelength tunable for recording a resonance curve. A 
high power tungsten halogen lamp in combination with 
a monochromator promised to be a lower-cost 
alternative to a wide range tunable laser source. 
 

 
Fig. 1: Setup with tungsten halogen lamp(a), two lenses (b, 
f) to image the source to the entrance slit (c) of a double 

monochromator (d), and the exit slit (e) again to the sample 
grating (g). (h) is the camera. 

 
The main challenge with this concept is to transfer a 

maximum amount of radiant power from the source to 
the detector. The limiting factors for the system 
throughput are the power of the light source, the 
etendue, the spectral width and the general system loss 
due to the efficiency of the optical components like 
lenses, mirrors and gratings. 

For a Lambertian radiator, the power P of the light 
source is defined by the product of the etendue E and 
the radiance L as the latter is angle-independent. The 
etendue characterizes the phase space volume of an 
optical source. It is a function of the area A  of the 
emitting source and the solid angle Ω , it radiates into: 

 

= ⋅ Ω∫∫E d dA             (1) 
 

E  is invariant when it passes a loss-less system and 
it is determined by the most limiting component. 
Keeping this in mind, the proper imaging lenses and 
their positions can be derived from the fixed 
monochromator parameters via f-number matching. 

The spectral radiance L is the spectrum of radiation 
that is emitted from a surface into a given solid angle. 
The tungsten lamp, as a thermal radiator, can be 

characterized approximately by a black body radiator, 
bandpass-filtered by the monochromator. 
 
Comparison between Measurement and Simulation 
 

The effective filament size A  of the tungsten 
halogen source, derived from the black body radiation 
formula, was 9.66 mm2. With the monochromator as 
the limiting factor and the back reflector as an 
enhancer of 27.3 %, the system’s etendue L was 
reduced to 0.022 %. In order determine the color 
temperature of the source, the spectrum was measured 
and fitted to a black body radiation curve of  
2570 K (cf. Fig 2a). 

 

(a) (b) 
Fig. 2: a) measured spectrum of the source (blue) and black 

body radiation fitting curve for 2570K (orange) 
b) measured output spectrum of the system 

 
The double-monochromator works in additive 

dispersion mode. Thus, the spectral resolution ∆λ  
depends on the slit width s  and twice the linear 
dispersion γ  of the grating: 

( )
dx m s

f
d P cos 2λ

γ = = ⇒ ∆λ =
λ ⋅ β γ

 (2) 

For the first diffraction order, m is one. βλ is the 
corresponding diffraction angle at a wavelength of  
λ = 636.5 nm. f = 220 mm is the focal length of the 
mirror and P = 833.3 nm is the grating period. This 
leads to a calculated spectral width of 2.2 nm com-
pared to a measured width of 2.6 nm (cf Fig. 2b) and a 
utilization of 0.062 % of the full spectral radiance. 

 
As a result the calculated power-throughput was 

15.34 µW compared to 14 µW measured power-
throughput. The remaining deviation marks the 
efficiency loss due to imperfect optical components. 
Although, the overall efficiency of the system with 
90.98 W measured electrical input power seems low at 
such narrow bandwidth, it is still well in the range of 
our instrument sensibility and thus it should be useful 
for resonance measurements. 
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Phase retrieval using a diffractive micro lens array 
 

X. Liu and K.-H. Brenner 
 
 
Detectors can only record intensity, not phase. Due 

to this loss of phase information, indirect methods for 
the reconstruction of a complex wave front are still an 
important issue. Multi-plane phase retrieval [1,2] is a 
well established technique for reconstructing both, 
amplitude and phase of an object wave. This standard 
technique works best, if the intensity distribution of the 
object wave changes rapidly along the propagation 
axis. For slowly varying intensities, the iterative 
procedure may not converge at all. To overcome this 
limitation we combined the standard technique with a 
periodic phase element. We found that a binary 
diffractive phase element with overlapping aperture 
significantly improves the convergence of phase 
retrieval and thus the quality of reconstruction. Thus 
multi-plane phase retrieval can be applied to both 
rough and smooth phase distributions. 

