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FOREWORD

Dear reader,

This annual report describes the research activities of the chair of optoelectronics for the years 2015-2016.
The contribution on page 2 illustrates that scalar light propagation algorithms in the spatial domain,
although having been used for many years and for many applications, have a severe imperfection that can
be solved. A significant amount of work has been done in the field of rigorous simulations. We developed a
criterion for the correctness, which does not rely on a comparison with other methods. In the first article, we
employ conservations laws as a criterion for accuracy. In the contributions on page 6-7, we explored
extensions to the traditional methods, such a allowing the incident and transmitted regions to be structured
or allowing the incident illumination to be structured. On page 5, we extended the RCWA to structures
beyond simple rectangles and the contribution on page 8 tries to get rid of physical dimensions and natural
constants by separating the theoretical description into a physical and a computational part.

Another activity concerns applications and tests of the diffractive overlapping lenses, reported before in the
previous annual report. We developed a criterion for comparing diffractive lenses to refractive ones on page
3 and demonstrated the application to microscopy on page 4.

We hope that many of the topics in this report will find your interest.

Karl-Heinz Brenner
Head of the chair
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Verification of near-field calculations
by conservation laws

M. Auer, K.-H. Brenner

There are several methods to solve Maxwell's
equations numerically exact. Although these
algorithms describe an exact theory, any deviations
from the accurate solution may still occur
algorithmically, due to finite mesh size or duetiode
truncation. An experimental verification of the nea
fields is usually very difficult.

The standard verification in the rigourous coupled
wave analysis (RCWA) uses the sum of transmission
and reflection coefficients which should be onetfor
case of a non-absorbing structure. In case of iaéter
with an extinction coefficient, this definition ised for
calculating the absorption in the structure, thus
eliminating the possibility for verification. Thdoge
we propose to use conservation laws for verifigatio

The Gauss Law relates a surface integral to the
volume integral over the divergence of an analytic
field:

{pF-ad=[[[div(F)av 1)

For the surface integral (left), we can identify
with the electric field, calculated from the trarission
and reflection coefficients. For the volume intégra
(right), the divergence can be related to the local
absorption according to Poynting's theorem [1]. SThu
we have a relation between the near fields andahe
fields, which can be tested.
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Fig 1: Comparison of absorption depending on mode count
calculated from far fields (DOA) to absorption cdited
from near fields (Int.Abs.) for the case of apptyibi's rule

as is usually done in the standard RCWA.
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Fig. 2: Comparison of absorption depending on mode count
calculated from far fields (DOA) to absorption cdated
from near fields (Int. Abs.) for a new method désel in

2.

The comparisons in fig. 1 and fig. 2 indicate ttie
application of Li's rule introduces an inconsistenc
between near and far fields, which is observable by
discrepancy in the absorption values. This disarepa
can be removed by an alternative way of calculating
the near fields in a structure which was first dibsc
in [1] and later was extended to structured illuaion
[2]. The results in this publication clearly indieathat
the deviations between near and far field absamptio
range between 1 and 4 percent for different known
calculation methods but assume values of closeito z
for this new method.

Refer ences:

[1] K.-H. Brenner, “Aspects for calculating local savption
with the rigorous couple-waved method”, Optics Eg;
Vol. 18, Iss. 10, pp. 10369-10376, (2010)

[2] M. Auer, K.-H. Brenner, “Localized input fieldin
rigorous coupled-wave analysis”, J. Opt. Soc. Am.VAl.
31, No. 11, (2014)



M odification of spatial domain algorithms
for aperturelesslight propagation

S Mehrabkhani, K.-H. Brenner

Light propagation algorithms in the spatial domain
hold an implicit assumption that the calculatiogioa
represents a virtual aperture, i.e., the amplitmatside
of the calculation region is zero. With typicallyidght
objects on a dark background, this assumptionlid.va
With dark objects on a bright background, however,
the assumption is violated and the calculationltésu
dominated by diffraction effects at a virtual apeet
This problem is particularly severe for pure phase
elements, because the amplitude outside the ctitmula
region is constant one.

