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F O R E W O R D  

 

 

 
Dear reader, 

 

This is the last annual report issued by this research group. With the end of the Wintersemester 2017/2018, I 

will retire and the present chair of optoelectronics will reoriented to a new direction. After my retirement, I 

would be happy to find other challenging tasks in the field of optics. 

This annual report describes the research activities for the years 2016-2017. 

 

The contribution on page 1 describes an alternative method for phase reconstruction using the transport of 

intensity. Unlike previous approaches, here we use the three-dimensional version of the Helmholtz 

equation. The contribution on page 2 picks up on an old problem, the calculation of light propagation in 

strongly inhomogeneous media. The WPM method invented in 1992, although very accurate, was too slow 

for three-dimensional problems. With this approach, we achieved a speed-up in the order of 10^5. The 

contribution on page 3 received a considerable amount of attention on the previous Diffractive optics 

meeting in Finnland. The subsequent publication in J. Opt. Soc. Am. received an even better response from 

the reviewers. It represents an alternative way of solving the RCWA-problem. By avoiding the eigenvalue 

decomposition, we now are able to solve really large problems. The previous approach for this problem size 

resulted in matrix sizes of several tens of TB and in compute times of years, whereas this approach requires 

moderate matrix sizes and finishes in minutes. The contribution on page 4 illustrates the steps necessary for 

RCWA modeling of 4π illumination microscopy and on page 5 we analyse the equivalence of spatial 

transformations and material parameters and with the last contribution we try to solve the incoherent 

imaging problem in light field microscopy. 

 

 

We hope that many of the topics in this report will find your interest. 
 

 

Karl-Heinz Brenner 

Head of the chair 
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Improved phase reconstruction by iterative solution of the three-
dimensional Transport of Intensity equation 

 
J. Postels, K.-H. Brenner 

 
 

In the optical regime, light detectors are restricted to 
measuring the intensity of a light distribution. If phase 
is also of interest, one can apply either interferometric 
or noninterferometric methods. For the first method, 
coherent light from a laser and a reference wave is 
needed.  Due to speckle problems associated with 
coherent methods, also noninterferometric methods are 
attractive. Typically these methods do not determine 
phase directly but rather the gradient of the phase. The 
methods based on the transport of intensity (TIE) have 
recently gained interest. The underlying principle is to 
deduce phase information from the change of intensity 
along propagation. The fundamental equation for 
intensity transport is derived from the imaginary part 
of the Helmholtz equation and is given by [1]. 

( )( ) ( )2 0I Iφ φ∇ ∇ + ∇ =
� �

  (1) 

Typically this equation is used in its paraxial two 
dimensional form, initiated by Teague[2] and used by 
many successors, which reads 

( )I
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We intentionally add the perpendicular suffix to 
emphasise that only the x- and y- derivatives are 
involved in this definition. For this work, we used the 
nonparaxial 3D version [3] given in eq. (1) but we 
assume that the phase can be split into a slow and a 
rapidly varying part 
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Then, the iteration is described by 
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where 3ℑ  is the three dimensional Fourier operator and 

∇
�

is the usual 3D-Gradient. ,ν µ  and η  are the spatial 

frequencies in the x-,y- and z-directions. The iteration 
operates only on the gradient of the phase and starts 

with ( ) ( )0 0,0,x kφ∇ =
� �

. Thus no numerical phase 

derivative has to be calculated. As a test phase object, 
we used a summation of four Gaussians shifted to 
different positions with different widths and heights. 
The maximum height was 16π. Thus the maximum 
phase gradient corresponds to a numerical aperture of 
0.29, proving that the phase distribution is non-
paraxial. Figures. 1 and 2 show the reconstructed phase 
difference and amplitude difference. Its maximum 
deviation of 0.001 rad corresponds to 1/6000 of a wave 

 
 
Fig. 1: Phase difference between original and reconstructed 
phase. Positions in µm. 