 

 
Fig. 1: Intensity recording of phase retrieval using a 

diffractive optical phase element 
 
Initially we used a refractive micro lens array, which 

accelerated also the convergence. However, after 
reconstruction there is an unknown constant phase bias 
in each micro lens, which varies from micro lens to 
micro lens. The phase bias problem is due to the fact 
that the intensity along the optical axis of each micro 
lens is insensitive to a constant phase bias added to the 
micro lens phase. This problem can be removed 
completely, if the apertures of micro lens overlap. Such 
overlapping aperture can only be realized using 
diffractive optical elements. 

Figure 2 shows the DOE used. The focal length f is 
10 mm and the overlap factor is around 3. Detailed 
information about design and fabrication of such 
diffractive lenses can be found in [3-5]. For tolerance 
analysis, the parameters N, Z0 and dz (Fig. 1) were 
varied in a set of numerical simulations. The 
reconstructions revealed that with more than 7 planes 
the algorithm converges quickly after 3 iterations; the 
distance between two adjacent planes should be larger 
than f/30. To utilize the dynamic range of the camera, 
the intensities should not be recorded too close to the 
focal plane. Therefore the initial position Z0 should be 
considerably less or larger than the focal length f. Fig. 
2 shows the original and reconstructed DOE. 

After the DOE has been recovered, a combined 
phase consisting of both the object and the DOE is 

reconstructed. Then the DOE phase is eliminated from 
the combined phase. In order to estimate the achievable 
accuracy of phase measurement, we used the Zernike 
polynomial Z13 as a test phase object. Fig. 3 shows the 
original and reconstructed phase object. The deviation 
is less than λ /15. 

 

 
Fig. 2: Computed reconstruction of the DOE. Left: original 

phase; right: reconstructed phase.  

 
Fig. 3: Computed reconstruction of the Zernike polynomial 
Z13 as the object to be reconstructed. Left: original phase; 

right: reconstructed phase.  
 
Figure 4 shows an experimental reconstruction of a 

dog flea; the colour image is a microscope image. The 
reconstruction was carried out in four iterations and the 
relevant parameters were: N = 10, dz = 750 µm and Z0 
= f/5. 

 

 
Fig. 4: Experimental reconstruction of a dog flea. Left: 

amplitude; right: phase; colour: microscope image. 
 

References: 
 
[1] G. Pedrini, W. Osten, Y. Zhang, OL 30, 833 (2005) 
[2] P. Almoro, G. Pedrini, W. Osten, AO 45, 8596 (2006) 
[3] K.-H. Brenner, R. Buschlinger, JEOS 6, 11204 (2011) 
[4] B. Hulsken, D. Vossen, S. Stallinga, JEOS 7, 12026 
(2012) 
[5] X. Liu, T. Stenau, K.-H. Brenner, 11th WIO, Quebec, 
Canada (2012) 
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Experimental realisation and first results of a scanning microscope 
with a diffractive microlens array 

 
T. Stenau, K.-H. Brenner 

 
 
Microscopic imaging of large samples with high 

spatial resolution is a challenging area of research.  
Our approach uses a multi spot focal scanning 

technique [1]. Here, the sample is illuminated spot 
wise by a diffractive microlens array and the 
transmitted intensity is recorded. The sample is 
scanned by moving the microlens array. Afterwards, a 
high resolution image is reconstructed. 

By the use of a novel overlapping diffractive 
microlens array [1, 2] it is possible to realise a long 
working distance between the microlens array and the 
sample and small focal spots at the same time. This is a 
significant contrast to conventional refractive 
microlens arrays. As a by-product, this enables an 
easier handling of the probes. 

The scanning principle enables the use of an imaging 
optics with a relatively low numerical aperture.  

 

 
Fig. 1: Experimental setup of the microscope. 

 
The experimental setup of the scanning microscope 

is shown in Fig. 1. The position of the diffractive 
microlens array is controlled by a piezo table with an 
accuracy of 20 nm. The spacing between adjacent foci 
is 52.8 µm, the design numerical aperture of each foci 

is NA = 0.07 and the focal length is 3 mm. The camera 
uses a 1:1 imaging optic with f-number 8. 