The existing algorithms for scalar light propagatio
can be divided into two types, spatial domain
algorithms and frequency domain algorithms. For the
frequency domain algorithms, like Angular spectrum
method or the Fresnel approximation, the input is
assumed to be periodic and the algorithm is onligdva
in the near field, as long as there is no spillrdvem
neighbouring periods. On the other hand, spatial
domain algorithms such as the Rayleigh-Sommerfeld
integral or the Engelberg-Ruschin-approximation [1]
are only valid in the mid to far field and do ndiosy
this behaviour. For these algorithms, however, fzrot
problem occurs. If the field outside the calculatio
region is not zero, significant aperture diffraatics
observable at the edges of the calculation reg®n a
illustrated in Fig 1.

50 [} 50

Fig. 1. Left: Phase element (real part) with corresponding
diffraction amplitude (right). The result is dished by
unphysical edge diffraction

To remove the virtual aperture diffraction problem,
we proposed the following correction approach [2]:
Consider an input fieldu(r;,,0) defined in the two-
dimensional spac&®® which can have variable values
u, (7,,0) over the calculation domai2 and a constant

value u, outside of the domain

U i 0Q

u, (7,0) 7 0Q @)

u(FD,0)={

Without loss of generality we can equivalently ritgvr
u as an addition of two new fields as follows:

u, (7;,0) =u, r,OR?
= U, (f,,0)-u, r,0Q (2)
uz(rD’O):{ Q(DO) o} |?DDQ
[m]

This very simple reformulation of the input fieldsh
a valuable advantage. The first field =u, is a

uniform field over the whole space® and the second
one u, =u, (,,0) -u, has only nonzero values over the

domainQ. Now because of the uniformity of the field
u(r,,0)=u, the corresponding propagated field at

distancez is simply u,(f;,,z)=u,e*. The second part
u,(r,z) vanishes outside of the domdhand can be

numerically computed with any spatial domain
algorithm.
u (7, 2) = Py (u,) r, OR?
o oy 3)
u,(7,2) =R, (ug (7,0 -u,) 7, 0Q

Here, P, stands for an analytic propagation aRy

for a numerical propagation with possible approxima
tion errors. Because the input field is an exach s
the two components, but theg-part is treated
analytically and the other part numerically, the
approximation errors in the term, -u, cancel each

other and thus the diffraction at the virtual apestis
automatically removed for all types of numerical
propagators. This correction is essential for thaper
treatment of lensless holography, an established
method using phase retrieval in microscopy to obtai
holographic information from far field measurements
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Fig. 2: Diffraction amplitude of the phase element of fig.
applying the corrections described.

Refer ences:

[1] Y.M. Engelberg, S. Ruschin, “Fast method forygibal
optics propagation of high numerical aperture b&am<Opt.
Soc. Am., Vol.21, No. 11, pp. 2135-2145, (2004)

[2] K.-H. Brenner, S. Mehrabkhani “Modification spatial
domain algorithms for apertureless light propagdti@ppl.
Opt., Vol.56, No. 1, A8 — A12, (2017)



Analysis of the focusing efficiency of diffractive lenses with
overlapping apertureswith respect to typical fabrications constrains

T. Senau, K.-H. Brenner

Diffractive lenses with overlapping apertures eeabl
a dense spot-wise illumination with high apertueif
which is not achievable with traditional refractilens
arrays. Particularly the numerical aperture (NA)aof
diffractive lens with overlapping apertures is &efr
design parameter and independent of the focal hengt
and the focal pitch of the lens array. The question
arises how these lenses perform in terms of fogusin
efficiency [1]. To evaluate this quantity, a rasionilar
to the Strehl ratio is used,

1(0,f) Py
Iideal (0' f )T (1)

where the peak intensity(0,f) produced by a lens

array with overlapping apertures is compared to the
focal intensity I, (0.f) of the “perfect wave” [2]

with an aperture determined by the NA. The power of
the waves is used for normalization. Due to the
overlap, the incident power per period is usedHRpr
wherea®,4¢y is the power falling into the full aperture.
This definition allows to assess the influences of
overlap as well as the influences due to typical
fabrication constraints and errors.

Smod =

In Fig. 1, the effect of phase quantization is {gldt
for lens arrays with fixed pitch and focal lengthtb
different numerical apertures.
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Fig. 1: Relative light concentration efficiency for lensays
with continuous amplitude and 2 (orange), 4 (red)l 8
(blue) discrete phase levels.

For high numerical apertures, the phase quantizatio
results in a simple multiplicative loss. The amount
agrees well with the upper diffraction efficiencgumd
given in the literature [3].