 
 

Fig. 2: Amplitude difference between original (=1) and 
reconstructed amplitude. Positions in µm. 

 
and the amplitude deviation must be compared to the 
initial 1-amplitude. A crucial point is the spatial 
sampling, which has to be matched to the NA. The 
three dimensional TIE thus has to be considered as a 
very accurate method of phase reconstruction. 

 
References: 
[1] M.A. Alonso, “Rays and waves”, in Phase Space Optics: 
Fundamentals and Applications, (McGraw-Hill, 2009), eds. 
B. Hennelly, J. Ojeda-Castaneda, and M. Testorf 
[2] M.R. Teague, “Deterministic phase retrieval: a Green’s 
function solution”, J. Opt. Soc. Am. 73, No. 11, 1434-1441, 
(1983) 
[3] K.-H. Brenner, J. Postels, “Improved phase reconstruction 
by iterative Solution of the Transport of Intensity Equation”, 
Jahrestagung der Deutschen Gesellschaft für angewandte 
Optik e. V., 17.-21. Mai 2016, Hannover, (2016) 
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A fast version of the wave propagation method  
applied to micro-optics  

 
K.-H. Brenner 

 
 

The wave propagation method (WPM) is a method 
that can accurately simulate inhomogeneous media at 
high numerical apertures in the micro-optical size 
range. Basically all optical systems, which are not 
adequately described by the thin element approxi-
mation must be considered as inhomogeneous media. 
For these types of media, a wide range of simulation 
methods is only available in the macroscopic and in the 
nanoscopic regime. In the macroscopic regime, ray 
tracing techniques are sufficiently accurate. In the 
nanoscopic regime, rigorous solutions of the Maxwell 
equations can be applied. For the in between regime of 
micro optics, neither of these methods is applicable. 
Ray tracing is insufficient due to its lack of treating 
diffraction. Rigorous solutions are not viable due to the 
large memory demand required. As an example, for a 
moderate micro-optical problem in the size of 
(250µm)3 an unreasonable size of 15 TB of core 
memory would be required for a RCWA calculation. 
 

One of the few methods for treating nonparaxial 
propagation in inhomogeneous media is the wave 
propagation method [1,2]. Recently, the large 
computing time for 3D-problems could be reduced 
significantly [3,4,5], thus enabling rapid simulation for 
micro optical systems. Like the BPM, this method 
slices the volume into a finite number of thin layers 
with an index of refraction, which varies inside one 
layer only in the lateral x- and y-direction. But unlike 
the BPM, this method is not restricted to the paraxial 
domain and was demonstrated to be accurate for angles 
up to 85° [1]. Similar to the angular spectrum, the 
WPM is described by multiplication with a propagation 
kernel in the spectral domain. But unlike the angular 
spectrum, this kernel P is four-dimensional, since it 
also depends on the position coordinates. 
 

( )
( ) ( ) ( ) 2

,

, , exp 2

u z z

u z P i d

δ

π ν
⊥

⊥ ⊥ ⊥ ⊥ ⊥ ⊥

+ =

×∫∫

r

ν ν r ν rɶ
       (1) 

 
In the most general case, the computation thus is 

very time demanding and grows with the fourth power 
of the linear dimension. Recently, it was discovered 
[3,4,5] that the WPM can be accelerated significantly, 
if the number of different refractive indices appearing 
in the problem is small. We call this variant the 
Discrete Index WPM. In this case, the WPM algorithm 
in eq. (1) can be rewritten as a sum of angular 
spectrum calculations, which due to the availability of 
the fast Fourier transform can be performed in 
logarithmic time instead of polynomial time. For the 
typical problem size of (250µm)3, mentioned above 
with appropriate sampling, this corresponds to a 
speedup of 40000. 

 

 
 

Fig. 1: Diffraction of light by a three-dimensional refracting 
n = 1.5 (top) and absorbing n = 1+0.2i (bottom) sphere, 
matched to the index outside. 