During the measurement, the array of focal spots 
scans the sample. This spot grid is imaged with a 
camera. Due to the scanning principle, each spot on the 
camera corresponds to one position of the sample 
which is responsible for the intensity loss measured 
with the camera.  

The reconstruction algorithm first estimates the grid 
parameters of the focal spot grid at the first image. 
Then, a natural neighbour interpolation determines the 
intensity at the focal positions. The grid parameters for 
the next images are calculated by the known shift of 
the piezo.  

Figure 2 shows a reconstruction of a green algae 
(Hydrodictyon Chlorophyceae) with 19Mpx. The pixel 
size is 1.1 µm, which is half the resolution of the 
camera in use.  

 

 
Fig. 2: Reconstruction of a green algae with twice the camera 

resolution. 
 
References: 

 
[1] K.-H. Brenner, T. Stenau, M. Azizian „Entwicklung eines 
scannenden Mikroskops mit diffraktiven Mikrolinsen”, 
Jahrestagung der Deutschen Gesellschaft für angewandte 
Optik e. V. in Braunschweig (2013) 
 
[2] B. Hulsken, D. Vossen, S. Stallinga, “Parallel image 
scanning with binary phase grating”,- J. Europ. Opt. Soc. 
Rap. Publ. 6, 11024 (2011) 
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Localized light sources in the exact optical simulation 
of multilayer stacks 

 
K.-H. Brenner 

 
 
For the exact electromagnetic simulation of stratified 

layers of optical materials the multilayer matrix theory 
is well established [1]. This theory assumes an 
infinitely extended plane wave as input field. There are 
many situations, where an infinitely extended plane 
wave is not adequate for the analysis of the optical 
application. In optical storage as well as in confocal 
microscopy, the structure to be tested, is placed inside 
a sequence of layers and the readout light is highly 
focused. In optical lithography, a high resolution mask 
pattern is imaged into a layer of photo resist on glass. 
Also, in this case, the resulting light distribution cannot 
be modelled by an infinitely extended plane wave. 
Previous approaches [2,3] to treat problems of this type 
decompose the input field into a series of plane waves. 
Because the multilayer matrix theory distinguishes 
between TE and TM-polarization, each plane wave 
additionally has to be decomposed into these two 
polarization components. 

 
Our approach also assumes a plane wave 

decomposition, but the decomposition into TE and 
TM-components does not provide any advantage when 
multiple plane wave components are considered. To 
this end, we have reformulated multilayer matrix 
theory in terms of a cartesian decomposition instead of 
a TE-TM decomposition. The result is a more simple 
set of matrix equations, which can be solved in a 
straight forward manner. 

 
To use the new approach, the incident electro-

magnetic field also must be described by its x- and y-
components. In our software, we distinguish three 
cases: radial polarization, azimutal polarisation and 
linear polarization. It turns out that azimutal 
polarization is equivalent to all modes being TE-
polarized. Likewise, radial polarization is equivalent to 
all modes being TM-polarized. The description of 
linear polarization might seem to be the simplest, but 
in fact, the opposite is true. For a description of linear 
polarization, we adopted the model configuration from 
[2,3], but derived a new formula in a more direct way:  
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      (1) 

 
The formula describes the incident electric field for 

one mode with propagation direction /s k k=
��

, 

polarized under an angle ϕ  to the x-axis. By 

comparison with the results of [2,3] we found that [2] 
agrees exactly for pure x-polarization. 

 
To show some examples, we first looked at focusing 

in air. Radial polarization is generally assumed to have 
superior focusing properties. We found that this 
assumption is only true for extremely high NAs. For 
NA below 0.7, the opposite is true as shown in fig. 1  

 

 
 

Fig. 1: Comparison ( ),I x z of linear (left) and radial 

polarization (right) for an NA of 0.5, 633nmλ =   
 

The next example (fig.2) shows coupling of light into a 
stack of glass-air-glass, with 1.8glassn = . 