In Fig. 2, the effect of sole amplitude levelingdan
amplitude leveling combined with phase binarizai®n
shown. For comparison, the relative light concditna
efficiency for arrays with continuous amplitude and
with or without phase binarization is shown.

1] 02 0.4 06 0.8 1
NA
Fig. 2: Relative light concentration efficiency for elernen
with continuous amplitude and phase (blue), leveled
amplitude and continuous phase (red), continuoyslitude
and binarized phase (orange) and leveled amplitaoid
binarized phase (violet).

Again, for high numerical apertures, the amplitude
leveling results in a multiplicative loss. The etfe
from phase quantization and amplitude leveling seem
to be independent. The loss factor in the case of a
leveled amplitude and binarized phase is the prtooluc
the loss factors of each individual effect. For éow
numerical apertures, a severe deviation from ataohs
loss factor is found. The reason for this is shawn
Fig. 3. For low numerical apertures the amplitude
leveling results in a modulation of the focal plefi
I{x,z)
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Fig. 3: Focal profile of an amplitude leveled diffractilens
with overlapping apertures with focal length 500ufocal
pitch 44pum and NA 0.1 for the wavelength 0.5 pm.

1000

Due to this, the Strehl criterion is not suitedaksess
the quality of the foci. For higher numerical apegs
the focal profile remains smooth even when post-
processing is applied, therefore the Strehl cetstays
valid.

References:

[1] T. Stenau, K.-H. Brenner, “Light concentratidifi@ency
of diffractive lenses with overlapping aperture®GaO-
Proceedings, 117Annual Meeting, Hannover, (2016)

[2] J. J. Stamnes, “Focusing of a perfect wave thedAiry
pattern formula 1”, Opt. Commun., VoR7, No.5, pp. 311-
314, (1981)

[3] W. H. Welch, J. E. Morris, M. R. Feldman, “lt¢ixee
discrete on-axis encoding of radially symmetric poter-
generated hologramsJ, Opt. Soc. Am. A, Vol. 10, No. 8,
pp. 1729-1738, (1993)



| maging with a parallel scanning microscope using diffractive lenses
with overlapping apertures

T. Senau, K.-H. Brenner

Scanning microscopy in principle solves the typical
trade off between resolution and field of view he t
cost of large scanning times. Therefore, parahiin
is beneficial. Here, the setup and experimentalesa
of a parallel scanning microscope which uses
diffractive lenses with overlapping aperture are
presented [1]. Diffractive lenses with overlapping
apertures eliminate the strict relations betweeralfo
length, lens diameter and pitch, existing with raef-
tive micro-lens arrays and therefore a high resmhyta
large field of view, a large working distance aadtér
scan rates become feasible at the same time.

The experimental realisation of our parallel scagni
microscope is shown in figure 1.

Fig. 1: Experimental realisation of the scanning micr@sco

An expanded NG:YAG-lasef.(= 0.532 um) creates a
plane wave illumination for the diffractive elemgnt
resulting in a focalspot-array intensity on the plm
The focal positions are controlled by shifting the
element with a xyz-piezo stage. Due to the largmlfo
length, there is sufficient working distance togalahe
specimen in a sample holder beneath the elemest. Th
illuminated sample is observed from below with an
imaging optics. The element periodicity of 44 pm
secures, that there is no crosstalk between adjacen
spots.

The parallel imaging process is described with
standard confocal scanning microscopy theory, heit t
physical confocal aperture is replaced by a virtual
digital aperture. The image intensity is given by

2

I = |(h|lumh0bs) U Uy, ‘= |(h|lum) U Uy | > 1)

where h,,,and h,, are the point spread functions of

the illumination and imaging optics, which are
convolved with the complex amplitude of the
examined objectu,, . The approximation is valid for

observation optics with low numerical aperture vkhic
enables a large field of vievh,,,, is determined by the
illumination spot NA of 0.48.

In figure 2, reconstructions of a resolution tesarnt
are shown. Each period of 44 pm is sampled with 240
steps. The maximal resolved penta bar with non
vanishing contrast is 1100 Ip/mm, this correspaods
minimal resolved feature size of 450 nm.

Linescan @1100 Ip/mm
l 1000

e CO

l\m 3 35 4 45

Intensity . 1g*

.