 
As one of many examples, in fig. 1 we considered 

the diffraction of light by a 3D-sphere with a diameter 
of 10 µm. The top figure shows a refractive sphere 
with n=1.5. At the bottom, the refractive index of the 
sphere as well as the index outside are 1 and only 
absorption inside the sphere ( 0.2κ = ) causes the 
diffracted waves. In conclusion, the discrete index 
version of the WPM has become fast enough for a 
rapid analysis of complex three-dimensional micro-
optical systems with extremely high numerical 
apertures and sizes in the millimeter range. 

 
References: 

 
[1] K.-H. Brenner, W. Singer, “Light propagation through 
micro lenses: a new simulation method”, Appl. Opt., Vol. 32, 
No. 26, pp. 4984-4988, (1993) 
[2] M. Fertig, K.-H. Brenner, “The vector wave propagation 
method (VWPM)”, J. Opt. Soc. Am. A, Vol. 27, No. 4, pp. 
709-717, (2010) 
[3] N. Lindlein, University of Erlangen, private communi-
cation, Jan. 2016 
[4] S. Schmidt, T. Tiess, S. Schröter, R. Hambach, M. Jäger , 
H. Bartelt, A. Tünnermann, and H. Gross, “Wave-optical 
modeling beyond the thin-element-approximation”, Optics 
Express., Vol. 24, No. 26, pp. 30188-30200, (2016) 
[5] K.-H. Brenner, “A high-speed version of the wave 
propagation method applied to micro-optics”, 16th Workshop 
on Information Optics (WIO), IEEE Xplore Digital Libary, 
Interlaken, Schweiz, (2017) 
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Achieving a high mode count in the exact electromagnetic simulation 
of diffractive optical elements 

 
A. Junker, K.-H. Brenner 

 
 
The application of rigorous optical simulation 

algorithms, both in the modal as well as in the time 
domain, is known to be limited to the nanooptical scale 
due to severe computing time and memory constraints. 
This is true even for today’s high performance 
computers. In order to simulate the light propagation 
through a structured medium with an adequate 
sampling of, for instance, 10002 pixels, the rigorous 
coupled-wave analysis (RCWA) [1] already requires 
~60000 years and ~4000 TB of RAM. To address this 
problem, the Fast Rigorous Iterative Method (FRIM) is 
presented, an algorithm based on an iterative approach, 
which, under certain conditions, allows solving also 
large size problems approximation free [2]. The 
principle relies on the basic equation used in RCWA, 

 

ˆ   
= Γ   

   

I

II

TS

SR
,       (1) 

 
where I/IIS , R  and T  are the incident, reflected and 

transmitted mode coefficients. As shown in [2], it is 
possible to implement a time and memory efficient 
scheme to multiply both ̂Γ  and 1ˆ −Γ  to an arbitrary 
vector. The computationally complex eigenmode 
decomposition is completely avoided. Thereby, the 
numerical cost is reduced from ( )3O N  to ( )logO N N , 

bringing computing time and RAM size in a realistic 
 

 
Fig. 1: FRIM iteration scheme: alternately apply Γ̂  and 1ˆ −Γ  
to propagate the mode coefficients across the grating while 
partially mixing in the true incident light coefficients at each 
side given some mixing parameter w +∈R . 

dimension. Fig. 1 shows the iterative scheme of the 
‘fast rigorous iterative method’ (FRIM), which is based 
on eq. (1). As shown in [2], the convergence behavior 
of this procedure is exponential in the number of 
iterations. Convergence is generally reached if the 
grating is chosen sufficiently thin (up to a few 
wavelengths), if the numerical aperture of the 
calculation is less then one, and if the absorption of the 
medium is not too large. These conditions are ideal for 
the simulation of structures like, for instance, certain 
diffractive optical elements. With the FRIM, these can 
now be simulated with a significantly higher mode 
count than before. Apart from speed, another major 
advantage of the iterative FRIM over standard modal 
methods is the possibility to trade runtime against 
accuracy. 
 