 
 

Fig. 2: Focusing a linear polarized Gaussian beam  
into a stack of glass-air-glass  

 
References: 
[1] M. Born and E. Wolf. Principles of Optics. Cambridge 
University Press 1999, p.54. 
 
[2] M. Mansuripur: J. Opt. Soc. Am. A, Vol. 3 (1986) 2086.  
 
[3] D.G. Flagello, T. Milster, Appl. Opt. 36, (1997) 8944 
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Simulation of diffraction in three-dimensional optical gratings  
with a localized incident wave 

 
M. Auer, K.-H. Brenner 

 
 

The Rigorous Coupled Wave Analysis (RCWA) is a 
powerful tool for the simulation of diffraction effects 
in periodic structures. However, like in most other 
diffraction theories, the RCWA acts on the assumption, 
that the exciting light is a single plane wave. 
 

 
a) 

 
b) 

Fig. 1: a) z-x-Geometry of a diffraction grating (P = 
1.125µm, n1=3.65, n2=1). b) Electromagnetic field excited by 
a plane wave illumination (ϑ = 0°,λ =1µm, TM-
polarization, 120 Modes) in the same region. 
 
In practical optical setups though, perfect plane waves 
are rarely available and sometimes not even favoured.  
 
In this work, we developed a new method, which is a 
combination of the Plane Wave Decomposition (PWD) 
and a modified version of the standard RCWA 
algorithm. In contrast to few other approaches that 
have been made [1], the new method utilizes existing 
properties of the RCWA and thus does not require any 
additional calculation effort. As a Fourier Modal 
Method, the RCWA solves the diffraction problem in 
the frequency domain. Periodic space functions thereby 
lead to discrete Fourier-coefficients, which can be 
interpreted as modes or plane waves. In incoherent 
superposition they describe the electromagnetic fields 
inside and outside of an illuminated grating. Although 
the RCWA naturally propagates several modes in a 
vectorial form, the classical implementation only 
implies a zeroth mode for excitation. The key idea of 
our new approach is to use the linear nature of the 
RCWA to superpose multiple input signals and their 
responses within a single calculation. Therefore, the 
incident mode vector is filled with additional higher 
modes as a reasonable complement to the modal 
method concept.  
 
In order to determine the proper mode weights of the 
incident wave, the PWD (eq. 1) is a suitable method as 
it decomposes any arbitrary wave function into its 
Fourier modes. 
 

( )
yx

x y

mx nyPP 2 i
P P

m,n
x y 0 0

1
A : f r e dxdy

P P

 
 − π +
 
 

⊥= ∫ ∫        (1) 

Here, A  is a vector of Fourier-coefficients with mode 
indices m and n for a given two-dimensional incident 
wave function f at z = 0 with periodicity Px and Py. 
 
Besides the scalar amplitude, also the polarization can 
be defined in analogy to the standard approach, but 
separately for every individual mode: 
 

( ) ( ) ( )
( ) ( )

m,n m,n m,n
m,n

m,n m,n m,n

sx sz cos sy sin1
B :

sy sz cos sx sins⊥

 ⋅ ψ − ⋅ ψ
ψ =   ⋅ ψ + ⋅ ψ 

 (2) 

 
This makes it possible to implement true radial 
(ψ = 0°) as well as azimuthal (ψ = 90°) polarization 
and any form in between. However, linear polarisation 
is still possible with the new formulation (see previous 
article). 
 
Thus, ( )L A ψ= ⋅Φ  replaces the classical incident 

vector, formerly described by a Kronecker delta.  
 
Also in contrast to the standard algorithm, the new 
approach has neither the need nor the justification for a 
pseudo-periodicity, which is usually used to handle 
slanted incidence. Linked therewith is the necessity to 
define the Toeplitz-matrix, which contains the material 
coefficients, in a cyclic manner. 

 

 
a) 

 
b) 

Fig. 2: a) Converging Gaussian beam (σ = 0.2µm, linearly 
polarized). b) Electromagnetic field at a grating, excited by a 
focussed Gaussian beam (cf. a).  
 