Position in um
ra

(=]

Fig. 2. Reconstruction of a resolution chart. The line scan
shows that a maximum of 1100 Ip/mm can be resolved.

To demonstrate the large field of view of this getu
reconstructed image of approx. 900 w200 pm
with 550 nm pixel size is shown in figure 3.

Fig. 3: Reconstructed image with a field of view of approx.
900 um x 1200 pm.

To sum it up, the imaging with a parallel scanning
microscope using diffractive lenses with overlagpin
apertures with 2 mm working distance and a 900 pm x
1200 pm field of view, which is capable of resolyin
features of about 450 nm was experimentally
demonstrated.

Reference:

[1] T. Stenau, K.-H. Brenner, “Diffractive Lenses thvi
Overlapping Aperture - A New Tool in Scanning
Microscopy”, Imaging Systems and Applications, Oati
Society of America, IT1F-1, 25.-28.7.16, Heidelhg@P16)



Elementary building blocks for a moreflexible
layer definition in the RCWA

K.-H. Brenner

All the existing RCWA implementations use the
rectangular function as an elementary building bloc
for defining the permittivity distribution in a lay. We
denote this as the constant segment (CS). Fomgsati
this approach is fully appropriate. For gradedctries
such as sinusoidal gratings, this approach is not
satisfactory, since the rectangular steps haveeo b
adjusted very fine, in order to avoid approximation
errors.

Here we suggest two new building blocks, which may
be used to cover a wide range of permittivity
distributions. The first is the linear segment (L&
shown in fig. 1.

S — |
f w ‘
a, - ------ |
| |
/ |
a - l 1
| | |
XS P=1 x>

Fig. 1. Definition of linear segment.

It is characterized by a center vaks a widthw and
upper and lower valuesy anda,. With this building
block, imperfect transitions can be modelled very
accurately.

A second building block, we suggested and imple-
mented is the trigopnometric segment (TS), as shiown
fig. 2. It is characterized by the same quantitieshe
linear segment.

XS P=1 X
Fig. 2: Definition of trigonometric segment.

The trigonometric segment is especially useful for
avoiding the Gibbs phenomenon, an oscillatory
phenomenon well known and observable for the
rectangular segment. By adjusting the transitions
smoothly, reliable results can be obtained without
going to an extremely high mode count.

For these two additional segments, the mode
coefficients can be calculated analytically and tlwe
the linearity of the problem, the result can bepim
added. Fig. 3 illustrates the use of the trigoneimet
segments. The red curve is a 10-mode-reconstruction

-5-

of 3 constant segments with widths 0.25, 0.5, 0.25,
showing the typical Gibbs phenomenon. The blue
curve is a 10-mode- reconstruction of a sequence of
CS, TS, CS, TS, CS with the widths (0.185, 0.1370.
0.13, 0.185). It is clearly visible that this defion of a
rectangular structure suffers much less from Gibbs
phenomenon.
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Fig. 3: Comparison of reconstructions with 10 modes: Red:
three constant segments, blue: 5 segments with atTBe
edges of the rectangle. The Gibb's phenomenon ean b
suppressed efficiently.

In fig 4, we constructed a layer with linear absogb

edges, similar to a PML. This way, the spreading of
light into neighboring periods is efficiently supgsed.

15.0

0.0
0.0 5.0 10.0 et

Fig. 4: Implementation of a PML by two linear absorbing
segments at the edge of the period.



Sructuring theincident and transmitted regionsin rigorous
coupled-wave analysis

A. Junker, K.-H. Brenner

In the common implementation of the rigorous
coupled-wave analysis (RCWA) a periodic grating
structure is situated between the incident and

transmitted regions, assumed to be homogeneous.

Furthermore, a plane wave is assumed to be incident
from z=-c. In the following, we extend the RCWA
to the treatment of both structured incident and

transmitted regions, and structured illuminatiorthe
form of a superposition of multiple modes.

Fig. 1: RCWA with both structured incident and transmitted
regions and structured illumination.