 
Fig. 2: Electric field amplitude behind a 2π-FZP for plane 
wave light incidence. Rigorous FRIM (top x-z slice; center y-
z slice) and WPM (bottom x-z slice). / 391x yMO = , 

/ 300µmx yP = , 532nmλ = , calc 0.98NA = , it 18N = . 

 
Fig. 2 shows a sample simulation of a Fresnel zone 

plate (FZP) with phase jump 2π using the FRIM and 
the wave propagation method (WPM) [3] for 
comparison. Both simulations exhibit similar features 
and differ significantly from the form of a plane wave 
(the result of the thin element approximation). 
Differences between FRIM and WPM are observed in 
the focus form and amplitude. The latter are due to 
polarization effects, since the central x-z and y-z slices 
of the FRIM simulation feature significant differences. 

 

References: 
 

[1] M. G. Moharam, T. K. Gaylord, E. B. Grann, and D. A. 
Pommet, “Formulation for stable and efficient 
implementation of the rigorous coupled-wave analysis of 
binary gratings”, J. Opt. Soc. Am. A 12, 1068–1076, (1995) 
[2] A. Junker, K.-H. Brenner, “Achieving a high mode count 
in the exact electromagnetic simulation of diffractive optical 
elements”, J. Opt. Soc. Am. A, Vol. 35, No. 3, 377-385, 
(2018) 
[3] K.-H. Brenner and W. Singer, “Light propagation through 
microlenses: a new simulation method”, Appl. Opt. 32, 
4984–4988, (1993) 
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Bidirectional illumination in rigorous coupled-wave analysis 
 

A. Junker, K.-H. Brenner 
 

 
The rigorous coupled-wave analysis (RCWA) is 

applied to the simulation of 4π-microscopy. To this 
end, the concept of structured illumination [1] is 
combined with the idea of coherent two-sided light 
incidence. It is shown how the latter can be integrated 
into the framework of the RCWA. These techniques 
are applied to simulate two coherent counter-
propagating converging beams incident upon a sample 
as in 4π-microscopy. Consider Fig. 1, which shows the 
standard RCWA configuration with homogeneous 
incident / transmitted regions and a structured layer 
stack in the middle. 

 

 
Fig. 1: Standard RCWA setup, bidirectional light incidence 

 

In contrast to the standard RCWA, light incidence is 
also assumed from the right side, i.e. ≠IIS 0 . In order 

to enforce the boundary conditions, either the S-matrix 
approach [2] or a modified ETMA [3] can be applied. 
In the S-matrix approach, the forward and backward 
propagating Fourier modes in the incident and 
transmitted region are connected via 

 
global global
11 12
global global
21 22

S S

S S

    =    
    

I

II

SR

ST
,      (1) 

 
i.e. mathematically the only change is the replacement 
of a zero-vector by the non-zero vector IIS . In the 

modified ETMA, some additional quantities need to be 
introduced as described in [3], but the general principle 
remains the same. In the two methods, both the 
numerical complexity and the required memory space 
to obtain the solution are not changed. In the following, 
the microscopic sample shown in Fig. 2 is illuminated 
with two coherent overlapping focused light beams (4π 
illumination), where the region prepared with the 
fluorescence markers is positioned at the center of the 
undisturbed 4π-focus. An x–z-slice through the 
aberrated 4π-focus is shown in Fig. 3 (bottom) in 
comparison to the unperturbed focus (top). It is 
observed that the aberrations introduced by the sample 
significantly change the form of the focus. The 
amplitude of the central peak is decreased and intensity 
is spilled into the side lobes, which are no longer 
arranged symmetrically around the central focus. In 
addition, the focus position is shifted in the z-direction 
by more than 100 nm out of its original central 
position. 
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Fig. 2: Spatial permittivity distribution of the microscopic 
sample: ovoid protein envelope with diameters 
4µm 6µm 4µm× ×  and 1.96ε =  suspended in water 