As illustrated in Fig. 2 this new formulation allows 
grating structures that are illuminated by localized 
fields to be simulated and studied in a rigorous and 
efficient way. 
 
The accuracy of the method depends on the spectral 
width of the functions defining the incident wave and 
the grating versus available computational resources. 
 
References: 
[1] Wu, Shun-Der, et al. "Three-dimensional converging-
diverging Gaussian beam diffraction by a volume 
grating." JOSA A 22.7 (2005): 1293-1303 
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Approximations of Rayleigh-Sommerfeld Diffraction 
 

K.-H. Brenner 
 
 
It is interesting to see, how many different 

diffraction formulae were derived from the 
Sommerfeld Typ I diffraction integral in the literature. 
References [1..5] only list some representative ones. If 
the assumptions and the approximations in the 
derivation were the same, these representations should 
all be equal. In fact, they are not equal. In the simplest 
cases only the forefactor is omitted, resulting in a 
different amplitude. In another frequent representation 
[2], the Kirchhoff diffraction integral is used as a basis. 
For plane wave illumination, the gradient of the initial 
scalar field must be chosen correctly, which in the case 
of binary amplitude masks is almost impossible. In 
other examples, [3,4] the approximation of the 
exponential is not sufficiently accurate. 

 
In its most general form, the Sommerfeld Type I 

diffraction integral can be written as: 
 

( ) ( )
'

'

1
' '

4 '

ik r r
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From this integral, three different specializations can 
be derived. In the first case (c1), the source plane 'S  is 
a spherical surface with radius f around the coordinate 
center. This case is used in the well known Debye 
integral [1]. In ref [1], however a forefactor 1/f  is 
missing. In the other two cases, the source plane 'S  is 
flat and perpendicular to the z-axis. In the high NA far 
field diffraction case (c2), the source plane 'r

�
 is 

assumed to be small and the destination plane r
�

 is 
assumed to be large. Case 3 (c3) is exactly the opposite 
and can be considered as the flat screen equivalent of 
the Debye integral. In this case, a focusing lens should 
be included in ( )'u r

�
 to assure that the destination 

plane is small. 
 
In this report, we concentrate on case c2, the high NA 
far field approximation, which can be derived from eq. 
1, yields 
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Interestingly, there is only one paper in the literature 
[5] which shows this result. The inclusion of the 
quadratic phase factor in eq. 2 is named the "integrated 
propagator" and was only added for completeness. In 
our analysis, we found that this factor is essential for 
an accurate simulation. 
 
 

Example 1 shows a test pattern which was chosen to 
demonstrate the difference. It contains two letters F 
and G in a certain arrangement as binary amplitude 
mask. Without the integrated propagator, only a scaled 
version of the Fourier transform is computed. Since the 
Fourier intensity is shift invariant, the result is 
insensitive to the geometric arrangement of the letters. 

 
 
Fig. 1: Test pattern for the comparison in fig. 2. Dimensions 

are in µm. 
 
 

   
 

Fig. 2: Comparison of High NA diffraction over a 
propagation distance of 4 mm according to eq.2 without (left) 

and with (right) integrated propagator  
 
A comparison with the angular spectrum method, 
which at this distance is still valid, shows that the 
integrated propagator shows the correct result.  
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Accuracy of Fitting an array of spots to a model (GRIDFIT) 
 

K.-H. Brenner 
 
 
The Shack-Hartmann wave front sensor [1] is a 

typical example of utilizing an array of spots in optical 
metrology. Another example is the light needle 
approach [2], which solves the problem of the normal 
ambiguity in reflective deflectometry. In most cases, 
the spot deviation can be measured by comparison with 
plane wave illumination, which provides reference 
positions for the optical axes of each micro lens. This 
method, however, demands high accuracy in the 
generation of this planar reference wave. For highest 
accuracy measurements, one cannot assume a perfect 
planar reference. The approach we have considered in 
this work, assumes that the spot array was created by 
an optical array element, which was generated with 
lithographic accuracy. Therefore, the grid period of the 
optical element is the only quantity, considered to be 
accurate. The mathematical model for describing the 
grid is defined by the 2D-vectors: 
 