To this end, an eigenmode decomposition is perfdrme
for the incident and transmitted regions the samag itv

is done for the grating layers [1]. Furthermore, we
apply the approach described in [2] in order toieah

a structured illumination. Subsequently, the tatigén
electric and magnetic field components are mateted
the interfaces (see Fig. 1). The incident field's

eigenmode coefficients, are given. The reflected and

transmitted eigenmode coefficient§ and c;,, are to
be computed. The boundary conditions between

successive layers are
W
Vl

(WO Woj <
Vo Vo/\g
Y
AN A
(- )
AR VAN Vi M /\Clag
Note that the incident region (index 0) and the
transmitted region (indeX_+1) are now structured.
The matricesy, v, X, are defined as in [1]. It is easy
to see that this approach is consistent with threnoon
RCWA [3]. To satisfy the boundary conditions would
be the next step of calculation. To this end wedrtee
know the propagation direction of all the eigennmde
As outlined in detail in Ref. [3], the definitiorf the

propagation direction of aeneral eigenmode of a
structured layer is not straightforward and mustibe

1)

termined from its Poynting vector

(S)(x)=%Re[E(x)><H* ()].

It can be concluded by integrating the Poynting
vector’s z-component over one period [3],

” x z dxdy
@

= 1e2k0 Fdaley ReE[ W, Vi o =Wy Vo |
m

2 ym

For several special cases an analytic solutiorihfer
Poynting vector exists [3]. The presented algorittan
be applied to several interesting problems thahean
be simulated with the common RCWA. As an example
we present evanescent mode coupling between
adjacent waveguides (see Fig. 2), where two imipit
long step index fibers are placed in close proxirtot
each other and the eigenmode of a single wavegsiide
incident onto the upper fiber. As expected, the grow
oscillating perfectly between the waveguides.

Fig. 22 RCWA simulation of evanescent coupling between
two waveguidesh =633 vy, 201 modes.

Further examples and applications of the presented
algorithm can be found in Ref. [3].

Refer ences:

[1] M. G. Moharam and T. K. Gaylord, “Rigorous coeg
wave analysis of planar-grating diffraction”, J.tOoc. Am.
A, Vol. 71, No. 7, pp. 811-818, (1981)

[2] M. Auer, K.-H. Brenner, “Localized input fieldin
rigorous coupled-wave analysis”, J. Opt. Soc. Am.\VAl.
31, No. 11, pp. 2395-2393, (2014)

[3] A. Junker, K.-H. Brenner, “Structuring the inertt and
transmitted regions in rigorous coupled-wave ansilyd5"
Workshop on Information Optics (WIO), IEEE, 978-099-
2163-5/16, 11.-15 July 2016, Barcelona/Spain, (2016)



Simulation and analysis of SNOM -measurements using rigorous
coupled-wave analysis

A. Junker, K.-H. Brenner

Rigorous Coupled-Wave Analysis (RCWA) is
applied to analyze various influences on the regmiu
of Scanning Near-field Optical Microscopy (SNOM)
images. Furthermore, we simulate how the presehce o
a fiber tip alters the electromagnetic field duriag
measurement and compare the numerical result to the
undisturbed electric field intensity.

£=-54.732+21.854]
(A

wrdz
wrl |

17 pm

Fig. 1: Permittivity distribution of the fiber tip (top).

First, a simulated SNOM-measurement is conducted,
where a narrow sub-wavelength spet26nm) serves
as a sample under test. Fig. 1 illustrates the @rity
distribution of the fiber tip withd,  (aperture

diameter),a (apex angle),Az (longitudinal distance
sample-aperture) andx (lateral offset). The focus is
moved laterally across the aperture and a RCWA
calculation is conducted at eacBx (A=850nm,
P=2um, 101 modes). We obtain an intensity profile
by plotting the amount of power coupled into theefi
core versusAx. The LIF-RCWA [1] is applied to
excite the 81 central modes of the incident fieldM
polarization to generate th#&snm spot.
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T
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[ o
100 e
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0 100 200 300 400
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Fig. 20 Full width at half maximum (FWHM) of the
measured peak versus, .

We investigate the influence of the parametgyfs o ,

and Az on the width of the measured intensity profile.
We observe that the width of the recorded peak is
approximately proportional to the width of the tip

-7-

aperture (see Fig. 2). As expected, the amount of
intensity coupled into the fiber core increaseddoger
aperture diameters. Increasing the apex amgleloes
not significantly change the width of the recorded
peak, but the amount of intensity coupled intofther
grows. Furthermore, we observe that the peak width
increases with largerAz (from ¢ =24nm at

Az =30nm to g =143nm at Az =200nm). The latter
observation can be explained by the characteristic
exponential decay of evanescent modes.