( 1.33n = ), containing another ovoid absorbing structure with 
diameters 0.8µm 0.8µm 0.4µm× ×  and 2.24 0.3iε = + , 

which is prepared with fluorescence markers. 
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Fig. 3: Focus form of the unperturbed (top) vs. aberrated 
(bottom) 4π-focus. / 20x yMO = , / 10µmx yP = , 800nmλ =  

 
With the combination of the above concepts, 

aberrations in microscopic systems, where polarization 
effects play a major role, can now be consistently 
simulated and therefore be better understood and 
avoided. 

 
References: 
 
[1] M. Auer and K.-H. Brenner, “Localized input fields in 
rigorous coupled-wave analysis”, J. Opt. Am. A 31, 2385-
2393, (2014) 
 
[2] R. C. Rumpf, “Improved formulation of scattering 
matrices for semi-analytical methods that is consistent with 
convention”, Prog. Electromagn. Res. B35, 241–261, (2011) 
 
[3] A. Junker, K.-H. Brenner, “Two-sided illumination in 
rigorous coupled-wave analysis applied to the 4π-
microscope”, J. Opt. Soc. Am. A 34, 1769-1775, (2017)
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Transformed diffraction gratings 
 

R. Erhard, K.-H. Brenner 
 
 
Transformation optics is a theory based on the 

formal invariance of Maxwell’s equations under 
coordinate transformations [1]. This formal invariance 
allows to relate transformations with changes in 
material parameters and with transformed 
electromagnetic fields. This relation can be exploited 
to design media that transform the electromagnetic 
fields according to the transformation used in the 
design. Having chosen a transformation, the material 
specification of the transformation medium is 
described by [2] 

 

ɶ
Tεε Λ Λ=

Λ
, �

Tµµ Λ Λ=
Λ

                  (1) 

 
where Λ is the Jacobian matrix of the transformation 
and ε  is the electric permittivity and µ the magnetic 

permeability of the original medium. 
 
We checked this formal invariance numerically by 

means of rigorous simulations of transformed 
diffraction gratings. The transformed gratings were 
designed with the recipe (1), applying transformations 
to ordinary diffraction gratings. The transformations 
were chosen to be continuous everywhere and to leave 
the region around the gratings untouched or only 
shifted with respect to the optical axis. In doing so, the 
transformed devices are expected to have the very 
same diffractive effects as their original counterparts 
apart from constant phase shifts. 
 

The relative permittivity distribution of a 1D 
trapezoidal grating serving as a test sample is depicted 
in Fig. 1 (a). The transformation leading to the 
transformed grating is a polynomial 
 

3
1 3( ) ( ) ( )t x a z x a z x= + ,                 (2) 

 
that maps the lateral contours of the original grating to 
the constant ax ±≃ 1.074µm. On the left side of the 

grating domain the transformation is the identity. On 
the right side it is necessary to extend the 
transformation beyond the original grating domain to 
let it continuously approach the identity. The resulting 
transformed grating is anisotropic and inhomogeneous. 
Only the xx-component of its relative permittivity 
tensor is shown in Fig. 1 (b). 
 

The diffraction efficiencies for both gratings were 
calculated with the S-matrix algorithm for 
perpendicular incident TE-polarised light of 
wavelength 0.633µm. The diffraction efficiencies with 
respect to the truncation level used in the differential 
method [3] are depicted in Fig. 2. They agree for large 

enough truncation level as predicted by the theory 
albeit with small deviations. We attribute these 
deviations to numerical errors. Since the convergence 
of the far-field efficiencies for the transformed grating 
is comparable to that of the initial grating, this aspect 
does not provide a practical benefit, at least not in this 
example. For near field quantities, this aspect still 
needs to be investigated. 
 

