Speaker: Prof. Dr. Peter V. Coveney, Computational Chemistry Section, University College London, UK

Title: The Virtual Human: In Silico Methods for Personalised Methods (Presentation in English)

Date: Monday, 20 November 2017, 11:00 a.m.
Location: Carl-Bosch-Auditorium, Studio Villa Bosch, Schloss-Wolfsbrunnenweg 33, 69118 Heidelberg (Studio entrance between Villa Bosch and HITS)
Parking: Parking garage "Unter der Boschwiese" (free of charge)

Abstract:
The era of personalised medicine offers at once a huge opportunity and a major challenge to computational science. The potential impact centres around our ability to marshal substantial quantities of patient data and to use them to perform predictive, mechanistic modelling and simulation in order to deliver therapies and to enhance clinical decision making, on time scales which are far shorter than those usually considered in the context of academic research and development activities. Secure access to personal data, as well as to powerful computational resources, is essential. I shall provide a couple of examples which illustrate the current state of the art. One addresses clinical decision support in the context of blood flow within neuro-vascular pathologies; the other is concerned with patient specific drug discovery and treatment. We shall discuss the underlying e-infrastructure requirements, including data, compute and networks, and reflect on the potential for cloud and other forms of e-infrastructure provision to meet the anticipated future demand for resources.

Curriculum vitae:
Prof Peter V. Coveney holds a chair in Physical Chemistry, is an Honorary Professor in Computer Science at University College London (UCL) and is Professor Adjunct at Yale University School of Medicine (USA). He is Director of the Centre for Computational Science (CCS) at UCL. Coveney is active in a broad area of interdisciplinary research including condensed matter physics and chemistry, materials science, as well as life and medical sciences in all of which high performance computing plays a major role. He has led many large scale projects, including the EPSRC RealityGrid e-Science Pilot Project (2001-05) and its extension as a Platform Grant (2005-09); he is also PI on several current grants from EPSRC and other agencies, including the the role of Coordinator of the EU FP7 Virtual Physiological Human (VPH) Network of Excellence (2008-13). He has been the recipient of many US NSF and DoE as well as European supercomputing awards (from DEISA and PRACE), which provide access to several petascale computers. Coveney chaired the UK Collaborative Computational Projects Steering Panel (2005-15) and has served on programme committees of many conferences, including the 2002 Nobel Symposium on Self-Organisation; he was Chair of the UK e-Science All Hands Meeting 2008, and of the Discrete Simulation of Fluid
Dynamics conference 2003. He has published more than 400 scientific papers and co-authored two best-selling books (The Arrow of Time and Frontiers of Complexity, both with Roger Highfield) and is lead author of the first textbook on Computational Biomedicine (Oxford University Press, 2014). Coveney is a founding member of the UK Government’s E-Infrastructure Leadership Council and a Medical Academy Nominated Expert to the UK Prime Minister's Council for Science and Technology on Data, Algorithms and Modelling which has led to the creation of the London based Turing Institute.

Contact:
Benedicta Frech (This email address is being protected from spambots. You need JavaScript enabled to view it., phone: 06221-533-263)

back to top