, 1 2j kr j P k P O= ⋅ + ⋅ +
�� ��

  (1) 

 
This model includes all possible linear transformations 
such as shift, shear and rotation. The fabricated grid 

element is considered to have the ideal offset 0O =
�

 

and the period vectors 1 x xP P e=
� �

 and 2 y yP P e=
� �

, where 

xP  and yP  are the periods defined by the lithography. 

The task of fitting an array of measured spots to a grid 
is equivalent to finding 6 unknown parameters 
a,b,c,d,e,f  defined by 
 

1 2, ,
a c e

P P O
b d f
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and it consists of three relevant subtasks.The first task, 
the measurement of the center of gravity of each spot is 
common practice in each Shack Hartmann Sensor 
algorithm and is considered as known. The second 
task, the labeling of each spot with the pair of numbers 
(j,k) is a non-trivial task if the measured spot 
separation varies over the sensor array, or if the 
recorded spot array has a rotation. We solved this 
problem by starting with an estimated period and by 
dividing the measured center positions by this period 
and taking the fractional part. Next, we average these 
fractional positions. Because the fraction is a cyclic 
quantity, we cannot apply a simple averaging 
procedure. Instead we apply cyclic averaging, resulting 
in an averaged offset avgo

�
, and the labels can now be 

found simply by 
 

m avgr oj
round

k P

−   =   
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� �

   (3) 

where round() is a round to nearest function and 

x yP P P= =  was assumed. Thus, we can label the 

measured spot centers by ,j k mp r=� �
. The final task is a 

least square fit, which is applied in a straight forward 
manner by minimizing a cost function: 
 

( )2

, , minj k j k
j k

r p− →∑∑
� �

.  (4) 

 
It provides the 6 unknowns a .. f. Thus the grid 
orientation and the period of the measured spots can be 
determined with high accuracy. Based on statistical 
analysis, the accuracy of the period scales with the 
inverse square root of the number of spots and is thus 
much higher than the single spot measurement. This 
accuracy is limited by the photon count and is typically 
in the order of d/10 .. d/50, where d is the pixel spacing 
of the detector array. With nowadays cameras and with 
1000 spots, thus a period accuracy of 1 nm can be 
achieved. With this accuracy, spherical wave front 
errors can be detected with high accuracy.  
For a test of the offset accuracy, we compared a 
measurement of an unshifted pattern with a 
measurement of a pattern shifted by a specified amount 
(fig. 1). A comparison shows an accuracy between 6 
nm and 40 nm in the worst case.  

Shifted Pattern – 1,1µm

Unshifted pattern

 
 

Fig. 1 Comparison of an unshifted pattern with  
a pattern shifted by 1.1 µm. The shift could be recovered 

with an accuracy of less than 40 nm. 
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Fabrication and optimization of refractive microstructures 
 

T. Paul, K.-H. Brenner 
 
 
The initial aim of this project was to fabricate 

refractive spherical and cylindrical lenses with an 
option to extend these to more general surface relief 
structures. As a fabrication method we chose thermal 
reflow [1] with positive photo resist. The calculation of 
the process and an estimate of the final form were 
achieved by the use of an Euler-Lagrange formalism to 
minimize the area surface under constant volume. 

The project’s experimental part covers the con-
struction phase beginning with several test and 
measure structures to obtain complete knowledge of 
the thermal and optical properties of AZ9260, which 
was the photo resist in use. 

The measurement phase includes determination of 
the spinning curve, the determination of the n and k 
parameters and the dynamic behavior of developed 
resist structures under thermal heating. 

These measurements lead to a stabile parameter set 
which allows forming structures between 6 and 15 µm 
thickness with an error of 0.05 µm. 