 

                      (a) 
 

                      (b) 

Fig 1: Relative permittivity distribution of the original 
grating (left) and the xx-component of the relative 
permittivity tensor of the transformed grating (right). 
 
 

 
Fig 2: Comparison of the diffraction efficiencies of the 
transformed and the original grating with respect to the 
truncation level used in the differential method [3]. 
 
References: 

 
[1] J. Plebanski, Pys. Rev., 118.5, pp. 1396-1408, (1959) 
 
[2] D. Schurig, J. B. Pendry, D. R. Smith, Optics Express, 
Vol. 18, No. 21, pp. 9794-9804, (2006) 
 
[3] K. Watanabe, R. Petit, M. Nevière, J. Opt. Soc. Am. A, 
19.2, pp. 325-33, (2002) 
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Reconstruction of light field photography by deconvolution 
 

S. Einsiedler, K.-H. Brenner 
 
 
A light field camera allows to acquire three-

dimensional information of the photographed object. 
This additional information can be used to calculate 
refocused images in a different, selectable focal plane. 
The combination of several of these two-dimensional 
images can later be used to create an image with 
extended depth of field. The goal of this work is to use 
a wave optical deconvolution algorithm to calculate 
these images. A ray based technique was already 
successfully used for reconstruction [1]. 
Our plenoptic camera consists of a main lens, a micro 
lens array and a CCD-sensor. The object is projected 
onto the micro lens array before it hits the sensor. As a 
result, a huge number of micro images of the object 
appear on the sensor, all taken from slightly different 
angles. These micro images contain the three-
dimensional information [1]. 
 

 
 

Fig. 1: Schematic setup of a light field camera 
 

We consider the transformation from the object to 
the sensor as a linear and incoherent, but space variant 
operation H. The total imaging process is thus 
described by: 
 

( ) ( ) ( )2
, , , , ,o o i i i i o o i iI x y u x y H x y x y dx dy= ⋅∫        (1) 

 

( ),o oI x y  is the intensity distribution on the CCD-

sensor. The subscript “o ” denotes output coordinates 
and “i ” denotes input coordinates. 
The operator H can be determined by measuring the 
impulse response for every point( ),i ix y  in the object. 

Following Ref. [2] we discretize the object and the 
image, and obtain a linear algebraic equation: 
 

2

, , , , ,o o i i i i o o

i i

x y x y x y x y
x y

I u H=∑∑   (2) 

 
The intensity vector I is the measured sensor 

intensity with the object as input and H is a matrix 
assumed as known. The mathematical problem, to be 
solved is thus the inversion of eq. (2). 
 

The transformations from images into vectors and 
from a set of images M into a matrix is given by: 
 

,mN n m nV V+ =
�

             (3a) 

, , , ,mN n m N n m m n nM H′ ′ ′ ′+ + =                  (3b) 

 
Thus we can write shortly: 
 

I H U= ⋅
� �

         (4) 
 

Now 
2

U u=
�

 can be reconstructed in principle by 

solving this system of linear equations. We assume that 
H  will be far too large to be kept in memory, even if 
we are able to find redundant information in H , 
caused by the periodic nature of the micro lens array. 
Therefore we will apply an iterative algorithm to invert 
eq. (4). Since we are in the middle of this project, we 
cannot show results now. But a complexity analysis 
predicts, that the wave optical method might be faster 
than the ray optical approach. 
 
References: 
 
[1] Ren Ng “Digital light field photography”, Doctoral 
Dissertation, Stanford University, from cdn.lytro.com/renng-
thesis.pdf, (2006) 
 
[2] Michael Broxton, Logan Grosenick, Samuel Yang, Noy 
Cohen, Aaron Andalman, Karl Deisseroth, and Marc Levoy, 
“Wave optics theory and 3-D deconvolution for the light 
field microscope”, Opt. Express 21, 25418-25439, (2013) 
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