300nm

— 17 gm ——

£=-54732+21.854i
(Al

plane wave
wrz
wr ) ——

a)

b)

Fig. 3: Permittivity distribution of the grating structuesnd
the fiber tip (a). Power density distribution witlto(b) and
with (c) fiber probe insertedi,, = 40nm, Az=30nm.

In the second step we conduct a simulated SNOM-
measurement of a back-illuminated grating struciare
order to investigate the influence of the presesfdbe
fiber tip on the measurement. Fig. 2 (a) illustsatiee
simulated permittivity distribution. In Fig. 2 (B,the
power density distribution is shown without and hwit
the fiber tip for one particular tip positiatx . It can be
seen that the presence of the tip severely distilmbs
power density distribution. By scanning this grgtin
structure inAx we find that the measured width of the
refractive index stepr =43nm=4/20 is small, but its

position is shifted by approximatelyx=82nm with
respect to the original step position of the giafii.

Refer ences:

[1] M. Auer, K.-H. Brenner, “Localized input fieldsn
rigorous coupled-wave analysis”, J. Opt. Soc. Am.\VAl.

31, No. 11, pp. 2385-2393, (2014)

[2] A. Junker, K.-H. Brenner, “Simulation and Ansiy of
SNOM Measurements using Rigorous Coupled-Wave
Analysis”, DGaO-Proceedings, 116Annual Meeting in
Brno / Czech Republic, (2015)



Normalized electromagnetic fields

K.-H. Brenner

There are many situations in optical design, where
rigorous electromagnetic calculations are necessary
because the wusual scalar approximations are not
sufficient. In this case, the solution of Maxwell's
equations must be determined numerically. The
quantities in Maxwell's equations are associatetth wi
physical dimensions, which shift the number range,
depending on whether we work with mW or MW of
illumination. Ideally, one would like to considehnet
incident electric field as dimensionless with a
magnitude of one. In the initial stable treatmeithe
rigorous coupled wave analysis (RCWA) by Moharam
[1], independence of dimensions is attempted by
defining the electric and magnetic field as

E, = 2.8 (2) exp(-jkix)

(j2u(>exp( W)

Thus the coefficiens andU have the dimension of
an electric field. Consequently the coefficient toes

¢’ andc, which satisfy the continuity condition

e o)

also have a physical dimension. Bushould be a ratio
of transmitted to incident E-field. This exampliz$rto
motivate that it would be desirable to have a diédin
which is not dependent on the physical dimensidns o
the illumination and which can be transformed iato
description having the correct physical dimensions.

()

In our implementation we tried to separate the
numerical part from the physical part, by defining

E(r)=EE*(r)

Here, E,is the physical part, expressing the electrical

field strength in V/m, whereag&'is a dimensionless
quantity, used in the numerical calculations. Liksay
we define

(4)

H()=2H () ®

such thatH is a true magnetic field with dimension

A/m and H® is dimensionless. With these definitions,
the first two Maxwell equations can be written as

OxE! =ikyuH*
E Sl ©)
OxH" =-ik,eE
with i now being the imaginary unit for physicists.
Now E' and H' are only connected by a quantity of
dimension m, which is derived from the sampling
distance determined by the gradient at the lef sifi
eg. 6.

The energy density in this definition can be spliv a
physical and a numerical part:

W:£—2°E§ —zRe(£|E1|2+,u|Hl|2) @)

indicating that the physical energy density is ki
from the computational one by multiplication with a
fixed factor. Similarly, the physical Poynting vects
expressed as

S= Re(E'xH?) (8)

N |-

allowing the term%Re(EIXHl) to be identified with

the numerical Poynting vector, which is of course
dimensionless.

With this definition of quantities, the complete
RCWA can be calculated without entering physical
constants likeg, or 4,. The true physical quantities

can be derived after the calculation by multiplyimigh
a constant physical term.

Reference:

[1] M.G. Moharam, Drew A. Pommet, Eric B. Grann,&Ble
implementation of the rigorous coupled-wave analyfir
surface-relief gratings: enhanced transmittance rixnat
approach”, J. Opt. Soc. Am A, Vol2, No. 5, pp. 1077-
1086, (1995)
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