 

   
Fig. 1 Microscopic side view of cylindrical lenses and  

top view of spherical lenses after reflow 
 
Parallel to these measurements it was important to 

optimize the form of the lens structures after thermal 
reflow. We describe this procedure as a minimization 
of the area surface A , keeping the volume V constant 

 
2 21 x ydA h h= + + .   (1) 

For the height function ( ),h x y , xh  and yh  are the 

partial derivatives with respect to x and y. Likewise 
 

( ),dV h x y dx dy= .   (2) 

Assuming rotational symmetry and transforming 
these equations to polar coordinates, we can derive the 
Lagrange function under volume conservation: 

 

( )21 rL h h rλ= + − ⋅ .   (3) 

Now rh  is the partial derivative with respect to the 

radial coordinate. The Euler-Lagrange equation then is  
 

0
r

d
L L

dr h h

∂ ∂− =
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   (4) 

 

The minimization parameter λ  in eq. 3 has the 
physical interpretation of a curvature radius. For a 
filled circle structure in resist, the molten cylinders 
result in a in a segment of a perfect sphere. 

 
Due to the resist’s absorption and high refractive 

index of 1.62 it is not favourable to use these structures 
directly as optical components. 

Therefore silicon based PDMS was used to form a 
highly detailed negative copy. Tests show that even 
structural details below 0.5 µm were reproduced via 
PDMS. 

In the following, we used these PDMS copies as 
stamps for a second reproduction. 

 

  
 

 
Fig. 2 Top left: Negative PDMS lenses, top right: positive 

AZ9260 lenses, Bottom: negative PDMS cylindrical lenses 

 
For this reproduction step, we use UV-active 

polymer, which is filled into the negative PDMS 
structures to produce very resilient lenses with optical 
properties close to glass.  

 
With this process, we want to fabricate also 

unconventional lenses with a thickness larger than the 
diameter or with non-spherical shapes. 
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Influence of deviations from design parameters for 
diffractive microlens arrays 

 
T. Stenau, K.-H. Brenner 

 
 
Binary diffractive microlens arrays do not underlie 

the same strict relations between focal length, period 
and numerical aperture as refractive microlens arrays. 
For practical purposes, binary phase arrays with a 
phase height of π are used. Fabricated diffractive 
microlens arrays differ from the design due to 
production artefacts.  

 
The focal length, the numerical aperture, the design 

wavelength and the period of the element are specified 
during the design. Then a hologram with a given pixel 
size is calculated.  

 

( ) ( ) 2 2
0 1 2

Hologram ,
ik f i r

NAu r P e e dλ ρ π ρ
λ ρ ρ⊥ ⊥ ⊥− − ⋅

⊥ ⊥ ⊥= ∫∫  (1) 

For easier fabrication, this hologram is manipulated 
so that the phase is quantized and the amplitude is set 
to one. 

 
To evaluate the foci of this diffractive microlens 

array the energy in the focal ellipsoid around the 
design focus is measured as a figure of merit for the 
light concentration. 
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As a first parameter we consider the influence of the 

deviation from the design phase height π. This 
deviation is directly related to a height deviation in the 
coating process. In Fig. 1 it can be seen that small 
derivations lead to small differences in the energy 
inside the focus. 

 
 

Fig. 1: Energy inside the focus ellipse as a function of the 
phase height of the diffractive microlens array. 

Due to the focus profile of the laser lithography and 
the wet chemical processing, the edges of the phase 
structure blur. To take this into account the phase 
structure is convolved with a Gaussian function. The 
result is shown in Fig. 2. Again, the deviation form the 
design results in a smooth change of the energy in the 
ellipsoid around the focus.   

 

 
Fig. 2: Energy inside the focus ellipse as a function of the 

blur of the profile. 
 
Finally, we investigate the usage of a wavelength 

different to the design wavelength. Figure 3 shows that 
the element works also for other wavelengths, only the 
foci are shifted.  

 

 
 

Fig. 3: Intensity profile for thee different illumination 
wavelengths. 

 
To conclude we observed that diffractive microlens 

arrays are robust against small deviation in phase 
height, blurring of the edges and also work at different 
wavelengths. 
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